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In this study we investigate the Kolmogorov flow (a shear flow with a sinusoidal
velocity profile) in a weakly stratified, two-dimensional fluid. We derive amplitude
equations for this system in the neighbourhood of the initial bifurcation to insta-
bility for both low and high Péclet numbers (strong and weak thermal diffusion,
respectively). We solve amplitude equations numerically and find that, for low Péclet
number, the stratification halts the cascade of energy from small to large scales at an
intermediate wavenumber. For high Péclet number, we discover diffusively spreading,
thermal boundary layers in which the stratification temporarily impedes, but does not
saturate, the growth of the instability; the instability eventually mixes the temperature
inside the boundary layers, so releasing itself from the stabilizing stratification there,
and thereby grows more quickly. We solve the governing fluid equations numerically
to compare with the asymptotic results, and to extend the exploration well beyond
onset. We find that the arrest of the inverse cascade by stratification is a robust feature
of the system, occurring at higher Reynolds, Richards and Péclet numbers – the flow
patterns are invariably smaller than the domain size. At higher Péclet number, though
the system creates slender regions in which the temperature gradient is concentrated
within a more homogeneous background, there are no signs of the horizontally mixed
layers separated by diffusive interfaces familiar from doubly diffusive systems.

1. Introduction
The stability of viscous shear flows is a notoriously difficult problem that has

occupied fluid dynamicists for more than a century. Without the effects of stratification
and compressibility, the linear theory of the problem is based on the solution of the
Orr–Sommerfeld equation. Few general results and exact solutions are known for
this equation. A notable exception is the so-called Kolmogorov flow, first studied
by Meshalkin & Sinai (1961), for which the eigenvalue problem can be reduced
to a study of some continued fractions (Friedlander & Howard 1998). Kolmogorov
flow is a two-dimensional, unidirectional shear flow with a sinusoid velocity profile
(U = sin z, where z is the cross-stream coordinate) which, in viscous fluid, must
be maintained by an external forcing. Because of its simplicity and accessibility
to analysis, Kolmogorov advocated this flow as a theoretical laboratory in which
to study fluid instability and the transition to turbulence. Forced electrolytic fluids
(Bondarenko, Gak & Dolzhansky 1979; Batchayev 1988), and driven soap films
(Burgess et al. 1999) have also provided experimental realizations of the flow.

Many previous theoretical studies have focused on deriving the critical Reynolds
number for the onset of instability in unstratified Kolmogorov flows (Meshalkin &
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Sinai 1961; Beaumont 1981; Thess 1992; Murakami & Watanabe 1994), and am-
plitude equations describing the resulting pattern formation (Nepomniashchii 1976;
Sivashinsky 1985). These studies have been extended into more strongly unstable
regimes with numerical simulation (Nicolaenko & She 1989; Platt, Sirovich & Fitz-
maurice 1991; Armbruster et al. 1992). Notably, it was found that small-scale insta-
bilities create a negative effective viscosity which seeds a cascade of energy from the
injection scale (the lengthscale of the sinusoidal basic flow) to the largest spatial scales.
Hence, the configuration provides a simple visualization of one of the ingredients of
two-dimensional turbulence (Green 1974). Generalization of the Kolmogorov basic
state (Beloshapkin et al. 1989) also illustrates the formation of a wide variety of
patterns with symmetries of crystals and quasi-crystals.

Kolmogorov flows have also been studied in geophysical fluid dynamics with regard
to the stability of finite-amplitude Rossby waves in the atmosphere (Lorenz 1972) and
to gauge whether small-scale forcing such as baroclinic instability can cascade into
planetary-scale flows (Manfroi & Young 1999). These studies also add two further
physical effects to the Kolmogorov flow: the beta effect (the planetary vorticity
gradient) and (bottom) friction. A major qualitative change introduced by those
physical effects is the arrest of the inverse cascade; energy is no longer channelled to
the longest wavelengths, but builds up over intermediate lengthscales (Frisch, Legras
& Villone 1996; Manfroi & Young 1999; Legras, Villone & Frisch 1999).

In this study we continue to mine the vein suggested by Kolmogorov. Specifically,
we add gravity in the direction transverse to the Kolmogorov flow and explore how
weak stratification modifies the basic linear instability and its nonlinear development.
Because stratification exerts a large-scale stabilizing influence, here too we anticipate
an arrest of the inverse cascade. Again, there are some geophysical motivations, such
as the stability of vertical shear flows of the atmosphere (Davis & Peltier 1976) and of
internal gravity waves with finite amplitude (Kurgansky 1980). Stratified Kolmogorov
flows have also been created in the laboratory (Batchayev, Dovzhenko & Kurgansky
1984; Batchayev & Kurgansky 1986). However, we will not directly consider these
applications, and describe only the fluid mechanical problem. A preliminary report
on this work can be found in Young (1999).

The paper is structured as follows. First, we analyse the linear stability of stratified
Kolmogorov flow. We then delve into weakly nonlinear, long-wave theory for the insta-
bility. Two particular physical regimes must be dealt with. In § 4, we consider weakly
stratified flows in which heat diffuses relatively quickly compared to the unfolding
time of the instability. This case has many similarities with long-wave instability for
non-stratified flows, and we base the amplitude expansion on Sivashinsky’s earlier
effort. When thermal diffusion is relatively slow, however, we encounter a different
physical regime in which sharp, internal, thermal boundary layers can develop in the
temperature field. This case is considered in § 5. Finally, in § 6, we present results from
direct numerical simulations of the governing equations to complement and extend
the asymptotic analyses.

2. Formulation
We start with the vorticity and heat equations for two-dimensional stratified flow

in the Boussinesq approximation. The flow is defined on the (x, z)-plane with gravity
g directed along −z. We exploit the incompressibility of the velocity field to express
the velocity components in terms of a streamfunction, Ψ (x, z, t). The background
Kolmogorov shear flow is characterized by Ψ0 = U0l cos(z/l), where U0 is the ampli-
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tude and 2πl is the periodicity of the shear flow. The stabilizing linear temperature
variation of the background is T0 = (∆T/l)z, where ∆T is the temperature difference
across a height l.

We separate the streamfunction and temperature of an evolving disturbance from
the basic state, and use l, U0 and l/U0 to remove the dimensions from the governing
equations. That is, we set Ψ = Ψ0 +U0lψ(x, z, t) and T = T0 +∆T θ(x, z, t), and write
the dimensionless vorticity and heat equations,

∂t∇2ψ − (∇2ψ + ψ)x sin z − J(ψ,∇2ψ) =
1

Re
∇4ψ − Riθx (2.1)

and

∂tθ − θx sin z − ψx − J(ψ, θ) =
1

Pe
∇2θ. (2.2)

A number of dimensionless numbers appear: Re ≡ U0l/ν is the Reynolds number,
Pe ≡ U0l/κ is the Péclet number, and Ri ≡ gα∆Tl/U2

0 is the Richardson number. The
dimensionless basic state is a shear flow with profile u0 = − sin z and unit temperature
gradient.

We solve the equations on a periodic domain, x ∈ [0, Lx] and z ∈ [0, Lz]. In
principle, perturbations need not have the same (vertical) periodicity as the basic
flow, and so Lz is not necessarily 2π. However, computations for the unstratified
linear stability problem (Beaumont 1981, Friedlander & Howard 1998), supplemented
with some of our own for the stratified case, suggest that the most unstable mode
always has the same periodicity as the basic flow profile. We therefore set most of
our exploration in domains with Lz = 2π; at the very end of our study we consider a
more extensive basic flow with Lz = 16π. Except in particular examples, the horizontal
domain size Lx is left arbitrary (large horizontal domains, with Lx � 1 will be of
most interest).

The dimensionless equations are formulated in such a way as to recover the
unstratified Kolmogorov problem if Ri = 0. Consequently, the Péclet number appears
in the heat equation, and the more customary Prandtl number, Pr = ν/κ, is not used.
It is useful to recall that Pe = PrRe and Ra = RiRe2Pr, where Ra is the Rayleigh
number.

3. Linear stability theory
We first present results for the linear stability of the basic state: we drop the non-

linear terms and look for normal modes with dependence, [ψ, θ] = eik(x−ct)[ψ̂(z), θ̂(z)],

where ψ̂(z) and θ̂(z) are periodic functions on [0, 2π]. Then,

1

ikRe

(
d2

dz2
− k2

)2

ψ̂ + (c+ sin z)

(
d2

dz2
− k2

)
ψ̂ + ψ̂ sin z − Riθ̂ = 0 (3.1)

and

1

ikPe

(
d2

dz2
− k2

)
θ̂ + (c+ sin z)θ̂ + ψ̂ = 0. (3.2)

When Ri = 0, the normal-mode problem reduces to that studied previously, and
can be reduced to the consideration of a continued fraction (Friedlander & Howard
1998). The critical Reynolds number is Rec =

√
2, and just beyond this threshold the
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flow is unstable to waves with small horizontal wavenumber, k � 1, and growth rate,

s = −ikc =
1

Re
(Re2 − 2)k2 − Re

(
1 +

Re2

4

)
k4 + O(k6). (3.3)

In sections to come we generalize this formula to capture effects of weak stratification,
but first we give more details of the linear stability.

3.1. Ideal limit

In the ideal limit, Re → ∞ and Pe → ∞, and the equations are simplified by virtue
of the leading spatial derivatives disappearing from the problem. The simplified
equations can be combined into the Taylor–Goldstein equation,

ψ′′ − k2ψ +
ψ sin z

c+ sin z
+

Riψ

(c+ sin z)2
= 0. (3.4)

From this equation we may derive the celebrated Richardson number criterion:
instability can only occur provided Ri < 1/4 (Drazin & Howard 1996). However,
a major complication over the viscous and diffusive problem is that the eigenvalue
equation is singular at the critical levels, where c = U ≡ − sin z. As a result, the
eigenvalues form a continuous spectrum for all neutral waves that have critical
levels (Case 1960). Fortunately, the modes responsible for instability have discrete
eigenvalues, and so normal-mode methods may be used to detect them.

In the case at hand, we find a class of stationary neutral solutions with c = 0 by
rewriting the equation in the form(

d2

dz2
+ 1− k2 +

Ri

sin2 z

)
ψ =

(
d

dz
+
√

1− k2 cot z

)(
d

dz
−√1− k2 cot z

)
ψ = 0,

(3.5)
where

Ri =
√

1− k2 − (1− k2). (3.6)

By virtue of the factorization in (3.5), we find the two independent solutions

ψ1 = (sin z)
√

1−k2

(3.7)

and

ψ2 = (sin z)
√

1−k2

∫ z

(sin z′)−2
√

1−k2

dz′. (3.8)

The two solutions are not regular functions and require interpretation when sin z < 0.
This mirrors Holmboe’s solution for a mixing layer profile. For that shear flow,
continuation from unstable wavenumbers can be used to select the correct branch
of the multi-valued function analogous to (sin z)

√
1−k2

(Howard 1963). Here, a similar
procedure predicts that ψ1 is the limiting neutral mode of a branch of unstable modes

and we should take ψ1 = | sin z|√1−k2
. (ψ2 appears to be non-periodic.)

The Richardson number defined by (3.6) is plotted as a function of k in figure 1.
The curve has a maximum value of 1/4 when k =

√
3/2. Howard’s version of

the Tollmien–Lin perturbation calculation (Howard 1963) indicates that there is an
unstable mode below this curve, in agreement with the numerical solutions of the
eigenvalue problem that are also included in the figure. The curve therefore appears
to be the true stability boundary, and the Richardson number criterion, Ri < 1/4, is
sufficient for instability.
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Figure 1. (a) Stability boundary for the inviscid, non-diffusive limit. Also shown are contours of
constant max(ci), at levels of multiples of 0.1. (b, c) Corresponding pictures for weakly viscous and
diffusive flows (with Re = 10−4 and Pe = 10−5, and Re = 10−5 and Pe = 1, respectively), in steps
of 0.05 for max(ci).

3.2. Viscous flows

For viscous flows, we solve the eigenvalue problem numerically. Maximal values of
ci are shown in figure 1(b, c). These pictures largely confirm that the ideal instability
is qualitatively unchanged by the dissipation. However, somewhat surprisingly, there
are parameter regimes in which the instability extends to Ri > 1/4 when diffusion is
included. This feature probably has some analogy with the diffusive destabilization
of vortices (McIntyre 1970).

Figure 2 shows curves of neutral stability on the (k, Re)-plane for weakly stratified
flows. The curves are invariably confined to the wavenumber range 0 6 k 6 1.
From data of this kind, we identify the critical wavenumbers and Reynolds numbers.
These are plotted in figure 3 as functions of Richardson numbers for Prandtl number
Pr ≡ ν/κ = 10 (so Pe = 10Re). (As a prelude to the asymptotic analysis to come
shortly, the results from long-wave expansions are included in figure 3.)

As shown in the figures, the critical Reynolds number, Rec, and wavenumber,
kc, increase with increasing Richardson number. We can uncover both these trends
analytically by performing a long-wave expansion about the critical Reynolds number
for weakly stratified flows. The goal of the next two sections is to derive that long-wave
theory. We need two expansions because there are two possible limits for the thermal
diffusivity: when Pe is not large, thermal diffusion is relatively rapid relative to the
growth of the instability and the temperature field relaxes almost instantaneously.
However, if Pe� 1, thermal relaxation can be as slow or slower than the instability,
leading to a very different kind of dynamical behaviour.

The second case is significantly more complicated, as foreshadowed by the sin-
gularity that appears in the linear stability problem when Pe → ∞: in this limit,
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Figure 2. Stability boundaries on the (k, Re)-plane for weakly stratified flow with Prandtl number
Pr = 1. Curves are labelled by the Richardson number: (a) Ri = 10−7, 10−6, 10−5, 10−4, 10−3, and
10−2; (b) Ri = 0.01, 0.05, 0.1 and 0.15. In (b), the wavenumber ranges for inviscid instabilities are
also shown.
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number for Pr = 10 for the periodic case. (c, d ) The data on logarithmic plots. The inviscid marginal

stability point, kc =
√

3/2 and Ri = 1/4 as Re → ∞ is shown, together with curves constructed
using the long-wave analyses.

θ̂ → −ψ̂/(c+ sin z) and the eigenvalue equation becomes

1

ikRe

(
d2

dz2
− k2

)2

ψ̂ + (c+ sin z)

(
d2

dz2
− k2

)
ψ̂ + ψ̂ sin z +

Riψ̂

c+ sin z
= 0. (3.9)
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Figure 4. (a) Development of internal boundary layer structure in the temperature eigenfunction
θ(z) of the neutral mode as we increase the Péclet number for Re = 1.92 and Ri = 0.01. Solid,
dashed, and dash-dotted lines are, respectively, Pe = 20, 2 × 103, and 2 × 105. (b) Boundary layer
thickness (δz, as defined in (a)) as a function of Pe. The solid line is the best fit for the last
five points, δz ∼ Pe−0.326, which is in agreement with simple dimensional analysis which predicts
δz ∼ Pe1/3. (NB because the neutral modes have order unity wavenumber, this scaling is different
from the long-wave theory of § 5).

The critical-level-like singularity for c = − sin z reflects a continuous spectrum of
eigenvalues describing re-arrangements of the temperature field. If Ri � 1, we may
treat the stratification term perturbatively, in which case we find an eigenvalue
correction,

δc = −Ri

∫ 2π

0

ψ̂†ψ̂ dz/(c+ sin z)∫ 2π

0

ψ̂†(ψ̂′′ − k2ψ̂) dz

, (3.10)

where ψ̂† is the adjoint eigenfunction. The right-hand side of this expression contains
a singular integral much like that encountered in conventional Tollmien–Lin pertur-
bation theory. Importantly, as in that theory, the eigenvalue correction is predicted
to have different limits as ci → 0 from either above or below (we explicitly observe
this discontinuous behaviour in § 5).

Further complications appear in the nonlinear theory, which as a consequence
proceeds by way of matched asymptotics similar to standard critical-layer theory
(Warn & Warn 1978, Stewartson 1981). The matched asymptotics are needed because
the singularities of the linear theory must be removed within narrow boundary layers
surrounding the singular levels. The development of these thermal boundary layers

can be seen in the linear eigenfunction θ̂(z) as we approach the diffusionless limit
(figure 4).

4. Weak instability for Pe ∼ O(1)

4.1. Long-wave expansion

In this section we construct the long-wave amplitude equation for Pe ∼ O(1). The
aim is to generalize Sivashinky’s long-wave expansion (Sivashinsky 1985) to weakly
stratified flows; the analysis is very similar and we relegate the details to Appendix A.

To focus on the weakly stratified limit, we rescale the Richardson number Ri ≡
ε6Ri6, and, to expand about the critical Reynolds number, we set Re =

√
2/(1−ε2). We
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Figure 5. Stability boundaries on the (k, Re)-plane predicted by long-wave theory for Pr = 1.
Curves are labelled by the Richardson number. The long-wave theory for (a) order unity Péclet
numbers and (b) the large Péclet number theory (§ 5).

further introduce the long-wave coordinate, ξ = x/ε, and a slow timescale, τ = t/ε4.
The precise scalings are dictated by a distinguished limit of the parameters of the
problem, and are evident in the amplitude equations that we eventually derive:

Aξξτ +
3
√

2

2
Aξξξξξξ +

√
2
[(

1− 2
3
A2
ξ

)
Aξ
]
ξξξ

=
2PeRi6
Pe2 + 2

(A− 〈A〉). (4.1)

Here, A(ξ, τ) denotes the leading-order streamfunction, and the angular brackets
denote horizontal average.

A linearization of the amplitude equation about A = 0 allows us to reconsider the
linear stability of the weakly stratified flow: let A ∼ exp(iεkξ + ε4sτ) ≡ exp(ikx+ st).
Then,

s =
√

2

(
1−
√

2

Re

)
k2 − 3√

2
k4 − 2PeRi6

(Pe2 + 2)k2
+ O(ε4k2), (4.2)

on recalling the definition of ε2, which reveals the stabilizing influence of stratification
on long waves. This approximation leads to the stability boundaries shown in figure
5, which should be compared with figure 2(a). (Also displayed are parallel results for
the Pe� 1 theory of § 5.)

4.2. Canonization and dynamics

A simple rescaling places the long-wave equation into a canonical form containing a
single parameter λ:

Gτ + Gξξ + Gξξξξ − (G3)ξξ = λH, Hξξ = G, (4.3)

with G ∝ (A−〈A〉)ξ and λ = 9
√

2PeRi6/(2 +Pe2); the size of the domain, d, in which
we solve this equation is a further parameter. The canonized form highlights the
connection with the Cahn–Hilliard equation (Sivashinsky 1985; Chapman & Proctor
1980, and its variants (Manfroi & Young 1999; Legras et al. 1999). In view of the
diagnostic form of the function H , there is a resemblance to KP equations.

The system (4.3) has a Lyapunov functional,

F[G] ≡
∫ d

0

( 1
4
G4 − 1

2
G2 + 1

2
G2
ξ + 1

2
λH2) dξ, (4.4)
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Figure 6. Time–space plots of the amplitude gradient with (a) Ri6 = 0 and (b) Ri6 = 0.1, with
Pe = 1. The scale of the time axis also shows the amplitude scale. This plot shows the solutions for
the unscaled variable Aξ(ξ, T ), as found numerically using a pseudo-spectral code.

for which

dF
dτ

= −
∫ d

0

H2
τ dξ 6 0. (4.5)

Therefore, because F[G] must decay in time to a minimal value, and because any
minimum ofF[G] is equivalent to a steady solution of (4.3), the system must approach
a stationary state from an arbitrary initial condition.

The steady solutions, G(ξ) = g(ξ) and H = h(ξ), satisfy

gξξ + gξξξξ − (g3)ξξ = λh, g = hξξ. (4.6)

Provided d > 2π, and depending on the value of λ, these equations have non-trivial
solutions. One variety of such solutions can be regarded as ‘pure modes’ which, on
treating either d or λ as a control parameter, bifurcate from the trivial state g = 0. At
the points of bifurcation, these modes have a sinusoidal form, g = sin(nπξ/d), given
by a particular integer n, and we may index them accordingly. In addition to the pure
modes, secondary bifurcations may lead to ‘mixed modes’ that connect the different
pure-mode solution branches.

For λ = 0, the only stable steady equilibrium is that with longest wavelength, the
n = 1 pure mode (Chapman & Proctor 1980), and there are no secondary bifurcations
and mixed modes. The system must therefore progress inexorably to the largest-scale
steady equilibrium even when there may be more unstable normal modes with shorter
scale. This is the essence of the inverse cascade in the unstratified problem. However,
the passage to the final state can be very protracted, as illustrated in figure 6(a).
This figure shows the initial evolution of G(ξ, τ) from a low-amplitude, random initial
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condition. The system first rapidly forms a sequence of interfaces separating almost
homogeneous ‘phases’ (in the gradient G(ξ, τ)). Certain interfaces then slowly drift
toward one another, eventually precipitating sudden interface collisions wherein two
of the homogeneous phases disappear. This dynamics repeats over a longer timescale
than is shown, and the collisions gradually coarsen the pattern and eliminate the
interfaces. Ultimately, only the largest-scale state remains with a single pair of
interfaces (this is the n = 1 pure mode). Such coarsening is the usual phenomenology
associated with the Cahn–Hilliard equation; here it corresponds to slowly evolving
patterns of vortices interrupted by rapid mergers (She 1987).

When λ 6= 0, the bifurcations of the equilibrium solutions are different: mixed
modes now appear that destabilize the n = 1 mode, then connect to and stabilize
the pure modes with n > 1. A sample bifurcation diagram for d = 30 and varying λ
is illustrated in figure 7, and the variety of pure modes and their ranges of stability
for d = 12π are shown in figure 8. Evidently, shorter-scale multiple equilibria appear
instead of the gravest mode, and so there is no longer any reason to expect a complete
inverse cascade. Indeed, numerical solutions of the amplitude equation with λ 6= 0
display the arrest of the cascade for patterns of intermediate scale – see figure 6(b).
Here, there is a single collision and the state with eight interfaces (the n = 4 pure
mode – see figure 8) persists indefinitely. This modification of the Cahn–Hilliard
dynamics is similar to that observed in Kolmogorov flow on the beta-plane and with
friction (Frisch et al. 1996; Manfroi & Young 1999).

5. Weak instability for Pe� 1

In many physical systems (salty water, for example), the Péclet number for a
Reynolds number of

√
2 is of the order of 1000. Thus, cases where Pe � 1 can be
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physically relevant, and we now focus on this weakly diffusive limit. As before, we set

Ri = ε5Ri5, ∂t = ε4∂τ, ∂x = ε∂ξ. (5.1)

We also now add the scalings

Pe = ε−10Pe10, ψ = ε6φ, θ = ε6ϑ. (5.2)

The first ensures a weakly diffusive limit. The latter pair is necessary because the
amplitude at which nonlinearity comes into play is much reduced compared to the
diffusive case as a result of the presence of near-singular boundary layers: in § 3,
we pointed out that, for Pe → ∞, critical-level-like singularities appear in the linear
eigenvalue problem. In the nonlinear theory, these singularities become regularized
within thermal boundary layers on using matched asymptotic expansion, but the
amplitude of the disturbance remains relatively large over these special regions,
promoting nonlinear effects there.

The technical details of the expansion are relegated to Appendix B; we quote only
the final result:

Aτξ +
3√
2
Aξξξξξ +

√
2Aξξξ = −Ri5

π

∫ ∞
−∞
Θ dZ, (5.3)

Θτ + ZΘξ + AξΘZ − Aξ = µΘZZ , (5.4)

where µ = 1/Pe10, A(ξ, τ) is again the leading-order (global) streamfunction, Θ(ξ, Z, τ)
denotes the temperature fluctuation inside the boundary layers (by a symmetry of the
problem, the thermal disturbance is identical inside each boundary layer), which have
an expanded vertical coordinate Z resolving them, and which cover infinite intervals
in the asymptotic scheme. This system has some similarities with one derived for
long-wave shear instability (Balmforth & Young 1997).
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Figure 9. Growth rate, S , as a function of wavenumber, K , for Ri5 = 0.05. The solid line is the
non-diffusive case (Pe = ∞), the dashed line is the weakly diffusive case (Pe ∼ ε−10), and the
dotted line is computed using the asymptotic theory for Pe = O(1). The diamonds are taken from
numerical solutions to the amplitude equations (5.3)–(5.4) with a finite domain in Z .

5.1. A dispersion relation

On neglecting the nonlinear terms, we find that the normal modes, with dependence
exp(iKξ + Sτ), satisfy

iK

[
S +

3√
2
K4 −√2K2

]
A = −Ri5

π

∫ ∞
−∞
Θ dZ, (5.5)

(S + iKZ)Θ − µΘZZ = iKA, (5.6)

and one can derive the dispersion relation,

S =
√

2K2 − 3√
2
K4 − σ

|K|Ri5, (5.7)

where σ = 1 if µ 6= 0, but σ = sgn(S) if µ = 0, (cf. Balmforth & Young 1997). The
two versions of the dispersion relation are drawn in figure 9, and neutral stability
boundaries computed using this formula are presented earlier in figure 5.

The growth rate for finite Péclet number (the dashed line in figure 9) is a smooth
function of wavenumber. However, the non-diffusive curve (the solid line) is dis-
continuous. This reflects the singular nature of the non-diffusive linear eigenvalue
problem that was mentioned in § 3; the lack of a common limit as ci → 0 from either
above or below (or equivalently S → 0±) is seen clearly in the figure. The peculiar
behaviour arises from the final, stabilizing, stratification term in (5.7). The presence of
this dissipative term is, in fact, quite surprising for µ = 0 (Pe10 →∞): in this limit, the
temperature field is simply advected around without diffusive decay, yet this action
still acts to damp the global mode. The reason is that the temperature field becomes
increasingly filamentary as it is advected and twisted up by the mode, with the result
that its integral moments decay with time. This leads to an apparent diffusive effect,
and is closely related to the phenomenon of Landau damping in plasmas, in which
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the distribution function (the analogy of Θ) becomes filamentary and its integral
(related to the electric field) decays with time.

5.2. Quasi-steady, single-mode boundary layers

There are some limits of the amplitude equations that are amenable to further
analysis. The first limit is obtained when Ri5 � 1 and the horizontal domain size,
2πL, is specially selected so that there is a single Fourier mode, A1 ∼ exp(iξ/L),
with a low (positive) growth rate, and the remainder, An ∼ exp(inξ/L) with n < 1,
are, comparatively, much more strongly damped. This sets the stage for a further
reduction of the problem, namely a projection onto the special mode.

Let ξ = Lξ′, T = δτ and Ri5 = πδΛ/L, where δ � 1 denotes the growth rate of the
weakly unstable mode. A Fourier decomposition of A then indicates that An = O(δ)
for n > 1, and

A1T − A1 =
i

2π
Λ

∫ 2π

0

dξ

∫ ∞
−∞

dZe−iξΘ(ξ, Z, T ) (5.8)

(after dropping the prime). Moreover, to order δ,

ZΘξ − Ǎξ + ǍξΘZ = µLΘZZ , (5.9)

where Ǎ(ξ) = A1e
iξ + c.c. Thus, the slow growth of the unstable mode permits the

boundary layer to evolve into a quasi-steady state.
Now we borrow some analysis from Churilov & Shukhman (1996): define A1 =

−a(T )eiϕ(T ), Ξ = ξ + ϕ and η = Z/
√

2a. Then,

ηΘΞ +Θη sinΞ − λΘηη =
√

2a sinΞ, (5.10)

where λ = µL/(2a)3/2, which is solved in terms of a special function, g1(Ξ, η, λ),
constructed by Churilov & Shukhman:

Θ = −
√
a

2
g1(Ξ, η; λ). (5.11)

Thence,

aT = a+ ΛaΦ1[µL/(2a)
3/2], ϕT = 0, (5.12)

where Φ1(λ) is another tabulated function which decreases monotonically from
Φ1(0) = 0 to Φ1 → −π as λ → ∞. For low amplitudes, aT ∼ (1 − πΛ)a, which
is a re-expression of the linear result in (5.7). Also, provided 1 > πΛ, a continues
to increase with time, and eventually diverges more quickly: a ∼ eT . Simultaneously,
because Z = η

√
2a, the boundary layer thickens.

The divergence of a, and the expansion of the scale of the boundary layer, indicates
that the effective diffusivity in (5.10) decreases with time. The relevant asymptotic
solution for Θ is therefore one in which the total temperature field, η +Θ, becomes
swept around and averaged along the streamlines, Ψ = η2 + 2 cosΞ = constant.
These streamlines are a slowly expanding set of curves much like the orbits of a
pendulum, or the streamlines of the Kelvin cat’s eye. Moreover, symmetry demands
that η+Θ = 0 within the separatrices. In other words, as the unstable mode grows, it
twists up and homogenizes the temperature field inside cat’s eyes that emerge within
the boundary layers. Such mixed layers were in fact observed in experiments with
electrolyte fluids (Batchayev et al. 1984).
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5.3. A single-wave model

If the diffusivity µ is small in the situation described above, then the boundary layer
cannot evolve into a quasi-steady state as the unstable mode grows. In this limit, we
need another scheme for rescaling the amplitude equations:

ξ → Lξ′, Z → Lδζ, A1 → L2δ2A′1,
Θ → LδΘ ′, Ri5 → πδ2Λ̃, µ→ L2δ3λ̃.

}
(5.13)

Then, after removing the prime,

A1T = A1 +
i

2π
Λ

∫ 2π

0

dξ

∫ ∞
−∞
dζe−iξΘ(ξ, ζ, T ) (5.14)

and

ΘT + ζΘξ − i(A1e
iξ − A∗1e−iξ)(1−Θζ) = λ̃Θζζ . (5.15)

This reduced system is similar to models derived for shear instability (Churilov &
Shukhman 1987; Goldstein & Hultgren 1988) and in plasma physics (O’Neil, Winfrey
& Malmberg 1971), with one essential difference: in the current theory, the global
mode itself is unstable, and is damped by diffusion or Landau damping within the
boundary layer; in the other models, the global mode itself is not directly unstable, and
the instability arises from equilibrium gradients within the inner region (background
vorticity gradients for the shear flows). Despite this difference, by analogy with those
other problems, we anticipate that the global mode twists up the field Θ into a cat’s
eye structure, and any diffusion causes the cat’s eye to spread. These expectations are
confirmed by the numerical computations shown in figure 10.

The numerical solution also illustrates how the unstable mode fails to saturate
as the temperature field twists up, but, in fact, begins to grow more rapidly. This
parallels the quasi-steady version of the theory and reflects how the redistribution
of the mean temperature field gradually flattens the average temperature gradient
inside the boundary layer. Because the reduced gradient is less effective in impeding
the instability, the growth of the mode then accelerates. Thus the mode gradually
frees itself of the stabilizing effect of stratification and grows with a rate closer
to the unstratified problem. This divergent behaviour is quite unlike the behaviour
found for critical layers, but is a natural consequence of the competition between
the viscous global instability and the stabilization provided by background gradients
in the boundary layer. The situation has some similarities with reduced models of
baroclinic instability (Warn & Gauthier 1989) and thermohaline convection in a
slowly diffusing salt field (Balmforth & Casti 1998).

5.4. Numerical solutions

The previous two subsections outlined asymptotic limits in which we can make
some connections with earlier theories for related problems and obtain images of
cat’s eye patterns of mixed regions within slowly expanding boundary layers. This
phenomenology also extends to the full long-wave theory, which we solve numerically
using a pseudospectral code and a finite computational domain in Z . The size of the
computational box is sufficiently large to ensure roughly the same growth rates as the
linear theory (see figure 9); the box size in the streamwise direction is 70 and in the
cross-stream direction is 50. The code is initialized with a low-amplitude mode with
eight horizontal wavelengths in the box, and figure 11 shows the ensuing evolution.

But for the array of cat’s eyes, the evolution is much the same as before: as



Stratified Kolmogorov flow 145

400

0

–400

–600 –400

M
ea

n 

ζ

–200 0 200 400 600

T = 16.25

T = 17.5

( f )

102

100

10–2

0 4

|A|

T
8 12 16 20

(e)

|A|

eT/2

eT

50

0

–50

0 2 4 6

(a) 50

0

–50

200

0

–200
0 2 4 6

(c)
100

0

–100

ζ

ζ

ζ

100

0

–100

0 2 4 6

(b)
50

0

–50

500

0

–500
0 2 4 6

(d )
500

0

–500

ζ

Figure 10. Simulation of the single-wave model (5.15) for Λ̃ = 1/(2π) and λ̃ = 10−6. (a–d ) Snapshots
of the total temperature field ζ+Θ(ξ, ζ, T ): (a) T = 10, (b) T = 12.5, (c) T = 15, (d ) T = 17.5. The
colourmap used in each panel is different and is also displayed. (e) The corresponding evolution
of A1(T ), together with the trends of the actual linear instability (exp(T/2)), and the instability
without stratification (expT ). Finally, ( f ) illustrates how the growing mode redistributes the mean
temperature field inside the boundary layer, slowly flattening the mean gradient. The numerical
scheme is similar to that used in Balmforth et al. (2001), with a domain in ζ of [−400π, 400π], 1025
gridpoints in ζ and 256 in ξ.
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Figure 11. Snapshots of the total temperature at times, (a) t = 20, (b) 26, and (c) 32 for
Ri5 = 0.05 and µ = 1.0 in equations (5.3) and (5.4).

time proceeds, the swirl around the centre of each cell demolishes the temperature
gradients inside the cat’s eyes and concentrates that gradient in thin stripes at the cell
peripheries (the cat’s eyelids). The destruction of the stratification serves, once again,
to release the instability, which at later times grows faster. The acceleration of the
modal growth is shown in figure 12.

We have also conducted simulations with different initial conditions and different
values for the stratification parameter Ri5. In all cases, one mode dominates during
the linear growth phase leading to a cat’s eye pattern with a given spatial periodicity.
The subsequent evolution then follows a similar route to that shown in figure 11; the
boundary layer inexorably expands.

The unabated expansion indicates that the boundary layer theory does not capture
the saturation and long-time dynamics of the instability, unlike the long-wave equation
of § 4. That is, the large Péclet number theory captures only an initial transient. This
transient ends when the scale of the boundary layers becomes comparable to the size
of the original system. At this juncture, the boundary layers experience the variation
of the sinusoidal basic flow and interact with one another. Unfortunately, we cannot
explore this stage of the dynamics analytically and we turn to numerical simulations
to resolve the fate of the inverse cascade.

6. Direct numerical simulation
In this section we present results from numerically simulating the full system (2.1)–

(2.2) with a parallel pseudospectral code. (The code is fully parallelized in MPI, and
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Figure 12. Integral average of A as a function of time (solid line). The dashed line shows the
linear growth rate.

has been tested for both spatial and temporal convergences on SGI Origin.) The
numerical resolution, if not mentioned otherwise, is 512× 512, and was sufficient
to resolve the smallest scales that developed in the simulations. The code assumes
periodic boundary conditions in both directions, and the runs begin with random
fields of very small amplitude. The aspect ratio of the computational box is first
fixed at 8 (streamwise to cross-stream) so that there is one wavelength of the basic
sinusoidal flow in the vertical, but eight wavelengths would fit in the horizontal. For
these flows, we vary the Péclet number and Reynolds number, and fix the stratification
strength, Ri = 0.01. Later, we consider flows with aspect ratios of unity, fix Re, and
vary Ri and Pe.

There are three main goals in this section. First, the asymptotic theories described
above have limited ranges of validity. It is therefore of interest to advance beyond
these limitations and explore the dynamics over a much wider parameter regime.
Second, our analysis of the large Péclet number problem exposed a flaw in the
relevant long-wave theory, namely that solutions always diverge as the boundary
layer inexorably expands. To study what happens beyond this transient dynamics, we
simulate the full equations with relatively high Péclet numbers. Finally, our chief aim
in this article is to explore the effect of stratification on the inverse cascade found in
the Kolmogorov problem. The asymptotic theories go some way to determine how
stratification modifies the problem, but our numerical simulations progress much
further in providing a broad understanding over a wider parameter range.

6.1. Beyond onset

We focus first on a low Péclet number case, Pe = 1; in the next section we explore
what happens at higher Pe. As illustrated in figure 13, for Reynolds numbers as large
as 40, the system evolves to a stationary state; this figure shows the amplitude of the
instability, as measured by the average speed of the disturbance to the basic shear
flow (

√〈ψ2
x + ψ2

z 〉, where the angular brackets denote the integral average over the
domain). In the final state, the solution takes the form of a sequence of meandering
jets, with vortices occurring within part of the meander; the stratification is modified
according to the advection by this flow (see figure 14).
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Figure 13. Amplitude (defined as the integral average of the speed associated with the
disturbance) for different Reynolds numbers with Pe = 1 and Ri = 0.01.
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Figure 14. Final, stationary solutions for Pe = 1: (a) total temperature, and (b) total vorticity for
Re = 3 (upper panels) and 40 (lower panels).

At Re = 3 there are four meanders in the box and there is no sign of a coarsening of
the pattern. At higher Reynolds number, the meandering has larger amplitude and the
vortices within the meanders are intensified. However, the overall pattern remains the
same except that five meanders now occur. Stratification therefore arrests the inverse
cascade, in agreement with the asymptotic analysis, but the simulations show how
the arrest of the inverse cascade continues to much higher Reynolds numbers. The
change in the pattern wavelength is also consistent with the results of § 4, where we
found multiple equilibria with varying wavelength. However, we have not varied the
initial condition to verify the existence of multiple final states in the full simulations.

6.2. Expanding boundary layers

At larger Péclet numbers, the numerical simulations confirm the generation of thermal
boundary layers containing cat’s eye patterns, see figure 15. The layers expand
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Figure 15. Evolution of the internal boundary layer for Pe = 400, Re = 3 and Ri = 0.01. The times
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Figure 16. Amplitude (defined as the integral average of the speed associated with the disturbance)
for different Péclet numbers with Re = 3 and Ri = 0.01. The dashed line is for Pe = 400, the solid
line is for Pe = 100, and the dash-dotted line is for Pe = 1.

(approximately exponential in time, in line with results of § 5), reaching the scale of
the basic shear flow whereupon they interact with one another. The layers adjust to
one another’s shape and approach a ‘checkerboard’ pattern of well-mixed vortices
separated by diffusive interfaces. For Re = 3, the checkerboard patterns are steady
(figure 16); figure 17 compares the final states for Pe = 100 and 400.

At higher Reynolds number, the expanding boundary layers do not approach a
steady state when they come into contact. Figure 18 shows the temporal behaviour
of the amplitude for the two higher Péclet numbers. At Re = 10, the solution for
Pe = 100 is periodic, and that for Pe = 400 is aperiodic, and possibly chaotic. When
we raise the Reynolds number further to 40, both Pe = 100 and Pe = 400 solutions
appear chaotic. However, we have not systematically traced the transition from the
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steady equilibria at lower Reynolds number to these unsteady states, and so we
cannot say what bifurcations have led to the apparent chaos. Moreover, there may
again be multiple states, some of which could be steady. Our chief aim here is not
give to a bifurcation study like that undertaken in Platt et al. (1991), but to convey
some idea of the flavour of the dynamics that arises at higher Reynolds number for
different Péclet numbers. (It is not clear how useful such a study would be, given
that a multitude of bifurcations probably occur – we might simply become lost in the
maze of the bifurcation sequence.)

The oscillations for Re = 10 and Pe = 100 reflect pulsations of the meander
of the jets in combination with nutations of the vortices; we show snapshots of the
temperature and vorticity fields at times during one cycle in figure 19. Because thermal
diffusion is now relatively slow, the pulsation significantly rearranges the temperature
field, and generates a periodic exchange of kinetic and potential energy between the
meandering jets and the embedded vortices. In fact, the oscillation period (about 30
time units), is not very different from 2π/

√
Ri ≈ 60, the lower bound on the gravity
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Figure 19. Pulsating meander for Re = 10, Pe = 100, and Ri = 0.01: (a) snap-shots of total
temperature and (b) the total vorticity. The times of the snapshots are t = 82, 90 and 98 (top to
bottom). A movie of the entire simulation corresponding to this figure is available at http://astro.
uchicago.edu/home/web/young/linkdir/SKS001.html.

wave periods in the absence of the Kolmogorov flow. Moreover, because temperature
gradients are amplified by the fluid motions (see below), the gravity wave periods
are smaller in the evolving Kolmogorov flow. Hence, we interpret the cycling as
resulting, at least in part, from the influence of buoyancy. The cycling does not occur
at lower Péclet number because thermal diffusion rapidly obliterates the temperature
variations that provide the buoyancy forces.

The amplitude pulsation of the meander and the nutation of the vortices is also
evident at Re = 10 and Pe = 400. However, the oscillation does not remain regular in
this case, and vortices begin drifting horizontally (see figure 20). This motion permits
strong interactions to occur amongst the vortices that result in mergers. In this
way, the total number of vortices decreases, leading to an overall lengthening of the
characteristic spatial scale. This unsteady redistribution of vortices is somewhat like
that in numerical experiments on two-dimensional turbulence (McWilliams 1990),
and shallow-water flows of Jupiter’s winds (Williams & Wilson 1988) and on the
surface of a sphere (Cho & Polvani 1996). However, vortex mergers do not continue
to occur, and there is no subsequent inverse cascade. Instead the jets suffer further
instabilities that produce more vortices. This furnishes a state with intermediate
characteristic lengthscales in which the vortices and jets are in a chaotic balance or
‘weakly turbulent equilibrium’.

At higher Reynolds number Re = 40, there is a somewhat similar picture for
the evolution and we illustrate this with Pe = 400 (figure 21). As before, evolution
commences when thermal boundary layers form and the jets begin to meander.
However, the expanding cat’s eyes grow so quickly that they mix the temperature
field everywhere except in the sharp interfaces corresponding to the cat’s eyelids.
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Figure 20. Unsteady vortices and mergers for Re = 10, Pe = 400, and Ri = 0.01: (a) panels are
snap-shots of total temperature and (b) the total vorticity. The times of the snapshots are t = 380,
450 and 507 (top to bottom). A movie of the entire simulation corresponding to this figure is
available at http://astro.uchicago.edu/home/web/young/linkdir/SKS002.html.

These interfaces grow with the meander of the jet, traversing about three vertical
periods of the basic flow, and never truly come into contact with their counterparts
above and below. No checkerboard pattern forms from this evolution. Instead, the
meander breaks down and the original horizontal jets take over, tilting over the
remnants of the highly elongated boundary layers and effectively mixing the fluid.
From the resulting incoherent state, the linear instability begins a second phase of
growth. The top three panels of figure 21 cover this period of the evolution. The
second phase of the linear instability is interrupted by a different kind of dynamics
that persists for the remainder of the computation: at about t = 230, the meander
loses its spatial periodicity, and the jets break up into a number of interacting
vortices. Subsequently, the jet-like sturctures reappear as vortices merge together.
These motions lead to irregular pulsations of the horizontal flow (figure 22 – note
how the instability significantly weakens the background horizontal flow, and so
the vorticity imparted by the forcing becomes concentrated into the smaller-scale
vortices), and produce the aperiodic cycles in the amplitude measure of figure 18.
Overall, the evolution is similar for both Pe = 100 and 400, and is like a more
erratic version of that occurring at lower Reynolds numbers. However, superposed
on the pulsating meander is a large-scale ‘sloshing’ motion that is very reminiscent
of a gravity wave. Roughly two wavelengths of the sloshing motion occur inside the
domain. The bottom four panels of figure 21 show snapshots of the wavy, pulsating
jets and vortices.

To try to quantify the character of the flow further, we compute a variety of global
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Figure 21. Evolution at Re = 40 and Pe = 400: (a) snap-shots of total temperature and (b) total
vorticity at t = 49, 103, 158, 235, 267, 375, 485 and 624 (top to bottom). As indicated by the keys, the
colormap is the same for all snapshots but the first. A movie of the entire simulation corresponding
to this figure is available at http://astro.uchicago.edu/home/web/young/linkdir/SKS003.html.
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(a) Pe = 100, (b) Pe = 400.
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Figure 23. Evolution of β and ε for Pe = 100 (dashed lines) and Pe = 400 (solid lines).
The thick lines are for Re = 40 and the thin lines are for Re = 10.

measures of the dynamics. First, we estimate the average (dimensionless) vertical
temperature gradient and energy dissipation measure associated with the ‘eddies’,

β = 〈Tz〉, ε =
1

Re
〈4ũ2

x + (ũz + wx)
2〉, (6.1)

where the angular brackets denote the volume average, and the tilde indicates the
departure from the horizontal average. Figure 23 shows the temporal evolution of
the two quantities for Re = 10 and 40, and for both Pe = 100 and 400. Evidently,
the instability significantly sharpens the effective temperature gradient. The rapid
variations before t ∼ 200 in both β and ε are caused by the rapid broadening of
the internal layers and their subsequent destruction during the pulsating meandering
state. Vortex mergers near t = 500 are also signified by more gradual decreases in β
for Re = 40.
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Lengthscale Definition Pe = 100 Pe = 400

lu 2π
√〈u2〉/〈u2

x〉 22.1 20.5

lω 2π
√〈ω2〉/〈ω2

x〉 13.4 10.5

lb 2π
√〈w2〉β−1/2Ri−1/2 7.5 6.3

lO (Ozmidov) 2πε1/2β−3/4Re−1/2Ri−3/4 0.4 0.3
lK (Kolmogorov) 2πε−1/4Re−1/2 6.9 6.7
lB (Batchelor) 2πε−1/4Pe−1/2 4.4 2.1
N (Buoyancy frequency) β1/2Ri1/2 0.17 0.15

Table 1. Lengthscales for Re = 40 and Ri = 0.01. For each lengthscale, the definition and values for
Pe = 100 and 400 are given. (The 2π appears because, in dimensionless units, that is the lengthscale
of the Kolmogorov flow.) Also listed is the average buoyancy frequency. (ε = 0.00041 and 0.00048,
and β = 2.19 and 2.87.) The resolution of the numerical scheme is about 0.1 in the horizontal, 0.01
in the vertical.

The measures, β and ε, are central quantities in estimating a variety of characteristic
lengthscales in the theory of stratified turbulence (Smyth & Moum 2000). Though
the physical conditions we are studying are far from turbulent, we also follow
this direction to examine which lengthscales may characterize our simulations. We
compute the lengthscales listed in table 1 (the values of β and ε used in table are
temporal averages after t ∼ 200). The first two lengthscales, lu and lω , are integral
measures of the characteristic horizontal scale of the horizontal velocity and vorticity,
and are defined in analogy with the Taylor scale of turbulence theory. lu appears to
provide a crude measure of the characteristic horizontal lengthscales, and perhaps
estimates the scale at which the inverse cascade is arrested and energy builds up. The
vorticity scale lω roughly characterizes the size of the vortices that appear from the
break-up of the jets. The buoyancy scale lb estimates the maximal height that fluid
parcels could rise given the average kinetic energy in the vertical flow component,
and indicates that the flow is relatively energetic compared to the restoring force of
gravity. In principle, fluid elements can rise through several vertical periods before
decelerating to rest; such ascents were observed during the simulations. The Ozmidov
scale, lO , is commonly used to estimate of the lengthscale beyond which turbulent
eddies experience a significant effect of stratification (Smyth & Moum 2000). Here,
this lengthscale seems less useful and does not characterize the arrest of the inverse
cascade. This is also why ε is so insensitive to Pe in figure 23.

6.3. Inverse cascade over many scale heights

Until now, we have considered a single vertical wavelength, or ‘scale height’, of the
basic shear flow, in order to keep the problem simple and study the instability of a
single vertical mode. With more wavelengths in the vertical, we admit more unstable
vertical modes and the problem is enriched further (Friedlander & Howard 1998).
We now extend our exploration by expanding the vertical domain, so that we may
elaborate further on the arrest of the inverse cascade by considering much deeper
flows for which stratification may have a more significant effect. Specifically, we
choose the configuration used by She in his study of unstratified Kolmogorov flow
(She 1987), with Re = 22, and consider varying strengths of stratification and Péclet
number. The computational box has unit aspect ratio and a size of 16π× 16π, so
there are 8 spatial periods of the sinusoidal flow. The initial conditions are random,
low-amplitude superpositions of modes of wavenumbers between 20 and 40.
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Figure 24. Inverse cascade in the unstratified case as large vortices form. Re = 22 and Ri = 0, and
there are eight spatial periods in the background shear flow. The panels correspond to snapshots at
times (a) 2600, (b) 3030 and (c) 3390. A movie of the entire simulation corresponding to this figure
is available at http://astro.uchicago.edu/home/web/young/linkdir/SHE001.html.
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Figure 25. Average speed of the disturbance for (a) Ri = 0 (solid line) and 2.4× 10−6 (dashed line)
with Pe = 1, and (b) Ri = 2.4× 10−4 (curve 1) 2.4× 10−3 (curve 2) with Pe = 1. In (b), the dashed
line shows Ri = 2.4× 10−4 with Pe = 40.

For comparison with She’s results, figure 24 shows snapshots of the unstratified
inverse cascade. Figure 24(a) shows the unsteady state that is reached after the
unstable modes saturate at relatively low amplitude (see figure 25a). After this initial
saturation, the inverse cascade slowly builds up the disturbance until large-amplitude,
long-period oscillations eventually set in. These oscillations arise due to the formation
and rotation of two large vortical structures (figure 24c), which are similar to the
dipole observed by She. The organization into large-scale fluid motion is also clearly
revealed in the horizontal average of the horizontal velocity (figure 26).

Despite the formation of a dipole similar to She’s computations, we were not able
to observe any bursts. We may have failed to observe bursts because we did not
continue the integrations to any great length, the arrest of the inverse cascade being
our main focus. However, with Re = 22 and in runs of a similar length, we do observe
bursts if we reduce the resolution to 256 × 256, the same spatial resolution as in
She (1987). This suggests that bursts depend sensitively on resolution and may be
numerical artifacts for Re = 22.
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Figure 26. The final, horizontal average of (a) horizontal velocity and (b) temperature. The four
cases shown are (Re, Ri, Pe) = (22, 0, 1) (solid lines), (Re, Ri, Pe) = (22, 0.016, 1) (dotted lines),
(Re, Ri, Pe) = (22, 0.16, 1) (dashed lines) and (Re, Ri, Pe) = (22, 0.016, 30) (dashed and dotted lines).
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Figure 27. Total temperature (a) and total vorticity (b) for Ri = 2.4 × 10−4, Re = 22 and Pe = 1
at times 7770, 10298 and 12870. A movie of the entire simulation corresponding to this figure is
available at http://astro.uchicago.edu/home/web/young/linkdir/SHE002.html.

Next, we add the temperature gradient, and first consider relatively small Péclet
number, Pe = 1. For Ri = 2.4× 10−6 we find flow patterns that are indistinguishable
from the unstratified case and the inverse cascade seems largely unaffected. However,
as we increase the Richardson number to 2.4× 10−4 or 2.4× 10−3, the flow patterns
change substantially (figures 27 and 28). Here, small-scale vortical structures form
that are sharply confined in altitude; there seems little sign of an inverse cascade
beyond the scale of these structures. The overall phenomenology is more similar to
the unsteady meandering jets and vortices found earlier for flows with higher aspect
ratio – roughly speaking, if we slice up the domain into sections of smaller aspect
ratio, we recover pictures much like the figures of the previous subsection.
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Figure 28. Total temperature (a) and total vorticity (b) for Ri = 2.4 × 10−3, Re = 22 and
Pe = 1 at time 10611. A movie of the entire simulation corresponding to this figure is available at
http://astro.uchicago.edu/home/web/young/linkdir/SHE003.html.

Stratification therefore inhibits the cascade of energy to large scales in both the
horizontal and vertical. This inhibition is further illustrated in figure 29, where we
show energy spectra. In particular, panels (a) and (b) show the evolving spectra for
Ri = 10−6 and Ri = 2.4×10−3, respectively. With Ri = 10−6 (or Ri = 0), energy builds
up quickly at small wavenumber, but for Ri = 2.4× 10−3 there is little cascade. (The
peaks at k = 1 reflect the energy input of the basic flow.)

The flow also has some effect on the stratification, but the temperature field
remains relatively smooth in appearance and shows little trace of smaller-scale vortical
structures. Indeed, the horizontal average of the temperature distribution remains
close to the linear background (see figure 26). This is the signature of the strong
thermal diffusion.

From the pictures of the vorticity or temperature distribution, one gains the overall
impression of about two or three characteristic horizontal scales in the box for
Ri = 2.4× 10−4, and four or five for Ri = 2.4× 10−3. These scales are also apparent
in the relatively broad peaks around wavenumbers of 3/8–1/2 in the energy spectra
of figure 29. However, the characteristic vertical scales are smaller and dominated by
the energy-injection scale of the basic flow (eight wavelengths).

We compute characteristic lengthscales to try to quantify these observations further,
see table 2. The velocity scale, lu, roughly corresponds to the horizontal lengthscale,
and the vorticity scale again estimates the size of small-scale vortices. The buoyancy
scale once more identifies the flow as relatively energetic, and the Osmidov length
predicts that stratification is only important to turbulent eddies with scales of the
forcing or larger (because Ri is so much lower), but is otherwise unhelpful. Note
that the forcing scale is below the dissipation scale (the Kolmogorov scale lK) in the
simulations, implying that the flow characteristics do not conform to the usual vision
of turbulence in which the dissipation scales are the smallest in the system (and is
why the spectrum shows none of the characteristic scalings of turbulence theory).

We conclude this section by raising the Péclet number to 40. In high aspect
ratio domains, a change in the Péclet number significantly alters the patterns in
temperature and even the dynamics. For unit aspect ratio, the dynamics appears to
be mildly affected by a variation in the Péclet number, as shown by a slight change
in the time series of the perturbation amplitude in figure 25(b). However, the time
series are roughly equally erratic and it is difficult to conclude much from this global
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Figure 29. Three snapshots of the energy spectrum for (a) Ri = 10−6 and (b) Ri = 2.4 × 10−3.
(c) The final energy spectra for five computations: solid curves show spectra for Pe = 1 and
(1) Ri = 0, (2) Ri = 10−6, (3) Ri = 2.4× 10−3 and (4) Ri = 2.4× 10−2; the dashed line shows a case
with Ri = 2.4× 10−3 and Pe = 40.

measure. We gain more insight from figure 30 which shows snapshots of the vorticity
and temperature fields. The temperature field now shows more structure, and there
are clear signs of local temperature inversions. In fact, there are also reversals in the
mean (horizontally averaged) temperature gradient (figure 26) similar to those seen
in experimental data (Keller & Van Atta 2000), and suggests that static instability
occurs at higher Péclet numbers.

In the horizontally averaged temperature field, there is some suggestion of ‘layer-
ing’ – the formation of well-mixed layers separated by sharp interfaces. Such features
have been observed in stratified turbulent fluids in the laboratory (Park, Whitehead
& Gnanadeskian 1994), in the ocean and in geological fluids (Turner 1985). Here,
however, the evidence for layering is weak at best. Moreover, an examination of the
unaveraged field (figure 30) shows little corresponding evidence. Instead, as brought
out in figure 31, there are sharp, curved, thermal boundary layers with random
inclinations in which most of the temperature variation is confined within a rela-
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(Ri, Pe) (0, 1) (2.4× 10−4, 1) (2.4× 10−3, 1) (2.4× 10−4, 30)

lu 41.7 21.1 19.6 20.6
lω 11.6 11.6 11.6 11.6
lb ∞ 113.6 33.2 61.3
lO ∞ 23.6 4.6 10.1
lK 9.0 7.0 6.8 6.9
lB 43.1 33.2 32.2 6.0
N 0 0.016 0.05 0.03

Table 2. Lengthscales for Re = 22 and a variety of computations with varying Pe and Ri. The
resolution of the numerical grid is 0.1. (ε = 0.00046, 0.0013, 0.0015 and 0.0014, and β = 1, 1.07, 1.03
and 3.5.)
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Figure 30. Total temperature (a) and total vorticity (b) for Ri = 2.4×10−4, Re = 22 and Pe = 40 at
times 864, 1222 and 1555. A movie of the entire simulation corresponding to this figure is available
at http://astro.uchicago.edu/home/web/young/linkdir/SHE004.html.

tively well-mixed background. At higher Richardson number, where stratification is
stronger, these interfaces perhaps become aligned with the horizontal to form the
steps of a staircase of mixed layers.

7. Conclusion
In this article we have investigated stratified Kolmogorov flows. For weakly strati-

fied, slightly unstable, diffusive flows (with Pe = O(1)), the dynamics is described by
an amplitude equation that reduces to the Cahn–Hilliard equation on neglecting all
effects of stratification. That equation was previously derived by Sivashinsky (1985),
and describes how patterns coarsen with time and gradually increase their spatial
scale. The full amplitude equation contains a stratification term that halts the coars-
ening once the pattern reaches an intermediate spatial scale. These results illustrate
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Figure 31. The amplitude of the final (total) temperature gradient, |∇T |, displayed on the
(x, z)-plane for Ri = 0.016 and Re = 22, with Pe = 8.

how the inverse cascade of the Kolmogorov flow becomes arrested by stratification.
Numerical simulations of the full problem confirm the predictions of the asymptotic
theory, and show that the arrest of the cascade continues at higher Reynolds numbers.

In the non-diffusive limit (Pe� 1), the linear dynamics is dominated by the creation
of internal boundary layers surrounding the inflection points of the basic shear flow.
The boundary layers are the regions where the stabilizing effect of stratification is most
effective. We explored this regime with a combination of matched asymptotic analysis
and numerical simulation and found that, although stratification effects compete with
the linear instability, they cannot saturate it. Instead, the stratification impedes the
instability for a time, but the temperature field then becomes twisted up, removing the
stabilizing gradients and allowing the instability to grow more freely. The boundary
layers then thicken and grow to the scale of the basic flow whereupon large-scale
patterns form. The scale of the pattern is, once again, not the largest in the domain,
illustrating how the inverse cascade continues to be arrested in the non-diffusive limit.
The patterns are steady at lower Reynolds number, but become aperiodic as we raise
Re and drive the system harder.

Overall, we conclude that the arrest of the inverse cascade by the stabilizing
stratification is a generic feature of the system, and occurs in both the horizontal
and vertical directions. This signifies that we may exploit stratification to achieve
statistical stationarity in numerical simulations of two-dimensional turbulence, much
as friction has been utilized in the past to prevent energy from building up at the
largest scales. We have not, however, driven the system into the turbulent regime,
and, at best, we can only say that the flows we have simulated are chaotic.

Despite the relatively low Reynolds number, our results share some common
features with simulations of turbulent flows, such as the unsteady creation and
merging of vortices. Other aspects, though, are missing, notably the formation of
mixed layers. It is conceivable that such layers only form when the stratification
plays a dominant role in the fluid dynamics, and therefore only appear at higher
Richardson numbers. Perhaps there is also a gradual reduction in vertical scale as we
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raise Ri, so that beyond the layering regime we eventually create conditions under
which motion in the vertical direction is entirely suppressed, as is commonly assumed
in some geophysical contexts and to design experiments on two-dimensional fluid
mechanics. Our inhibition of the inverse cascade of the Kolmogorov flow may be the
first sign of this gradual reduction in scale.

Finally, we briefly compare our results to the experiments described in Batchayev
et al. (1984) and Batchayev & Kurgansky (1986). Those experiments show that os-
cillations set in as a secondary instability for moderate forcing amplitude, which is
consistent with our results for higher Péclet and Reynolds numbers. Qualitatively, we
also obtain similar flow patterns to the experiments. However, despite these superfi-
cial similarities, we cannot quantitatively compare the theory with the experiments.
This is because we consider the weakly stratified problem (Ri < 0.01), whereas the
experimental range of Richardson number extends from 0.01 to 0.06 in Batchayev &
Kurgansky (1986) and is much greater than unity in Batchayev et al. (1984), placing
the experiments in a somewhat different parameter regime. Moreover, friction plays a
crucially important role in the experiments (Batchayev et al. 1984; Thess 1992), and
differences in boundary conditions can be significant.
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Appendix A. Derivation of the amplitude equation for Pe ∼ O(1)

With the scalings outlined in § 4 and the definition b ≡ Riθ/ε5 = εRi6θ (which eases
the layout of the expansion), equations (2.1) and (2.2) take the form

ε4∂τ∇2ψ − εJξ(ψ,∇2ψ)− ε sin z(∇2ψ + ψ)ξ =
1√
2

(1− ε2)∇4ψ − ε6bξ, (A 1)

ε4∂τb− εJξ(ψ, b)− ε2Ri6ψξ − εbξ sin z =
1

Pe
∇2b, (A 2)

where Jξ is the Jacobian with respect to ξ and z, and ∇2 ≡ ∂2
z + ε2∂2

ξ . It is also helpful
to take the cross-stream average of (A 1):

ε3ψτξξ − (ψ sin z)ξξξ − (ψξψz)ξξ =
1√
2

(1− ε2)εψξξξξ − ε3bξ, (A 3)

where the overline implies vertical average.
We first introduce the asymptotic sequences

ψ = ψ0 + εψ1 + ε2ψ2 + ε3ψ3 + · · · , (A 4)

b = b0 + εb1 + ε2b2 + ε3b3 + · · · , (A 5)

into equations (A 1) and (A 2). We then solve (A 1) and (A 2) at different orders of ε
with periodic boundary conditions in both ξ and z.
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At O(ε0)

ψ0zzzz = 0,
1

Pe
b0zz = 0, (A 6)

with periodic solutions

ψ0 = A(ξ, τ), b0 = B(ξ, τ). (A 7)

At O(ε1)

ψ1zzzz = −√2Aξ sin z, (A 8)

ψ0zBξ − ψ0ξBz =
1

Pe
b1zz; (A 9)

the periodic solutions are

ψ1 = −√2 Aξ sin z + A1(ξ, τ), b1 = Pe Bξ sin z + B1(ξ, τ). (A 10)

At O(ε2)

ψ2zzzz = −√2A1ξ sin z − 2A2
ξ cos z, (A 11)

1

Pe
b2zz = −B1ξ sin z− (

√
2 +Pe)AξBξ cos z−

(
Pe

2
+

1

Pe

)
Bξξ−Ri6Aξ +

Pe

2
Bξξ cos 2z.

(A 12)

The vertical average of (A 12) now provides a relation between B(ξ, τ) and A(ξ, τ):(
Pe

2
+

1

Pe

)
Bξξ + Ri6Aξ = 0 or

(
Pe

2
+

1

Pe

)
Bξ + Ri6A = C(τ), (A 13)

where C(τ) is arbitrary. However, periodicity requires that C = Ri6〈A〉, where the
angular brackets denote horizontal average.

The periodic solution to equation (A 11) is

ψ2 = −√2A1ξ sin z − 2A2
ξ cos z + A2(ξ, τ). (A 14)

At O(ε3)

ψ3zzzz =
√

2(2A3
ξ − 3Aξξξ − Aξ − A2

ξ) sin z − 4
√

2A1ξAξ cos z, (A 15)

with periodic solution,

ψ3 =
√

2[2A3
ξ − 3Aξξξ − Aξ − A2

ξ] sin z − 4
√

2A1ξAξ cos z + A3(ξ, τ). (A 16)

The cross-stream average (A 3) at O(ε3) now leads to the long-wave amplitude
equation quoted in the main text.

Appendix B. Long-wave theory for large Péclet number
B.1. Regular expansion and its failure

With the rescalings quoted in § 5, the governing equations read:

ε4∇2φτ − ε7Jξ(φ,∇2φ)− ε sin z(∇2φ+ φ)ξ =
1√
2

(1− ε2)∇4φ− ε6Ri5ϑξ, (B 1)

ε3ϑτ − ε6Jξ(φ, ϑ)− φξ − ϑξ sin z =
1

Pe10

ε9∇2ϑ, (B 2)
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where Jξ is the Jacobian with respect to ξ and z, and ∇2 ≡ ∂2
z + ε2∂2

ξ . The vertical
average of (B 1) provides the useful relation

ε3φτξξ − (φ sin z)ξξξ − ε6(φξφz)ξξ =
1√
2

(1− ε2)εφξξξξ − ε3Ri5ϑξ, (B 3)

where the overline again denotes the vertical average.
We continue as before, and introduce the asymptotic sequences

φ = φ0 + εφ1 + · · · , ϑ = ϑ0 + εϑ1 + · · · . (B 4)

It is then straightforward (and, in fact, similar to Appendix A) to derive

φ0 = A(ξ, τ), φ1 = −√2 Aξ sin z + A1(ξ, τ), φ2 = −√2 A1ξ sin z + A2(ξ, τ) (B 5)

φ3 = −√2(3Aξξξ/2 + Aξ) sin z + A3(ξ, τ). (B 6)

With these solutions, we may expand the averaged equation (B 3). The first-order
equations are automatically satisfied. At higher order, and if the expansion remained
regular at this stage, we would obtain

Aτξξ +
√

2
(

3
2
Aξξ + A

)
ξξξξ

= −Ri5
2π

∫ 2π

0

ϑ0ξdz. (B 7)

However, there are problems in the derivation of this equation connected to apparent
singularities in ϑ0, as we now explicitly expose.

An analogous expansion of the heat equation leads to

ϑ0 =
A

sin z
, ϑ1 =

A1

sin z
−√2Aξ, ϑ2 =

A2

sin z
−√2A1ξ, ϑ3ξ =

φ3ξ

sin z
− Aτ

sin2 z
. (B 8)

The root of the problem is evident: these solutions all diverge for z = 0, π and 2π.
Furthermore, ε3ϑ3 breaks the ordering of the asymptotic sequence and is comparable
to ϑ0 when z − nπ = O(ε3), with n = 0, 1 or 2. This reflects the breakdown of
the regular solution inside the thermal boundary layers which surround the inflection
points of the velocity profile, and signifies that we cannot directly compute the average
equation (B 7). The boundary layer scalings are

z → nπ+ ε3Z, φ(ξ, z, τ)→ Ψ (ξ, Z, τ), ϑ(ξ, z, τ)→ 1

ε3
Θ(ξ, Z, τ). (B 9)

Despite the apparent problems, the regular expansion furnishes a suitable solution
outside the boundary layers. In other words, it provides an outer solution that must
be matched to other, inner solutions valid within each boundary layer. This is how
the expansion descends into matched asymptotics.

B.2. The boundary layers

Within each of the boundary layers the governing equations become, to leading order
(which is all we shall require),

∂4
ZΨ

α,β = O(ε2) (B 10)

and

Θα,β
τ ± ZΘα,β

ξ −Ψα,β
ξ − Jξ,Z (Ψα,β,Θα,β) =

1

P10

Θ
α,β
ZZ + O(ε8), (B 11)

where the Jacobian uses the inner (ξ, Z) coordinates, and the α and β superscripts are
added to remind us that, in the [0, 2π]-periodic domain, there are two independent
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boundary layers (surrounding z = 0 and π) which are indexed accordingly, and have
opposite senses for the shearing of the basic flow. The motivation for the precise
scaling of the Péclet number is clear from the second equation: it is chosen such that
thermal diffusion neither dominates nor is negligible within the boundary layers.

We solve the first relation by taking Ψα,β = A(ξ, τ), which automatically achieves a
match between the leading-order streamfunction and temperature field of the outer
and inner solutions. However, we must solve the boundary-layer heat equations as
nonlinear partial differential equations:

Θα,β
τ ± ZΘα,β

ξ + AξΘ
α,β
Z − Aξ =

1

P10

Θ
α,β
ZZ . (B 12)

Thus far, the only reduction gained from our analysis appears to be the simplification
of the streamfunction.

It remains to reconsider the averaged equation (B 7). Once we appreciate the pres-
ence of the boundary layers, it becomes feasible to avoid the apparent singularities
by dividing the domain into the inner and outer regions, and using the appropri-
ate asymptotic solutions in each (alternatively, we can construct a uniformly valid
solution). That relation then becomes

Aτξξ +
√

2

(
3

2
Aξξ + A

)
ξξξξ

= −Ri5
2π

∫ ∞
−∞
Θα
ξdZ − Ri5

2π

∫ ∞
−∞
Θ
β
ξ dZ, (B 13)

where the limits arise because the two boundary layers are stretched to cover infinite
intervals in the asymptotic scheme.

Two further technical details of the inner solution deserve mention. First, from
(B 12), the boundary-layer temperature can be seen to have the far-field form Θα,β ∼
A/Z as |Z | → ∞. This decay is sufficient to ensure that the integrals in (B 13) converge
provided we take the principal value at the two limits. Second, we are interested in an
initial-value problem in which a global instability grows and subsequently generates
boundary layers in the temperature field. This prescribes an initial condition

A(ξ, 0) = A0(ξ), Zα,β(ξ, Z, 0) = 0, (B 14)

where A0(ξ) is the small global disturbance required to stimulate the system. In prac-
tice, we take A0(ξ) to be sinusoidal, or a combination of sinusoids, but always with
a point of symmetry, ξs, about which A0(ξ) is an even function. An important conse-
quence of this prescription is that the system has the symmetry: ξ → ξs − ξ, A→ A,
Z → −Z , Θα,β → −Θα,β . Moreover, Θα(ξ, Z, τ) = Θβ(ξs − ξ,−Z, τ) ≡ Θ(ξ, Z, τ) for
all time, and we need solve only one boundary layer equation.

In summary, the long-wave instability in the weakly diffusive limit is governed by
the system quoted in the main text.
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