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a b s t r a c t 

We report computations of the axisymmetric slump of viscoplastic fluid using the volume-of-fluid (VOF) method. 

The constitutive law is dealt with by either regularization or the augmented-Lagrangian method. The interface 

is tracked by the PLIC scheme, modified in order to avoid resolution issues associated with the over-ridden 

finger of ambient fluid that results from the no slip condition and the resulting inability to move the contact 

line. Numerical results are compared with asymptotic analyses for shallow gravity currents or slender vertical 

columns. The critical yield stress for failure is computed and bounded analytically using plasticity methods. The 

simulations are compared with experiments either taken from existing literature or performed using Carbopol. The 

comparison is satisfying for lower yield stresses; discrepancies for larger yield stresses suggest that the mechanism 

of release may affect the experiments. 
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. Introduction 

Many fluids in industry or nature behave like viscoplastic fluids, in-

luding toothpaste, cement, mortar, foam, mud and mayonnaise. The

rucial property of these materials is the yield stress, 𝜏Y , that must be

reached in order for fluid to flow. If the imposed stresses fail to reach

his threshold, the material remains solid-like, with any deformation

ften assumed small and discarded. In that situation, which underpins

opular constitutive models such as the Bingham and Herschel–Bulkley

aws, the stress state of the material becomes formally indeterminate

1] . Together with the need to track the boundaries of the yielded 

egions, this complicates significantly efforts aimed at theoretical 

odelling. Numerical strategies to overcome such difficulties have been

eveloped in recent years and here we apply them to the particular prob-

em of the axisymmetric slump of a yield-stress fluid under gravity. 

Such collapses are exploited widely to gauge fluid rheology in the

oncrete, mineral and food industries. The slump test, for example, is

ommonly used to measure the yield stress of fresh concrete. In this

est, a container filled with concrete is lifted to release the material and

llow it to spread under gravity; at stoppage, the vertical distance over

hich the concrete falls, the “slump height ”, is measured as an indicator

f yield stress. A number of experimental studies have been directed at

stablishing the precise relation of the slump height to the yield stress

or a variety of different types of viscoplastic fluids [2–5] . 

Theoretical studies of the slump test have been performed using ei-

her numerical computations, asymptotic analysis suitable for the limit

f shallow flow, or estimates and bounds based on plasticity theory

2,4,6–14] . The numerical simulations have been conducted using a
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ariety of numerical techniques, although most of the algorithms em-

loyed were not specially designed to capture yield-stress rheology or

arefully track fluid interfaces. The current status of the modelling of

he slump test is reviewed by Roussel et al. [11] . 

One goal of the current article is to provide a reliable solution of

he benchmark problem proposed in [11] , and to offer a more complete

escription of the slump behaviour over a wider range of physical condi-

ions. For the task, we perform computations based on the VOF method

o deal with the fluid interface and exploiting specially designed codes

o capture the yield-stress rheology. Our study follows on from an ear-

ier one [15] in which we considered two-dimensional dambreaks of

iscoplastic fluid. We complement the computations with asymptotic

heory for shallow gravity currents and slender vertical columns, and

ounds from plasticity theory to constrain the mode of failure for slumps

ear the critical yield stress whereat no collapse actually occurs. 

A second goal is to compare our theoretical modelling with exper-

ments, collating some of the existing measurements from the litera-

ure [2,3] . These experiments have not previously been performed suf-

ciently thoroughly to disentangle the effects of material rheology, the

echanism of release, and any interaction with the underlying surface

effective slip). Therefore, we also perform our own suite of experi-

ents using aqueous suspensions of Carbopol. This suspension is often

uggested to be well characterized by a Herschel–Bulkley rheology and

otentially eliminates some of the confounding effects brought into ex-

eriments by non-ideal material behaviour [1] . We thereby provide a

emanding test of the theory whilst gauging the effects of the release

echanism and any effective slip. 
 2018 
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Fig. 1. Sketch of the geometry. 
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. Formulation 

.1. Problem set-up and solution strategy 

The geometry of the problem is shown in Fig. 1 : we use an axisym-

etric cylindrical polar coordinate system ( r, z ) to describe the sudden

elease of a cylinder of incompressible Bingham fluid with radius 𝑅̂ and

eight 𝐻̂ . The fluid has density 𝜌1 , yield stress 𝜏Y and plastic viscosity

1 and is immersed in an ambient Newtonian fluid with density 𝜌2 and

iscosity 𝜇2 . The density and viscosity ratios are set at the small values
𝜌2 
𝜌1 

= 

𝜇2 
𝜇1 

= 0 . 002 in order to minimize the effects of the ambient fluid (we

ave verified that the precise values of these ratios have no significant

ffect on the computations once one deals with the resolution issues

escribed in Section 2.3 ). We use the VOF method to track the fluid

nterface, which introduces an advected concentration field c ( r, z, t ) to

istinguish the fluid phase: 𝑐 = 1 represents the viscoplastic fluid, and

 = 0 denotes the Newtonian ambient. Given c , bulk material parameters

re computed using linear interpolation. The initial configuration is 

( 𝑟, 𝑧, 0) = 

{ 

1 for 0 ≤ 𝑟 ≤ 𝑅̂ , 0 ≤ 𝑧 ≤ 𝐻̂ , 

0 elsewhere. 

he two fluids are miscible, eliminating interfacial tension. 

The computation domain extends to a height L z and radius L r , which

re chosen to ensure that these boundaries remain remote and do not

ffect the evolution of the slump. We impose no slip ( 𝑢 = 0 , 𝑤 = 0 ) on the

ottom 𝑧 = 0 , regularity conditions on the axis 𝑟 = 0 ( i.e. 𝑢 = 𝜕 𝑤 ∕ 𝜕 𝑟 = 0 ),
nd no normal flow and free slip conditions along 𝑟 = 𝐿 𝑟 and 𝑧 = 𝐿 𝑧 . 

We use two methods to deal with the yield-stress constitutive law: a

egularization scheme that treats the unyielded region as a highly vis-

ous fluid, and an augmented-Lagrangian scheme that explicitly treats

he yield stress within a weak formulation of the problem [16,17] . Both

re implemented in C ++ as an application of the PELICANS platform

 e.g. [18] ). 

.2. Dimensionless model equations 

We scale lengths by the initial height 𝐻̂ , velocities by the speed scale

 = 𝜌1 𝑔 𝐻̂ 

2 ∕ 𝜇1 , and time by 𝐻̂ ∕ 𝑈, where g is the gravitational accelera-

ion; the stresses and pressure are scaled by 𝜌1 𝑔 𝐻̂ . The governing equa-

ions for the concentration field c , velocity 𝒖 = ( 𝑢, 𝑤 ) , deviatoric stress

ensor 𝝉, and pressure p are then 

𝛁 ⋅ 𝒖 = 0 , 𝜕𝑐 

𝜕𝑡 
+ ( 𝒖 ⋅ 𝛁 ) 𝑐 = 0 , 

𝝆𝑅𝑒 

[
𝜕 𝒖 

𝜕𝑡 
+ ( 𝒖 ⋅ 𝛁 ) 𝒖 

]
= − 𝛁 𝑝 + 𝛁 ⋅ 𝝉 − 𝝆

( 
0 
1 

) 
, 

(1)

here 

= 𝑐 + (1 − 𝑐) 
𝜌2 
𝜌1 

and 𝜇 = 𝑐 + (1 − 𝑐) 
𝜇2 
𝜇1 

. (2)

he unregularized Bingham constitutive law, used in the augmented-

agrangian method, is 

 

 

 

 

 

𝛾̇𝑗𝑘 = 0 , 𝜏 < 𝑐𝐵, 

𝜏𝑗𝑘 = 

( 
𝜇 + 

𝑐𝐵 

𝛾̇

) 
𝛾̇𝑗𝑘 , 𝜏 > 𝑐𝐵, 

(3)
d  

46 
hereas the regularization method uses the variant, 

𝑗𝑘 = 

( 
𝜇 + 

𝑐𝐵 

𝛾̇ + 𝜀 

) 
𝛾̇𝑗𝑘 , (4)

here 𝜏 = 

√ 

1 
2 
∑

𝑗,𝑘 𝜏
2 
𝑗𝑘 

and 𝛾̇ = 

√ 

1 
2 
∑

𝑗,𝑘 𝛾̇
2 
𝑗𝑘 

denote second tensorial in-

ariants, and the deformation rates are given by 

 

 

 

 

𝛾̇𝑟𝑟 𝛾̇𝑟𝜃 𝛾̇𝑟𝑧 

𝛾̇𝜃𝑟 𝛾̇𝜃𝜃 𝛾̇𝜃𝑧 

𝛾̇𝑧𝑟 𝛾̇𝑧𝜃 𝛾̇𝑧𝑧 

⎞ ⎟ ⎟ ⎠ = 

⎛ ⎜ ⎜ ⎝ 
2 𝑢 𝑟 0 𝑢 𝑧 + 𝑤 𝑟 

0 2 𝑢 ∕ 𝑟 0 
𝑢 𝑧 + 𝑤 𝑟 0 2 𝑤 𝑧 

⎞ ⎟ ⎟ ⎠ , (5)

ith subscripts represent partial derivatives, except in the case of tensor

omponents. The scalings introduce the dimensionless initial radius (or

spect ratio), and the Reynolds and Bingham numbers, 

 = 

𝑅̂ 

𝐻̂ 

, Re = 

𝜌1 𝑈 𝐻̂ 

𝜇1 
and 𝐵 = 

𝜏𝑌 𝐻̂ 

𝜇1 𝑈 

. (6)

he regularization parameter 𝜀 in (4) is taken to be 10 −8 , which was

erified to be sufficiently small that the modification of the constitutive

aw had an insignificant effect on the results reported below (but see the

omment at the end of Section 2.3 ). Given the concentration field, we

efine the instantaneous position of the surface of the slump to be given

y 𝑐( 𝑟, 𝑧 = ℎ ) = 

1 
2 . For most of the computations, we select parameters

o that inertial effect is small, Re = 10 −3 , and vary B and R . 

.3. PLIC Scheme with interface correction 

The piecewise-linear-interface-construction (PLIC) [19,20] is a con-

emporary standard in the VOF method. The interface is represented by

 line segment in each grid cell, which is computed using the volume

raction c , as in [19] . Then, given the velocity field, the line segment

s advected to a new position, and c updated accordingly. In view of

he boundary conditions, there is no flux of c into or out of the domain,

hich is incorporated into the scheme in the manner in which the solver

dvects c along the boundary. Importantly, the bottom boundary is no

lip, which does not permit the contact line to move and introduces an

wkward resolution issue, as in the 2D problem in [15] . More specif-

cally, as the viscoplastic fluid collapses and spreads out, a finger of

mbient fluid adhering to the bottom surface is over-ridden. For the

elatively low density and viscosity ratios that we employ, this finger

ubricates the slumping viscoplastic current and thins dramatically to

ntroduce the resolution issue [15] . A key problem is that the scheme

ails to accurately evolve c when the interface is inside the lowest grid

ell, leaving the finger artificially thick and lubricating. 

A common way of moving the contact line in problems with sur-

ace tension and Newtonian fluid is to replace the boundary condition

ith another that permits slip. However, numerical solutions may not

onverge with mesh refinement [21] . Instead, in [15] we suggested a

orrection scheme that eliminates the finger in a different way, allow-

ng the computations to remain well resolved over long times. The main

oint is that, with no slip, a finger of ambient fluid must still coat the

nderlying surface. However, counter to the un-corrected VOF scheme,

he finger actually becomes too thin to lubricate the slump and should

nstead be ignored. Practically, the scheme implements this idea by re-

oving all the ambient fluid from a grid cell adjacent to the base when c

xceeds a threshold near unity (chosen to be 0.99). This procedure clips

he interface when it invades the lowest grid cells, thereby truncating the

nger and rendering the computation convergent in grid spacing [15] . 

Despite the success of the scheme for 2D dambreaks, the algorithm

s not conservative, with the mass of viscoplastic fluid growing with

ime. This awkward feature does not impair computations in 2D, but

t does become more problematic in axisymmetric geometry, for which

he convergence of the solutions with mesh refinement is weakened. For

he current computations we therefore modified the correction scheme

o that it conserved mass. In particular, whenever a correction to c was

mplemented, and some of the ambient fluid removed from the one of

he lowest grid cells, the lost material was added back by uniformly re-

istributing it into the grid cells containing the interface (where 𝑐 = 

1 
2 ).
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Fig. 2. Time series of flow height ( 𝑡 ) and front position  ( 𝑡 ) for Bingham slumps with 𝑅 = 1 and 𝐵 = 0 . 01 , 0.03, 0.05, 0.08, 0.125, 0.2 and 0.3. Blue curves are 

from regularization, and red circles from the augmented-Lagrangian method (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 3. Profiles of the final deposit of cylindrical slumps with (a) 𝑅 = 1 , 𝐵 = 0 . 01 , 
0.02, 0.04, 0.07, 0.125, 0.2 and 0.275, and (b) 𝑅 = 4 , 𝐵 = 0 . 1 and 0.19. The solid 

curves show numerical computations, the dashed curves show the improved 

shallow-layer asymptotic result in (11) (for the lowest four values of B in (a)), 

and the dotted lines show the initial cylinders. 

Fig. 4. Evolution of the interface for a slumping cylinder with ( 𝑅, 𝐵) = (1 , 0 . 1) . 
The main panel shows the interface at the times 𝑡 = 0 , 2, 4, 6, 8, 20, 200 and 

1000. The three insets show the stress invariant 𝜏 as a density on the ( 𝑟, 𝑧 )− plane 

for the times 𝑡 = 2 , 20 and 1000 (with a common scale for the last two cases). 

The green curve shows the yield surface. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this 

article.) 
ssentially, this redistribution incurs an error in the position of the inter-

ace that is of the order of a small fraction of the grid spacing, but in such

 way that mass is conserved. Though hard to justify from a physical

erspective, the resulting conservative correction scheme converges

ore satisfyingly with mesh refinement for slumps with Newtonian

uid than the original non-conservative scheme (see Appendix A ),

hiefly because the latter suffers a resolution-dependent mass loss. 

The conservative correction scheme also performs better for

ingham fluid using either the regularized constitutive law or the

ugmented-Lagrangian solver. Moreover, both produce comparable re-

ults for the global properties of the slumps (see, for example, Fig. 2

elow), and their interaction with the PLIC scheme does not intro-

uce any additional unexpected issues. In more detail, the regulariza-

ion scheme has the drawback that the fluid can never truly come to

est and can fail to correctly predict the positions of the yield surfaces

22] . However, the regularization scheme is faster than the augmented-

agrangian code. Therefore, we use regularization scheme for exploring

lobal features of the slumps (defining the flow to have come to rest

hen Max ( |𝒗 |) < 10 −5 ), while for the finer details such as the yield sur-

aces, we compare both schemes. 

. Bingham slumps 

Fig. 2 shows the slumps of cylinders of Bingham fluid for 𝑅 = 1 and

arying yield stress B . Displayed is the central depth ( 𝑡 ) along with

he radial position of the flow front  ( 𝑡 ) (defined as the largest radial

xtent of the interface, 𝑐 = 

1 
2 ). The computations suggest that flow is

rrested in finite time and illustrate how collapse only occurs when the

ield stress is below a critical value B c . A selection of the final profiles

s illustrated in Fig. 3 (a). 

Further details of the phenomenology of a slump are shown in 

ig. 4 . Initially, the stresses exceed the yield value throughout the cylin-

er except over a small conical region at its core. Fluid subsequently

lumps outwards, reducing the stresses and allowing that plug to ex-

and with time. Eventually, stresses decline towards B all the way to

he flow front, bringing the fluid to rest. Note that, there is only a sin-

le central plugged region; for equivalent two-dimensional dambreaks

15] plugs persist at the periphery of the initial configuration, leading

o sharp corners that decorate the final deposit. Rigid features of this

ort cannot occur in axisymmetric slumps because the fluid edge must

xpand in order to fall. However, analogous weakly yielded zones per-

ist during the collapse, then plug up to create sharp rings that disfigure

ome of the final shapes (see Fig. 3 ). 

As for 2D dambreaks [15] , when the initial configuration is suffi-

iently wide, fluid only collapses near the edge, leaving an unyielded
47 
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at-topped central section. Such “incomplete slumps ” arise when the

entral plug spans the entire fluid layer and are illustrated in Fig. 3 (b). 

.1. Shallow flow 

When flow is shallow and inertia is negligible, lubrication theory can

e applied to obtain analytical results [12] . With our current scaling of

he problem, this limit is achieved when B ≪ 1. To account for the low

spect ratio, we rescale the horizontal coordinate 𝑟 = 𝜖−1 𝜒, deviatoric

tress components 𝜏𝑖𝑗 = 𝜖𝜏𝑖𝑗 and Bingham number 𝐵 = 𝜖𝐵̌ using a small

arameter 𝜖 ≪ 1, and then restate the force balance equations for the

iscoplastic layer: 

 

 

 

 

 

− 𝑝 𝜒 + 

𝜖

𝜒
( 𝜒𝜏𝑟𝑟 ) 𝜒 − 

𝜖

𝜒
𝜏𝜃𝜃 + 𝜏𝑟𝑧,𝑧 = 0 , 

− 𝑝 𝑧 + 

𝜖2 

𝜒
( 𝜒𝜏𝑟𝑧 ) 𝜒 + 𝜖𝜏𝑧𝑧,𝑧 = 1 . 

(7)

eglecting the ambient fluid, the surface of the current can be located

y the elevation 𝑧 = ℎ ( 𝜒, 𝑡 ) , and is force free, demanding that 

𝜏𝑟𝑧 + ℎ 𝜒 ( 𝑝 − 𝜖𝜏𝑟𝑟 ) = 0 
𝑝 − 𝜖𝜏𝑧𝑧 + 𝜖2 ℎ 𝜒𝜏𝑟𝑧 = 0 

} 

at 𝑧 = ℎ. (8)

t leading order, we find that 𝑝 ∼ ℎ − 𝑧 and 𝜏𝑟𝑧 ∼ − ℎ 𝜒 ( ℎ − 𝑧 ) . The con-

titutive law and depth-integrated continuity equation can then be used

o derive an evolution equation for h ( 𝜒 , t ) [12,23] . However, the final

rofile arises when radial spreading speeds subside and 𝜏𝑟𝑧 → 𝐵̌ at the

ase of the fluid layer 𝑧 = 0 . Thence 𝜏𝑟𝑧 ( 𝜒, 0) ∼ − ℎℎ 𝜒 ∼ 𝐵̌ , which gives

 ( 𝑟 ) ∼
√
2 𝐵( 𝑟 ∞ − 𝑟 ) , (9)

n terms of the original variables, where r ∞ is the final radius. 

In [15] a higher-order approximation for the final profile of a 2D

lump was developed by continuing the asymptotic solution to O ( 𝜖),

ssuming that 𝜏 → 𝐵̌ throughout the fluid layer. We follow suit here,

lthough a significant complication emerges owing to the axisymmetric

eometry. In particular, in addition to the two force balance equations,

e must also satisfy 

 

 

 

 

 

𝜏𝑟𝑟 + 𝜏𝜃𝜃 + 𝜏𝑧𝑧 = 0 
1 
2 
(
𝜏2 
𝑟𝑟 
+ 𝜏2 

𝜃𝜃
+ 𝜏2 

𝑧𝑧 

)
+ 𝜏2 

𝑟𝑧 
= 𝐵̌ 

2 , 
(10)

eaving us one equation short for determining the full stress state ( i.e.

e have four equations for the five unknowns p , 𝜏𝑟𝑟 , 𝜏𝜃𝜃, 𝜏𝑟𝑧 and 𝜏𝑧𝑧 ).

he origin of this indeterminacy is the component 𝜏𝜃𝜃, which does not

rise in 2D and highlights how the stress field cannot, in general, be con-

tructed independently of the velocity field. The situation is identical to

lassical plasticity theory where the so-called von Karman–Haar hypoth-

sis is often invoked to avoid this problem. The hypothesis, which states

hat 𝜏𝜃𝜃 must equal one of the principal stresses in the ( 𝑟, 𝑧 )− plane, im-

lies that 𝜏2 
𝜃𝜃

≡ 1 
3 𝐵̌ 

2 [24] . However, 𝜏2 
𝑟𝑧 

→ 𝐵̌ 

2 at 𝑧 = 0 for the leading

rder lubrication solution, indicating that 𝜏𝜃𝜃 must vanish at the base of

he fluid layer. Therefore, the von Karman–Haar hypothesis contradicts

he leading-order asymptotic solution and cannot be invoked here. 

Instead, we add the approximation 𝜏𝑟𝑟 ∼ 𝜏𝜃𝜃, which is suggested by

oth the velocity field of the leading-order asymptotic solution and the

umerical computations; see Appendix B . With this alternative hypoth-

sis, the asymptotic analysis can be continued to O ( 𝜖) in order to arrive

t the higher-order asymptotic approximation, 

 ( 𝑟 ) ∼
√
2 𝐵( 𝑟 ∞ − 𝑟 ) + 

√
3 
4 

𝜋𝐵 (11)

again in terms of the original variables). 

The predictions in (9) and (11) are compared to a numerical simu-

ation for a slump with 𝐵 = 0 . 0074 and 𝑅 = 0 . 2546 in Fig. 5 . Fig. 3 also

ompares the improved approximation (11) with computed final shapes

ver a wider range of B . Note that (11) predicts that the final profile

nds in a vertical cliff, violating the shallow-layer asymptotics. Never-

heless, (11) provides a meaningful prediction along the flow body that
48 
urnishes a better approximation than the leading order result (9) , even

hen the flow is not particularly shallow ( B > 0.04). 

In the example of Fig. 5 , the fluid yields significantly almost every-

here, removing any sign of the initial shape in the final profile. Indeed,

omputations that begin with the same amount of fluid but conical ini-

ial shape also lead to similar final profiles. Fig. 5 includes a computation

sing an initial cone with a top radius of 𝑅 top = 1∕6 and bottom radius

f 𝑅 base = 1∕3 , which corresponds to the ASTM standard geometry; the

nal state cannot be distinguished from that of the cylindrical dambreak

n the plot. Thus, the example shown in this figure corresponds to the

enchmark problem proposed in [11] . Indeed, on the right-hand side

f the figure, the profiles are replotted in dimensional variables using
̂
 = 30 cm; the results can then be directly compared with Fig. 5 in [11] .

The agreement amongst the computations in [11] is relatively poor,

 discrepancy that may arise from different treatments of the contact line

nd the fluid rheology. By contrast, the current computations align satis-

yingly with (11) , have converged with respect to mesh refinement, and

re independent of the numerical algorithm (augmented-Lagrangian or

egularization). Our computation indicates that the final (dimensional)

adius is 28 cm, in comparison to the average of 29.5 cm quoted in [11] .

ig. 5 also tells the cautionary tale of the results when we fail to resolve

he finger of upper-layer fluid by applying the uncorrected PLIC scheme,

r overly regularize the constitutive model. Both deficiencies lead to an

nhancement in spreading. Note that there is essentially no effect of

nertia on the profiles shown in Fig. 5 : recomputing the results with a

eynolds number based on the benchmark conditions, rather than the

rtificially low value used for the bulk of our simulations, leads to no

ignificant differences. 

When a complete slump does not occur but a central section of the

nitial cylinder survives, the shallow-layer solution is modified accord-

ngly: 

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 , 0 < 𝑟 < 𝑟 ∞ − 

1 
2 𝐵 √

2 𝐵( 𝑟 ∞ − 𝑟 ) + 

𝜋
√
3 

4 
𝐵, 𝑟 ∞ − 

1 
2 𝐵 

< 𝑟 < 𝑟 ∞

(12)

his approximation is again compared with numerical final shapes in

ig. 3 (b). 

.2. Slender columns 

For a tall slender column ( R ≪ 1), the asymptotic analysis of [15] can

e generalized to determine the instantaneous radius 𝑟 = 𝑟 ( 𝑎, 𝑡 ) ≪ 1 in
erms of a Lagrangian coordinate a ∈ [0, 1] corresponding to initial

eight: where the fluid is locally yielded, we find 

 

 

 

 

 

 

 

𝑟 2 ( 𝑎, 𝑡 ) = 𝐸( 𝑡 ) 𝑟 2 0 ( 𝑎 ) + 

1 − 𝐸( 𝑡 ) √
3 𝐵 

∫
1 

𝑎 

𝑟 2 0 ( 𝑥 ) 𝑑𝑥 

𝑧 ( 𝑎, 𝑡 ) = ∫
𝑎 

0 

𝑟 2 0 ( 𝑥 ) 

𝑟 2 ( 𝑥, 𝑡 ) 
𝑑 𝑥, 𝐸 ( 𝑡 ) = 𝑒 

− 𝐵𝑡 √
3 , 

(13) 

here r 0 ( a ) represents the shape of the initial column. As t →∞, we then

btain 

 

 

 

 

 

 

 

 

 

𝑟 2 ( 𝑎 ) = 

1 √
3 𝐵 

∫
1 

𝑎 

𝑟 2 0 ( 𝑥 ) 𝑑𝑥, 

𝑧 ( 𝑎 ) = 

√
3 𝐵 ln 

⎡ ⎢ ⎢ ⎣ 
∫ 1 
0 𝑟 2 0 ( 𝑥 ) 𝑑𝑥 

∫ 1 
𝑎 

𝑟 2 0 ( 𝑥 ) 𝑑𝑥 

⎤ ⎥ ⎥ ⎦ . 
(14) 

he solution in (13) and (14) must be matched to a plugged upper sec-

ion of the column, which always remains unyielded. The yield surface

s given by 𝑟 0 ( 𝑎 𝑌 ) = 𝑟 ( 𝑎 𝑌 ) . The dimensionless slump height s (the differ-

nce between the initial and final heights) is therefore 

 = 𝑎 𝑌 + 

√
3 𝐵 ln 

⎡ ⎢ ⎢ ⎣ 
√
3 𝐵𝑟 2 0 ( 𝑎 𝑌 ) 

∫ 1 
0 𝑟 2 0 ( 𝑎 ) 𝑑𝑎 

⎤ ⎥ ⎥ ⎦ . (15)
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Fig. 5. Final profile for a cylindrical dambreak with 𝐵 = 0 . 0074 and 𝑅 = 0 . 2546 . The thin black curve shows the numerical simulation. On the left, the data is plotted 

using dimensionless variables, and the leading-order and improved asymptotic predictions in (9) and (11) are included as the dotted (green) line and (red) points, 

respectively. On the right, the data is replotted in dimensional variables assuming 𝐻̂ = 0 . 3 m. Also shown are three other final profiles: one from a simulation 

beginning with a cone with the same volume, with a top radius of 𝑅 top = 1∕6 and bottom radius of 𝑅 base = 1∕3 (the ASTM standard geometry; thick light grey line); a 

second from a simulation with the regularized Bingham model in which the regularization parameter is increased to 10 −4 (dashed line); and a third from a simulation 

that does not apply the interface correction scheme to remove the underlying finger of ambient fluid (thin red contour) (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. (a) Collapse of a cylindrical column with 𝐵 = 0 . 15 , showing the interface 

at the times indicated. (b) Final shapes of cylinder with 𝑅 = 0 . 025 and 𝐵 = 0 . 15 , 
0.20, 0.25, 0.30, 0.35, 0.40 and 0.45. Dashed lines indicate the slender asymp- 

totic predictions (13) and (14) ; solid lines are from numerical simulations. 
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Fig. 7. Critical yield stress for collapse, B c , as a function of initial radius R . 

Blue stars indicate the results from numerical simulations; the solid line shows 

the lower bound assuming a mechanism involving basal collapse (labelled I); 

the dotted line shows the result from [14] . In (a) we show the range R < 1 and 

include experimental data from [27] . In (b) we show the range R < 4 and an 

alternative lower bound assuming a peripheral collapse (labelled II) (For inter- 

pretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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d  

t  
or an initial cylinder, 𝑟 0 ( 𝑎 ) = 𝑅, and 

 = 1 − 

√
3 𝐵 + 

√
3 𝐵 ln ( 

√
3 𝐵) , (16)

hich is widely used as a prediction of the slump test [2] . This im-

ediately implies that the column will not yield anywhere if 𝐵 > 𝐵 𝑐 =
∕ 
√
3 ≈ 0 . 577 . 

Fig. 6 compares numerical computations with the slender-column

symptotics for initial shape with 𝑟 0 ( 𝑎 ) = 𝑅 = 0 . 025 . First, the dynami-

al evolution of a column with 𝐵 = 0 . 15 is shown; second, the final shape

s compared for cases with varying yield stress B . Note that undulations

n the surface profile do not appear near the base of the column in the

xisymmetric simulations, unlike in 2D [15] . As a result, the computa-

ions and slender-column theory agree more satisfyingly, except at the

ery base of the column where the no slip condition is not correctly

aptured by the asymptotics. 
49 
.3. Failure mode 

Just below the critical value B c ( R ) for which no slump will occur,

he collapse is characterized by a particular mode of failure that de-

ends on the initial shape. To compute the critical yield stresses and

nd the failure modes, we use the augmented-Lagrangian method and

onitor the rate at which the iterations of the scheme converge dur-

ng short-time computations ending at 𝑡 = 1 ; iterations converge signif-

cantly faster when B > B c . The results are plotted in Fig. 7 . As R →0,

 c converges to 1∕ 
√
3 , the limit for a slender column; as R →∞, B c ap-

roaches the value 0.265, corresponding to the failure of a 2D vertical

mbankment [25,26] . 

Fig. 8 collects together computational results for sample failure

odes, extracted from the initial velocity field for simulations with

 ≈B c . Much as expected on physical grounds and found for 2D

ambreaks, the fluid collapses by failing first over a basal region for

hinner initial cylinders, and only at the periphery with a wider ini-
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Fig. 8. Strain-rate invariant plotted logarithmically as a density on the ( r, z ) plane for solutions with B ≈B c , Re ≈0, t ≈0, at the values of R indicated by the r -axis 

limits. Also shown are a selection of streamlines. In ( 𝑎 ) − ( 𝑐) , the solid blue lines indicate the border of the plastic region predicted by limit analysis (17) . In ( e ), the 

blue line indicates the circular failure surface of the lower bound solution in 2D geometry [15] (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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a  
ial state; cylinders with radii around unity show mixed types of failure

odes. 

The critical yield stress can be bounded using methods from plastic-

ty theory [28] . In particular, lower bounds on B c can be established by

aximizing 

 = 

∬ 𝑤𝑟𝑑 𝑟𝑑 𝑧 

∬ 𝐵 ̇𝛾𝑟𝑑 𝑟𝑑 𝑧 
, (17)

ver families of trial velocity fields. Guided by the numerical failure

odes in Fig. 8 , we find a lower bound for slender initial cylinders by

onsidering trial velocity fields that are composed of a rigid central sec-

ion in z < f ( r ), an overlying descending plug for z > g ( r ), and a plastically

eforming region sandwiched in between. We take the “yield surfaces ”

 ( r ) and g ( r ) to have parabolic shape and the (incompressible) plastic

eformation to have a cubic horizontal velocity profile. Thus, our trial

s 

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
(0 , −1) 𝑔( 𝑟 ) < 𝑧 < 1 

( 𝑢, 𝑤 ) 𝑓 ( 𝑟 ) < 𝑧 < 𝑔( 𝑟 ) 

(0 , 0) 0 < 𝑧 < 𝑓 ( 𝑟 ) 

(18)

ith 

 

 

 

 

 

 

 

𝑢 = 

6 𝑟 
𝑔( 𝑟 ) − 𝑓 ( 𝑟 ) 

𝜂(1 − 𝜂) 2 

𝑤 = −(6 − 8 𝜂 + 3 𝜂2 ) 𝜂2 − 6 𝑟𝜂(1 − 𝜂) 2 𝜂𝑟 

𝜂 = 

𝑧 − 𝑓 ( 𝑟 ) 
𝑔( 𝑟 ) − 𝑓 ( 𝑟 ) 

(19)

ptimization of  can then be performed over the parameters c j of

he parabolas defining 𝑓 = 𝑐 1 ( 𝑅 − 𝑟 ) + 𝑐 2 ( 𝑅 − 𝑟 ) 2 and 𝑔 = 𝑐 3 + 𝑐 4 ( 𝑅 − 𝑟 ) +
 5 ( 𝑅 − 𝑟 ) 2 . 

Upper bounds on B c can also be constructed using trial admissi-

le stress fields [28] . However, in axisymmetric geometry, without a 

elocity field to determine all the stress components, an additional 

ssumption is needed such as the von Karman–Haar hypothesis. This

rtifice permitted Chamberlain et al. [29] to construct upper bounds on

 c . Unfortunately, this hypothesis is not appropriate for our axisymmet-

ic slump and so their upper bound does not apply here. 
50 
Note that the trial velocity field in (19) is continuous across the

urves 𝑧 = 𝑓 ( 𝑟 ) and g ( r ), in line with the structure of the failure modes

f Fig. 8 . This contrasts sharply with the 2D problem in which failure

an occur over distinct curves that support velocity jumps and which

ecome smoothed into viscous boundary layers in numerical solutions.

ndeed, Chamberlain et al. [14] have previously computed bounds for

he failure of cylinders using trial velocity fields more similar to the

D failure modes. However, distinct failure lines and viscous boundary

ayers do not characterize our axisymmetric solutions, leading to the

hoice of the cubic velocity field in (19) . This choice complicates the

ptimization computation but significantly improves the results. 

The lower bound on B c for basal failure is included in Fig. 7 , and

ompares well with numerical computations when R is small. Fig. 8 also

isplays the predictions of the optimization calculation for the surfaces

 = 𝑓 ( 𝑟 ) and g ( r ), which have some correspondence with the computed

ield surfaces. For larger values of R , the bound diverges from the com-

utations and the trial velocity field is less similar to the actual failure

odes. Both occur because of the switch in the form of the failure mode,

rom a basal collapse to a peripheral one. 

For a lower bound on B c for peripheral failure we require a different

rial velocity field. In 2D, a useful bound is found by assuming that a cir-

ular arc of failure connects the foot of the vertical face at the edge with

ome point on the top surface; above this arc, material rotates rigidly

ut of initial position. For a simple axisymmetric generalization of this

rial, we again assume that a circular arc of failure arises, but divide the

D velocity field by r (with the horizontal coordinate x replaced by r ),

hich ensures that the trial is incompressible. The resulting bound is

hown in Fig. 7 , and always lies below the 2D bound (though converges

o it for R →∞). 

. Comparison with experiments 

.1. Methods 

To complement the theory, we performed experiments using an

queous suspension of Carbopol Ultrez 21 (with a concentration of about
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Fig. 9. (a) Comparison of experimental slump height with previously published data for R < 2. The points are colour coded by R , as indicated by the colour bar. The 

published data is taken from [5] (Gao; 𝑅 = 1 
2 
), [2] (Pashias-a: data at 𝑅 ≈ 1 

2 
for differing materials; Pashias-b: data for red mud with varying R ), [3] (Saak; 𝑅 = 0 . 52 ) 

and [4] (Clayton; 𝑅 = 1 
2 
). On the right, slump height is plotted against (b) the rate of release ( i.e. the inverse of the time taken to lift up the cylinder) for 𝑅̂ = 3 cm 

and 𝐻̂ = 3 . 8 cm, and (c) R for 𝐻̂ ≈ 3 . 1 cm. Most slumps were conducted by releasing the fluid over about a second, but not recording the time precisely; several 

repeated slumps with this protocol are plotted at release rate 1.25 s −1 . In (b) and (c) the fall of the corner of the initial cylinder 1 −  𝑐 is also recorded (open circles). 

Panel (b) also shows the residual mass attached to the cylinder after the release of the fluid, and data for slumps that were conducted over a smooth surface (red 

stars; in these cases the slumps were left to come to rest for five minutes) (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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e  
.5% by weight, and neutralized by sodium hydroxide). A Herschel–

ulkley fit to the flow curve measured in a rheometer (MCR501, An-

on Paar, with roughened parallel plates) gave 𝜏𝑌 = 39 Pa, 𝑛 = 0 . 3 and

 = 32 Pa s n . 

Slump tests were conducted by filling a variety of cylinders with dif-

erent geometry with the suspension, smoothing the fluid’s upper sur-

ace with a sharp edge. The cylinders, with radii varying from 10 to

5 mm and heights over the range of 11 to 562 mm, were attached to

 pivoted arm that raised each container in a relatively controlled and

eproducible fashion. For most of the tests, the arm was raised relatively

uickly, releasing the fluid over a time of about 1 s, and the surface over

hich the fluid slumped was a plexiglass plate roughened with sandpa-

er. Measurements of the final deposit were taken after waiting for a few

inutes. However, we also conducted tests in which we varied the rate

t which the cylinder was raised, or replaced the roughened plexiglass

ith either a smooth sheet or covered it with 60 grit sandpaper. Note

hat for the smaller aspect ratio cylinders that we used ( 𝑅 < 

1 
2 ), there

as a tendency for the slumps to topple over sideways if the cylinder

as not raised sufficiently slowly (which typically lengthened the re-

ease time to a couple of seconds), highlighting an instability of tall thin

olumns [30] . We abandoned any tests that showed substantial sideways

otion. 

To remove the effect of the manner in which the fluid was released,

e conducted a second series of extrusion experiments. Here, the Car-

opol was pumped up onto the surface through a vent with a diameter

f about 0.5 mm. For both the slump tests and extrusions, thickness

rofiles h ( r, t ) were extracted by taking photographs from the side, al-

owing measurements of the final central height and radius (except for

he extrusions over the smooth surface, as discussed below, the tests

ere axisymmetric). 

r  

51 
Note that, for the slump tests, we continue to use the Bingham model

o provide theoretical solutions to compare against the experiments, de-

pite the fact that the Carbopol is better fitted by the Herschel–Bulkley

aw. Thus, we implicitly assume that the power-law viscosity plays a mi-

or role in controlling the form of the final state of a slump. We explic-

tly confirmed this for isolated examples of dambreak computations in

hich we implemented the Herschel–Bulkley model with a power-law

ndex suggested from the flow curve of the Carbopol ( i.e. 𝑛 = 0 . 3 , see

he end of Section 4.2 and Fig. 12 ). In order to improve the comparison

ith experiments, we also used this alternative rheological model for

ur computations of time-dependent extrusions. Specifically, the com-

utations exploited the regularization, 

𝑗𝑘 = 

[ 
𝑐 ̇𝛾𝑛 −1 + 

𝜇2 
𝜇1 

(1 − 𝑐) + 

𝑐𝐵 

𝛾̇ + 𝜀 

] 
𝛾̇𝑗𝑘 . (20) 

he characteristic velocity scale in this case is given by 𝑈 =
 𝜌𝑔 𝐻̂ 

𝑛 +1 ∕ 𝐾) 1∕ 𝑛 ( 𝜌 = 10 3 kg m 

−3 , 𝑔 = 9 . 81 m s −2 ). 

.2. Cylindrical dambreaks 

The conventional slump test focuses on the distance fallen at the

entre of the fluid, the so-called slump height 𝑆 = 1 −  ∞, where  ∞ is

he final central depth. A summary of our results for this diagnostic is

resented in Fig. 9 . An important experimental parameter that we varied

n the current suite of experiments is the aspect ratio of the cylinder,

 = 𝑅̂ ∕ 𝐻̂ . Most previous experiments have conducted tests with aspect

atios close to a half, concluding that this parameter has little significant

ffect. However, the theoretical results summarized in Section 3 clearly

xpose how R plays an important role if varied over a sufficiently wide

ange. This is confirmed in our experiments, which clearly demonstrate
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Fig. 10. (a) Experimental and (b) numerical slump heights against B for R < 2. 

Shown in (a) are both S (filled circles) and the distance fallen by the corner 

of the initial cylinder 1 −  𝑐 (open circles), as illustrated by the experimental 

image for ( R, B ) ≈ (1.25, 0.13) inset above (a) (and also shown in Fig. 12 ). Inset 

above (b) are the final profiles (red) of the computations with 𝑅 = 1 . 25 ; that 

matching the value of B of the experiment is highlighted (blue). The colour 

coding of the points by R is the same as in Fig. 9 , and a collection of previous 

data (with 𝑅 = 1 
2 
) from numerical computations are also plotted in (b) (crosses 

[5] ; stars [7] ; pentagrams [13] ). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. The central depth and radius of the final deposit against Bingham num- 

ber, all scaled by R 2/3 , for R < 4. Our results for Carbopol slumps are shown by 

the filled circles; the crosses show data from [5] . The results from the numerical 

simulations also plotted in Fig. 10 are shown by the solid lines; the improved 

asymptotic prediction from (11) is shown by the dotted line. The colour coding 

by R is the same as in Fig. 9 . 
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ow S decreases with R at fixed B ; see the colour coding of the points in

anel (a), and the plot for cylinders with similar initial height 𝐻̂ in (c).

The decrease of the slump height with increasing initial radius is a

atural consequence of the growth of the rigid core of the dambreak and

he eventual emergence of an incomplete slump. Indeed, for the latter,

 ∞ = 1 and 𝑆 = 0 , rendering this diagnostic useless for sufficiently large

 . Instead, a measure of the degree of slump at the edge of the initial

ylinder is provided by the distance fallen by the upper circular cor-

er, which clearly decorates the final deposit except for very low yield

tresses (see Figs. 3 and 10 ). This alternative diagnostic, denoted by

 −  𝑐 where  𝑐 is the final height of the corner, is compared with S in

igs. 9 and 10 . Evidently, 1 −  𝑐 is less sensitive to variations in R . Note

hat, for some of the cylinders with relatively small aspect ratio, our side

maging of the thickness profile obscures the centre of the deposit when

he circular corner falls less far; in this situation, the measurement of S

s actually given by 1 −  𝑐 . 

Despite the reduced sensitivity of 1 −  𝑐 to R , this diagnostic does

epend on the rate at which the fluid is released ( Fig. 9 (b)). Evidently,

he speed at which the cylinder is raised affects how much fluid yields

t the fluid edge, which partly controls the fall there. Indeed, the release

ate correlates closely with the amount of material left on the cylinder

fter it is raised (which we measured on a weigh scale in this series of

xperiments; see Fig. 9 (b)). The impact of the release mechanism on

he degree of slump has been reported previously [5] , and includes the

ossibility that both inertia and adhesion to the cylinder play important

oles in the dynamics. Here, our goal is to complement our inertia less

xisymmetric dambreak computations with similar, if not identical ex-

eriments, and so the effect of the release mechanism is a distraction

hat precludes a quantitative comparison of theory and experiment. In

articular, the action of lifting the cylinder must force the fluid to yield

ven if B > B , which may well explain why the existing experimental
c 

52 
ata at higher B does not progress to the unyielded slump value 𝑆 = 0
 0 . 265 < 𝐵 𝑐 < 1∕ 

√
3 ≈ 0 . 577 over the full range of R ). 

Fig. 10 compares in more detail the experimental slump heights with

he results of our simulations. The two agree qualitatively, if not quan-

itatively, with the wider initial cylinders of the simulations slumping

ess far. The comparison is worse for previously reported numerical data

5,7,13] for Bingham slumps, which mostly collapse even further. We

uspect that this is due to resolution issues, as illustrated in Fig. 5 . 

Fig. 11 shows another comparison of the final central depth and

adius of the deposit against yield stress. Here, the data is scaled by

 

2/3 , which corresponds to choosing a length scale based on the initial

olume of the cylinder rather than its height, and constitutes a more

atural choice in the shallow limit where much of the memory of the

nitial shape is lost. The rescaling collapses both the height and radius

ata close to a common curve matching the asymptotic prediction from

11) (at least for the aspect ratios used in the plot, with R < 4), in con-

rast with the slump height diagnostic of Figs. 9 and 10 . 

Previous experiments have also invariably been conducted over

mooth surfaces. However, it is known [31] that spreading drops of vis-

oplastic fluid can suffer effective slip unless the surface is either chem-

cally treated or roughened. Indeed, when we conduct slumps over the

mooth plexiglass, the fluid collapses noticeably further, implying a de-

ree of slip (the contact angle is also noticeably different, exceeding

0° for the roughened surface, but not for the smooth one). By contrast,

lumps over a surface covered with sandpaper are similar to those above

ur roughened plexiglass, providing confidence that our surface rough-

ning significantly reduces slip in the bulk of our tests. Fig. 12 compares

he final shapes of a particular slump conducted over the different three

urfaces, and Fig. 9 (b) includes data for the same slump over the smooth

lexiglass. 
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Fig. 12. Side images from the slump experiments and theoretical final profiles: 

the photographs compare slumps over the roughened, smooth and (green) sand- 

paper surfaces (from top to bottom); vertical dashed lines indicate the final radii, 

and the scale of the photographs is indicated in the first panel, for which the 

rectangle shows the initial fluid cylinder, of height 3 cm and radius 3.8 cm. 

The plot shows computations matching the experiments ( 𝑅 = 1 . 29 , 𝐵 = 0 . 13 and 

Re = 0 . 28 ) and using the surface boundary conditions indicated (blue line for 

no slip, red for free slip); the dashed lines indicate the shallow-layer asymptotic 

predictions in (11) and (C.9) . For the no slip case, two other computations are 

shown: a computation with artificially high Reynolds number ( Re = 35 ; thick 

grey line) and one with Herschel–Bulkley model ( 𝑛 = 0 . 3 ; green dots). For the 

free slip case, the green dots again show a computation with the Herschel–

Bulkley model ( 𝑛 = 0 . 3 ). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 13. The dimensionless slump height for cylindrical dambreaks with 𝑅 = 1 , 
varying B and the Reynolds numbers indicated. The inset shows three sample 

triplets of the final shape at the Bingham numbers indicated. 

Fig. 14. Maximum radius  ( 𝑡 )∕ 𝐵 = 𝜌𝑔 ̂𝑅 ∕ 𝜏𝑌 versus depth ( 𝑡 )∕ 𝐵 = 𝜌𝑔 𝐻̂ ∕ 𝜏𝑌 for 

experimental extrusions with a pump rate of 31.5 ml/min over the rough (stars) 

and smooth (squares) plexiglass. Also plotted are the leading-order and im- 

proved asymptotic predictions, and Herschel–Bulkley simulations matching the 

physical parameters of the experiment with either no slip or free slip boundary 

conditions. 
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For a theoretical examination of the effect of surface slip, we con-

uct simulations in which the no slip condition is replaced by free slip 

 i.e. we impose 𝜏𝑟𝑧 = 0 at 𝑧 = 0 ). Fig. 12 compares the result with that

sing no slip for simulations in which the geometrical parameters and

ield stress are matched to the experiments. A free slip version of the

symptotic analysis for shallow flows can also be provided, as summa-

ized in Appendix C ; the final shape is predicted to remain cylindrical,

ith a depth of 2 𝐵 

√
3 and a radius of R /(12 B 

2 ) 1/4 . Both this predic-

ion and that of the improved no slip theory in (11) are also plotted in

ig. 12 . The fluid spreads noticeably further with free slip, mirroring the

xperiments. The spread over the smooth plexiglass is, however, rather

ess significant than suggested by the free slip computations, as would

e the case if there was a residual surface interaction. 

Fig. 12 also includes results from a simulation in which inertial ef-

ects are promoted by taking a higher Reynolds number than that match-

ng the experimental conditions (Re is about 125 times higher in this

ase). The two solutions can barely be distinguished in the figure, high-

ighting how inertia plays little role in controlling the final shape in the

imulations. Indeed, our computations suggest that inertial effects are

elatively minor over most of the range of physical conditions of our ex-

eriments: Fig. 13 , shows the slump height S and sample final profiles

or computations with 𝑅 = 1 and varying B and Re. Inertia plays no role

n controlling the final shape for Re < 1; the slump height increases for

igher Reynolds number, but the effect is modest for our experiments

with Re < 125). 

A final feature of Fig. 12 is the inclusion of computations using the

erschel–Bulkley model in (20) , rather than the Bingham law (for both

o slip and free slip surfaces). Evidently, as alluded to earlier, the power-
53 
aw viscosity has little effect on the final shape. However, there do ap-

ear to be some minor quantitive differences, especially in the vicinity

f the corner stemming from the upper edge of the initial cylinder. It

s conceivable that these result from differences in the time evolution

f the plugs during the collapse, which then impacts the final deposit.

therwise, the viscous stress is not expected to feature directly in the

orce balance controlling the final shape. Nevertheless, any differences

n the final radius and height that may be introduced in this manner

rom the power-law rheology are unlikely to upset the comparison of

xperiments and Bingham theory in Figs. 9 –13 . 

.3. Extrusions 

The impact of the release mechanism on the slump is removed in

xperiments in which fluid is extruded slowly from a vent onto the un-

erlying surface, allowing a clearer examination of the effect of sur-

ace slip and a more quantitative comparison with theory. Results of a 

ample extrusion are shown in Fig. 14 , which plots the instantaneous

adius  ( 𝑡 )∕ 𝐵 = 𝜌𝑔 𝑅̂ ∕ 𝜏𝑌 against central depth ( 𝑡 )∕ 𝐵 = 𝜌𝑔 𝐻̂ ∕ 𝜏𝑌 , both

caled by B . Rescaling the results in this way removes the scaling by
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Fig. 15. Images and profiles from the extrusion experiments also shown in Fig- 

ure 14 . The top images show top and side images of an extrusion over the rough 

(left) and smooth (right) plexiglass (a ruler straddles the extrusions to add a 

scale for the side images). The first row of plots underneath show a sequence of 

height profiles at similar times (extruded volumes; the side photographs corre- 

spond to the sixth profiles). The insets show magnifications of the contact line. 

The lowest row of plots shows height profiles from corresponding numerical sim- 

ulations applying either a no slip (left) or a free slip (right) boundary condition 

on 𝑧 = 0 (less one profile for the free slip case). The times of the snapshots are 

not perfectly matched owing to irregularities in pump rate in the experiments. 

Fig. 16. Slump heights for Bingham dambreaks with an initially conical shape 

corresponding to the ASTM standard, computed using a no slip (solid line with 

points) or free slip (dashed-dotted line with stars) condition on the underlying 

plane. Squares show experimental data from [4] . The dashed line shows the 

prediction for a slender conical column in Appendix D . The diamonds show the 

results of numerical computations of [9] . 
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̂
 implicit in the non-dimensionalization of the problem in Section 2 ,

hich has no meaning for the extrusions. Instead, distance is scaled by

he length scale 𝜏Y / 𝜌g . 

Fig. 14 includes data from an extrusion with similar pump rate over

he smooth plexiglass. The radius-height relation,  ∕ 𝐵 versus ∕ 𝐵, is

ery different and reflective of a shallower flow. This is illustrated fur-

her in Fig. 15 , which displays sample images and height profiles taken

rom the experiments. In fact, the extrusions over the smooth plexiglass
54 
ecame noticeably non-axisymmetric over late times, developing inter-

sting lobe patterns towards the rim of the extruded dome (see the im-

ges shown at the top of Fig. 15 ). It is not clear whether these patterns

eflects an intrinsic instability of sliding extensional flow [cf. 32 ] or a

ore pronounced sensitivity to surface imperfections at the contact line.

When the extrusion flux is relatively small, the developing dome

bove the vent is expected to be close to a steady equilibrium state,

llowing us to recycle the shallow asymptotics of Section 3.1 . In partic-

lar, the radius-height relation from (11) is 

 

𝐵 

∼
√ 

2  

𝐵 

+ 

𝜋
√
3 

4 
, (21)

hich is also included in Fig. 14 , along with the leading-order result

∕ 𝐵 = 

√
2  ∕ 𝐵 . The improved model in (21) is unrealistic for  → 0 ,

here the invalid treatment of the edge predicts a finite central depth,

hich is the analogue of the vertical cliff predicted at the fluid edge by

11) . 

For equivalent numerical computations, we perform simulations as

utlined in Section 2 , but using the Herschel–Bulkley law and replac-

ng the no-penetration condition 𝑤 ( 𝑟, 0 , 𝑡 ) = 0 with 𝑤 ( 𝑟, 0 , 𝑡 ) = 2 𝜋−1 ( 𝑅 

2 
𝑣 
−

 

2 )∕ 𝑅 

4 
𝑣 

for r < R v , where R v is the dimensionless radius of the vent. As

nitial condition, we take 𝑐( 𝑟, 𝑧, 0) = 0 everywhere except over a shal-

ow prewetted film spanning the vent and of depth 0.05. In these com-

utations, 𝐻̂ no longer has any meaning as the characteristic height

f the initial configuration, but can be defined using the net dimen-

ional flux 𝑄̂ : in view of our prescription for the vertical velocity, the

imensionless flux is unity, so that 𝑄̂ = 𝐻̂ 

2 𝑈 = 𝐻̂ 

2 ( 𝜌𝑔 𝐻̂ 

1+ 𝑛 ∕ 𝐾) 1∕ 𝑛 . Thus,

̂
 = 

(
𝐾 𝑄̂ 

𝑛 ∕ 𝜌𝑔 
)1∕(1+3 𝑛 ) 

. 

A numerical simulation designed to match the experimental 

onditions is included in Figs. 14 and 15 . The numerical simulation

ver-predicts the central height in comparison to the experiments, but

therwise tracks the observed radius-height relation. The comparison of

urface profiles illustrates how the theory reproduces the shape of the

bserved extruded dome, but again reveals the slight discrepancy be-

ween theory and experiment. We suspect that this originates from the

ncomplete removal of slip over the underlying roughened plexiglass

urface (fluid in the experimental extrusion flows further than in the

imulation and the side profiles are less steep). However, errors in the

uid rheology (the Herschel–Bulkley fit, or non-ideal properties of the

arbopol) might also be responsible. 

Figs. 14 and 15 also include simulations results for a computation

n which the no slip condition on 𝑧 = 0 , r > R v , is replaced by free slip.

s for the axisymmetric dambreaks, the enhanced spread of the fluid

nd the attendant modification in the height profile are reminiscent of

ow the experiments on the smooth plexiglass differ from those above

he roughened surface, reinforcing our conclusions regarding surface

lip. Once more, however, the freely sliding computations spread even

urther than the extrusions on smooth plexiglass, suggestive of residual

urface traction. 

. Concluding remarks 

In this paper, we have presented a theoretical analysis of the 

xisymmetric dambreak of a cylinder of viscoplastic fluid, and com-

ared the results with experiments using a Carbopol gel. In the theory,

e used computations with either a regularized Bingham model or an

ugmented-Lagrangian scheme to study the fluid slump, complemented

y asymptotic analyses relevant for shallow gravity currents or tall thin

olumns. We also examined the states at the brink of failure to determine

he conditions under which the initial cylinder does not collapse. 

The computations, which are based on the VOF method to track the

uid interface, are complicated significantly by the need to resolve the

ow adjacent to the underlying no slip surface. Without special attention

o this detail, computations inevitably become unresolved and spread

xcessively far as a result. Both this and inaccurate treatments of the

ield stress likely reduce the reliability of slump test computations. Here,
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Fig. A17. Computations with varying grid size (as indicated). Panels (a) and 

(b) show the flow front as a function of time for a Newtonian slump with 𝑅 = 1 
using the PLIC scheme with the non-conservative and conservative corrections, 

respectively. Also inclued in (b) are corresponding results for a Bingham slump 

with 𝐵 = 0 . 05 (green curves). Panel (c) shows the interfaces at 𝑡 = 250 of the 

computations in (b) (with inset showing magnifications near the flow fronts). 

The red circles show leading-order shallow-layer solutions [33,34] (For inter- 

pretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. A18. (a) Runout and (b) central depth at 𝑡 = 250 with varying grid size for 

a Newtonian ( 𝐵 = 0 ; top) and Bingham slump ( 𝐵 = 0 . 05 ; bottom) using various 

interface-tracking schemes and Navier–Stokes solvers: regularization with the 

PLIC algorithm including the non-conservative (crosses), conservative (stars) or 

no correction (circles) scheme, or using the augmented-Lagrangian method with 

PLIC and the conservative correction (squares). There is no difference between 
e adopted a numerical device which ensures that our computations

emain resolved, and acts by adjusting the fluid interface and allowing

he contact line to move over the surface. 

For dambreaks (cylindrical slump tests), theory and experiment

gree qualitatively and are consistent with previous experiments that

easure the dimensionless “slump height ” (the distance fallen by the

entre of the cylinder divided by the initial height), and use a variety

f different kinds of (less ideal) viscoplastic fluids. However, one must

e careful to eliminate slip over the underlying surface, which can sig-

ificantly enhance the collapse. Moreover, the mechanism by which the

uid is released introduces quantitative differences between theory and

xperiment, either through the interaction with the lifted container, or

ia the amount of inertia imparted at the moment of release. The ef-

ect of the release mechanism is avoided when fluid is pumped slowly

hrough a vent onto the surface. In such extrusions, the agreement be-

ween theory and experiment is improved, although there are some re-

aining differences that are most likely due either to residual slip or an

naccurate treatment of fluid rheology. 

A main motivation of the current work was to shed further light on

he fluid dynamics of the slump test. That practical device exploits a

onical initial shape rather than a cylinder, begging the question of how

he present results carry over to this other geometry. Fig. 16 plots sim-

lation results for the slump height computed for Bingham fluid with

n initial shape given by an ASTM standard cone (which is 30 cm high,

ith a top radius of 5 cm and a basal radius of 10 cm). As for the cylin-

er, the theoretical slumps do not collapse as far as experiments (this

ime taken from [4] ) at higher yield stresses, a discrepancy that could

rise from either the release mechanism or slip. However, although the

hreshold for failure depends on the slip condition on the underlying

urface ( B c ≈0.27 or 0.32 for this geometry with either no or free slip,

espectively), the continued significant slump of the experimental cones

or higher yield stress suggests that the release mechanism, not slip, is

ore important. Except for low yield stresses, the simulations results

lso disagree significantly with those reported by Roussel and Coussot

9] , especially for the failure criterion. 
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ppendix A. Numerical convergence study 

Fig. A.17 shows the results of a resolution study for the runout of

 Newtonian slump with 𝑅 = 1 and varying grid size. The first panel

resents results for the PLIC scheme with the non-conservative correc-

ion of [15] ; those with the conservative correction are plotted in the

econd panel. Both are compared with the results of lubrication theory

12,33] . Also included in Fig. A.17 (b)–(c) are corresponding results for

he runout of a Bingham slump with 𝐵 = 0 . 05 and a comparison of the

uid interfaces of the various solutions at 𝑡 = 250 , all for the case of the

LIC scheme with the conservative correction (and both values of B ). 

Fig. A.18 shows further details of the resolution studies with 𝐵 = 0
nd 0.05, plotting the runout and central depth of the slump at 𝑡 = 250
or various computations with differing resolution. Computations both

ith and without the correction schemes are presented; the results for

he original PLIC algorithm converge much more slowly than those for

he corrected schemes, with the conservative correction scheme being

uperior. For 𝐵 = 0 . 05 , the three different treatments of the interface

re shown for a computation using the regularization method to deal

ith the yield stress. Also shown is a series of computations using the

ugmented-Lagrangian method and the PLIC scheme with a conserva-

ive correction, which illustrates how the two methods for the dealing

ith the yield stress yield similar results. 

the Navier–Stokes solvers for 𝐵 = 0 . 

55 
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ppendix B. Higher-order shallow asymptotics 

When flow becomes arrested, throughout the bulk of the fluid the

onstitutive model reduces to the plasticity law 𝜏𝑖𝑗 = 𝐵 ̇𝛾𝑖𝑗 ∕ ̇𝛾. In combi-

ation with the rescaled equations in (7) and (10) , one may then deduce

he leading-order stress components, 

 

 

 

 

 

 

 

𝜏𝑟𝑧 = 𝐵̌ (1 − 𝑧 ∕ ℎ 0 ) , 

( ̌𝜏𝑟𝑟 , ̌𝜏𝜃𝜃) = 𝐵̌ ( 𝑢 𝜒 , 𝜒−1 𝑢 ) 
√
1 − (1 − 𝑧 ∕ ℎ 0 ) 2 √ 

𝑢 2 
𝜒
+ 𝑢 2 ∕ 𝜒2 + 𝑢𝑢 𝜒∕ 𝜒

, 
(B.1)

here ℎ 0 = 

√
1 − 𝜒∕ 𝜒∞ and u are the leading-order profile and radial

elocity, with 𝜒∞ ≡ 𝜖r ∞. If we instead neglect only the O ( 𝜖2 ) terms in

7) and (8) , we find that 𝑝 + 𝜖𝜏𝑧𝑧 = ℎ − 𝑧 + 𝑂( 𝜖2 ) . An integral of the ra-

ial force balance over the depth of the fluid then furnishes the equation 

ℎ 𝜒 + 𝐵̌ = 

3 𝜖
2 

𝑑 

𝑑𝜒

[ 
∫

ℎ 0 

0 
( ̌𝜏𝑟𝑟 + 𝜏𝜃𝜃) 𝑑𝑧 

] 
+ 

𝜖

2 𝜒2 
𝑑 

𝑑𝜒

[ 
𝜒2 ∫

ℎ 0 

0 
( ̌𝜏𝑟𝑟 − 𝜏𝜃𝜃) 𝑑𝑧 

] 
. (B.2)

o correct the profile, we evaluate the O ( 𝜖) terms on the right of (B.2) us-

ng the leading-order stress components. 

In order to accomplish this, however, we must first determine the

eading-order radial velocity u in order to fix the indeterminacy of the

xisymmetric stress components. The convergence of the leading-order

lump solution to rest has been explored previously in [12] , extending

he work of Matson and Hogg [35] for 2D dambreaks. It was found that,

or t →∞, the radial velocity u is plug-like throughout the fluid depth

nd given by 𝑢 = 𝑄 

2 
𝜉
∕ (4 𝜉) , where 

𝑑 

𝑑𝜉

[
(1 − 𝜉2 ) 𝑄 

2 
𝜉

]
= 2 𝜆(1 − 𝜉2 )(1 − 𝑄 ) , (B.3)

ith 𝜉 = 

√
1 − 𝜒∕ 𝜒∞ and 𝜆≈23.3855. With the solution of this problem

n hand, we may then compute 𝜏𝑟𝑟 and 𝜏𝜃𝜃 to leading order. The results

re compared with components extracted from the numerical simula-

ions in Fig. B.19 (a) for a sample slump near the arrest of motion. Plotted

re the stress components along the level where 𝜏𝑟𝑧 = 0 (which is 𝑧 = ℎ 0 
n the leading-order asymptotics), after recasting the asymptotic predic-

ions in terms of the original variables. Except near the centre and edge

f the collapsed cylinder (where the shallow-layer asymptotics breaks

own), the two agree qualitatively. Evidently, 𝜏zz is almost constant in

adius, whereas 𝜏rr and 𝜏𝜃𝜃 match one another up to a small correction.

The approximation 𝜏𝑟𝑟 ≈ 𝜏𝜃𝜃 (which corresponds to a plug speed u ∝r;

f. Fig. B.19 (b)), offers a simpler analytical pathway to a corrected final

rofile: the yield condition now implies that 

̌𝑟𝑟 + 𝜏𝜃𝜃 ≈ 2 ̌𝐵 √
3 

√ 

1 − 

( 
1 − 

𝑧 

ℎ 0 

) 2 
, (B.4)

nd so the corrected profile now follows from (B.2) as 

ℎ 𝜒 + 𝐵̌ ∼
𝜋
√
3 

4 
𝜖𝐵̌ ℎ 𝜒 , (B.5)
ig. B19. (a) Scaled stress components ( 𝜏rr , 𝜏𝜃𝜃 , 𝜏zz )/ B and (b) radial speed u / u max p

f a simulation with 𝐵 = 0 . 01 and 𝑅 = 1 . 

56 
hich provides the solution quoted in Section 3.1 . 

ppendix C. Shallow slippy flows 

When the fluid slides more freely over the underlying surface, the

ubrication model of [23] no longer captures the leading-order dynam-

cs. In particular, the extensional stress components ( 𝜏rr , 𝜏𝜃𝜃 , 𝜏zz ) be-

ome promoted to higher order in comparison to the shear stress 𝜏rz 

ecause the reduced surface traction generates little vertical shear and

he horizontal flow becomes plug-like throughout the fluid layer. In this

ircumstance, the relevant asymptotic description is that of a viscoplas-

ic membrane model [36] : rather than rescaling as in Section 3.1, we

et only 𝜏𝑟𝑧 = 𝜖𝜏𝑟𝑧 . Then, ignoring inertia, the leading-order momentum

quations are 

 = − 𝑝 𝜒 + 

1 
𝜒
( 𝜒𝜏𝑟𝑟 ) 𝜒 + 𝜏𝑟𝑧,𝑧 − 

𝜏𝜃𝜃

𝜒
+ 𝑂( 𝜖) , (C.1)

 = − 𝑝 𝑧 + 𝜏𝑧𝑧,𝑧 − 1 + 𝑂( 𝜖) , (C.2)

ith the rescaled horizontal velocity 𝑢 ∼ 𝜖−1 𝑢̌ ( 𝜒, 𝑡 ) ≫ 𝑤 ( 𝜒, 𝑧, 𝑡 ) , the con-

titutive law predicts that 

 𝜏𝑟𝑟 , 𝜏𝜃𝜃) ∼ 2 
( 
1 + 

𝐵 

𝛾̇

) 
( ̌𝑢 𝜒 , ̌𝑢 ∕ 𝜒) , (C.3)

̇ ∼ 2 
√ 

𝑢̌ 2 
𝜒
+ ̌𝑢 ̌𝑢 𝜒∕ 𝜒 + ̌𝑢 2 ∕ 𝜒2 , (C.4)

hich are independent of z . The surface boundary conditions in (8) are

eplaced by 

𝜏𝑟𝑧 + ℎ 𝜒 ( 𝜏𝑟𝑟 − 𝑝 ) 
𝑝 + 𝜏𝑧𝑧 

} 

= 𝑂( 𝜖) on 𝑧 = ℎ. (C.5)

he integral of (C.2) now furnishes 𝑝 + 𝜏𝑧𝑧 = ℎ − 𝑧 to leading order. From

he depth integrated continuity equation and (C.1) , it then follows that

 𝑡 + 

1 
𝜒
( 𝜒ℎ ̌𝑢 ) 𝜒 = 0 , (C.6)

 = − ℎ 𝜒 − 

𝜏𝑏 

ℎ 
+ 

1 
ℎ 

[
ℎ (2 𝜏𝑟𝑟 + 𝜏𝜃𝜃) 

]
𝜒
+ 

𝜏𝑟𝑟 − 𝜏𝜃𝜃

𝜒
. (C.7)

ere 𝜏𝑏 = 𝜏𝑟𝑧 ( 𝑟, 0 , 𝑡 ) is the basal shear stress, which must be specified by

n additional model of slip. 

For a cylindrical dambreak with free slip ( 𝜏𝑏 = 0 ), the equations ad-

it a simple solution in which the fluid retains the shape of a cylin-

er, with ℎ = ( 𝑡 ) and 𝑢̌ = 𝜒 ( 𝑡 ) for 𝜒 < 𝜖 ( 𝑡 ) , and ̇ ≡  . The

xtensional stresses become 𝜏𝑟𝑟 = 𝜏𝜃𝜃 = 2  + 𝐵∕ 
√
3 , and mass conser-

ation demands that  

2  = 𝑅 

2 . Although (C.7) is now satisfied, the

ombined gravitational and extensional stress must still vanish at the

dge of the cylinder, which implies that − 

1 
2  

2 + (2 𝜏𝑟𝑟 + 𝜏𝜃𝜃) = 0 , or

1 
2  = 6  + 𝐵 

√
3 . Thus, 

̇
 = −2  

̇ 

 

= 

1 
6 𝑅 

√ ( 𝐵 

√
3 − 

1 
2 ) . (C.8)
lotted against 𝑟 ∕  along the level where 𝜏𝑟𝑧 = 0 at the end of the computation 
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rovided 𝐵 < 1∕(2 
√
3 ) , the cylinder therefore collapses to a final state

iven by 

 = 2 𝐵 

√
3 and  = 

𝑅 

(12 𝐵 

2 ) 1∕4 
. (C.9)

ppendix D. Tall slender cones 

Most practical slump tests take a truncated cone as the initial shape

ith the radius at the top equal half of that at the base. The slender

nalysis in this case has been derived by Clayton et al. [4] using the

resca yield condition. For von Mises, the corresponding result is 

 = 1 − ℎ 0 − 

√
3 𝐵 ln 

( (
1 + 𝛼−1 )3 − 1 (

1 + 𝛼−1 ℎ 0 
)3 − 1 

) 

, (D.1)

here h 0 is the height of the unyielded region, given by 

 = 

𝛼

3 
√
3 

(
1 + 𝛼−1 ℎ 0 

)3 − 1 (
1 + 𝛼−1 ℎ 0 

)2 
nd 𝛼 = 𝑅 top ∕( 𝑅 base − 𝑅 top ) . 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.jnnfm.2018.04.012 . 
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