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Abstract

We consider a chain of Lorenz ’63 systems connected through a local, nearest-neighbour coupling. We refer to the resulting
system as theLorenz–Fermi–Pasta–Ulamlattice because of its similarity to the celebrated experiment conducted by Fermi,
Pasta and Ulam. At large coupling strengths, the systems synchronize to a global, chaotic orbit of the Lorenz attractor. For
smaller coupling, the synchronized state loses stability. Instead, steady, spatially structured equilibrium states are observed.
These steady states are related to the heteroclinic orbits of the system describing stationary solutions to the partial differential
equation that emerges on taking the continuum limit of the lattice. Notably, these orbits connect saddle-foci, suggesting the
existence of a multitude of such equilibria in relatively wide systems. On lowering the coupling strength yet further, the steady
states lose stability in what appear to be always subcritical Hopf bifurcations. This can lead to a variety of time-dependent
states with fixed time-averaged spatial structure. Such solutions can be limit cycles, tori or possibly chaotic attractors. “Cluster
states” can also occur (though with less regularity), consisting of lattices in which the elements are partitioned into families of
synchronized subsystems. Ultimately, for very weak coupling, the lattice loses its time-averaged spatial structure. At this stage,
the properties of the lattice are probably chaotic and approximately scale with the lattice size, suggesting that the system
is essentially an ensemble of elements that evolve largely independent of one another. The weak interaction, however, is
sufficient to induce widespreadcoherent phases; these are ephemeral states in which the dynamics of one or more subsystems
takes a more regular form. We present measures of the complexity of theseincoherentlattices, and discuss the concept of a
“dynamical horizon” (that is, the distance along the lattice that one subsystem can effectively influence another) and error
propagation (how the introduction of a disturbance in one subsystem becomes spread throughout the lattice). ©2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In 1955, in what is now a classical paper in mathe-
matical physics, Fermi et al. [1] described a computer
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experiment that was intended to observe the relax-
ation of a chain of coupled oscillators to equipartition
in energy. However, what was observed in the actual
experiment was anything but equipartition, with the
energy in phase space sloshing back and forth in an ap-
parently coherent, and strongly nonlinear, fashion; the
energy localized repeatedly in only a few oscillators.
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Somewhat later, this recurrence was rationalized by
Zabusky and Kruskal [2] on the basis of the contin-
uum limit of the oscillator chain which turned out to
be the celebrated Korteweg–de Vries equation. That
observation was the beginning of the theory of soli-
tons, one of the major developments in mathematical
physics in this part of the last century.

In this article, we return to the Fermi–Pasta–Ulam
experiment, but explore a slightly different version
of the problem. Instead of coupling oscillators, we
take a set of low-dimensional chaotic systems and
explore the consequences of chaining them together.
More specifically, we couple together a large num-
ber of Lorenz ’63 systems [3]. Thus, we consider the
Lorenz–Fermi–Pasta–Ulam(LFPU) experiment.

The motivation for an experiment of this kind is
rooted in images of turbulence [4] and in theory of
spatially extensive systems containing many interact-
ing elements. For example, in climate dynamics, mo-
tions cover many different scales and there are several
physical variables that play central roles. One way to
unravel some of the intricate dynamics is to visualize
the system in terms of interacting, spatially localized,
complex subsystems. The LFPU experiment is one of
the simplest model problems of this kind.

Alternatively, by building a very complicated sys-
tem from simpler building blocks, we can manufac-
ture a metaphor for complex natural phenomena and
explore the birth of new structures at higher hierarchi-
cal order. For example, one of the images in biology
is the “integron”, the structural unit at one level of a
hierarchy that is composed of coupled elements from
the level below. In such a structure, the interaction of
the elements is at least as important as the dynamics
of each element. The LFPU system is such an ensem-
ble of coupled elements, each of which has, by itself,
a nontrivial dynamics.

Simple coupled systems have also been advocated
as numerical laboratories for studying outstanding is-
sues such as reconstruction and predictability [5–8].
The analogue experiments have exposed many of the
inherent problems in more sophisticated studies of
these issues. For example, it is evident from studying
weakly coupled systems that estimates of the dimen-
sion of the attractor underlying the climate are hope-

lessly inadequate [5]. At the end of the current study
we address issues of this general flavour, and espe-
cially predictability, in the context of the LFPU lat-
tice. Specifically, we show the failure of reconstruc-
tion and the existence of spatial limits to predictabil-
ity (the “dynamical horizon” ). Nevertheless, despite
these difficulties with reconstruction and predictabil-
ity, there are alternatives to the standard methodolo-
gies that we briefly explore.

Other applications of coupled nonlinear systems
include earthquake models [9,10], theory of friction
[11,12], neuroscience [13,14], synchronizing biologi-
cal populations [15], discrete reaction–diffusion sys-
tems [16] and morphology of living organisms [17].
In all these applications, one strings together an en-
semble of individual elements that have internal, po-
tentially chaotic dynamics.

Some theoretical studies that are related to the
present work include experiments with ensembles of
Rössler systems that are coupled locally [18–22], or
globally [23,24], and simulations of coupled models
of neurons [25–29]. Also, in some regards, the dy-
namics of the LFPU system is similar to that found
for coupled map lattices [30–32].

The emphasis of the previous studies with cou-
pled nonlinear oscillators has been on either the phe-
nomenon of phase synchronization [33], or the oc-
currence and stability of the fully synchronized state.
Though we also discuss issues pertaining to synchro-
nization, this aspect of the problem is not our main
focus. Our principal goal is to provide a relatively
complete exploration of the LFPU system over a wide
range in the strength of the coupling; a range includ-
ing both collective and disorganized behaviour of the
lattice elements. In doing so we retreat from a study
describing the range of behaviour over the entire pa-
rameter space of the system; such a study is simply
too involved. But, in varying the coupling strength, we
encounter a very rich array of behaviour.

We also concentrate on systems that are neither too
large in number nor too small. That way, our lattices
are neither low-order dynamical systems nor extensive
systems that essentially reproduce the behaviour of a
continuum. In the continuum limit, the LFPU system
becomes a set of coupled partial differential equations
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(PDEs); the “diffusive Lorenz equations”. These equa-
tions have been considered previously by Qian and
Feng [34] who found globally synchronized solutions
and steady states, and by Coullet et al. [35], who stud-
ied solutions taking the form of sequences of fronts.
Here, we identify features common to the continuum
limit, and uncover highly discrete phenomena.

The outline of this paper is as follows. In Section
2 we formulate the LFPU experiment. In Section 3
we describe a set of preliminary initial-value problems
that set the stage for the subsequent analysis. That
analysis includes a discussion of the stability of the
synchronized state (Section 4), the steady equilibria
(Section 5) and the time-dependent states that emerge
when these equilibria lose stability (Section 6). Fi-
nally, we exploreincoherentlattices (Section 7); that
is, lattices at very weak coupling strength where the
elements evolve largely independent of one another.
Section 8 concludes our study.

2. The system

Our problem surrounds a chain ofN coupled
Lorenz subsystems each described by the coordinates
{xn(t), yn(t), zn(t)} for n = 1, 2, . . . , N . We cou-
ple the subsystems together in one of the simplest
fashions: local, nearest neighbour coupling with a
strength measured by the parameter,D. Alternatively,
this coupling can be interpreted as a discrete form of
diffusive coupling of the three fields. In other words,
we solve the equations

ẋn = σ(yn − xn) + D(xn+1 + xn−1 − 2xn), (1)

ẏn = rxn − yn − xnzn + D(yn+1 + yn−1 − 2yn), (2)

żn = ynxn − bzn + D(zn+1 + zn−1 − 2zn), (3)

for n = 1, 2, . . . , N .
We use periodic boundary conditions:x1 = xN+1

and so on. We refer ton as a spatial, discrete coor-
dinate, and the whole system as the LFPU lattice or
chain. In all the computations we report in this paper,
we use the standard parameter values,r = 28,σ = 10
andb = 8/3.

The coupled system has a continuum limit in which
the discrete coordinaten becomes a continuous vari-
ableχ , and in which we replace{xn(t), yn(t), zn(t)}
by {ξ(χ, t), η(χ, t), ζ(χ, t)}. The continuum fields
satisfy the PDEs

ξt = σ(η − ξ) + Dξχχ ,

ηt = rξ − η − ξζ + Dηχχ ,

ζt = ξη − bζ + Dζχχ , (4)

subject to periodic boundary conditions,ξ(χ, t) =
ξ(χ + N, t) and so on.

The equations have the symmetryxn → −xn, yn →
−yn andzn → zn. Hence we may generate other so-
lutions from existing ones on applying this symmetry.
For solutions that are “up–down” symmetric, we ob-
tain no new solutions in this way. But there are families
of asymmetrical solutions that have “mirror-images”
in xn andyn. Also, the equations are symmetrical un-
dern → N − n andn → n + j for anyj (and alln).
The first is a reflection symmetry inn and the second
is the discrete analogue of the continuous translational
symmetry of the PDEs connected to (1)–(3).

3. Preliminary initial-value problems

Before we enter into a detailed exploration of the
LFPU system, we describe a set of initial-value calcu-
lations that gives a first impression of the richness of
the chain dynamics. We selectN = 50 for illustration
and the (small amplitude) initial conditions,

xn(0) = 10−3 sin 1.1(3n − 2),

yn(0) = 10−3 sin 1.1(3n − 1) and

zn(0) = 10−3 sin 3.3n. (5)

Depending on the value ofD, we found three types
of behaviour for the system evolution:
• Synchronized lattices (D > 57).
• Steady, structured lattices (D < 57).
• Time-dependent, structured lattices (D < 5).

For large values ofD, the system relaxes to a
spatially homogeneous state. That is, the subsys-
tems synchronize and execute an orbit of the Lorenz
equations (see Fig. 1). The convergence to the syn-
chronized state is shown in more detail in Fig. 2. This
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Fig. 1. Synchronized evolution ofxn(t) at D = 60.

shows the decay of the sum of squared differences,
log10{

∑N
n=1[xn(t) − x1(t)]2}, which is roughly expo-

nential. The rate of convergence to synchronization
decreases withD until D ≈ 57, where convergence
ceases altogether.

For smaller values ofD, the subsystems no longer
synchronize. Instead, as shown in Fig. 3 forD = 53,
the systems come close to synchronizing for a while,
but then a sudden transition occurs and steady equi-
librium states appear. Note that the initial evolution
in Fig. 3 leads to a spatially structured state that is
almost symmetrical undern → N − n and reflec-
tion. However, there is then a slower phase of evo-
lution in which the state relaxes to an asymmetrical
equilibrium. This suggests the initial transition gen-
erates a weakly unstable, symmetrical equilibrium,

and the final state is a stable asymmetrical equili-
brium. The existence of such equilibria is confirmed
later.

The loss of stability of the synchronized state is
similar to that seen in lower-dimensional systems ex-
hibiting master–slave synchronization [22]. In those
systems, an invariant, chaotic set loses stability in a
transverse direction (a “blow-out” bifurcation [36]),
and the system desynchronizes. An important feature
of these systems is that the transverse stability is de-
termined by some complicated average over this set.
Hence the transverse stability exponent is much like
a Lyapunov exponent and may not be a well-defined
function of parameters (see Section 4).

The evolution shown in Fig. 3 illustrates the even-
tual relaxation to a singly peaked, asymmetrical,
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Fig. 2. The convergence of the system to the synchronized state forD = 60, 70, 80 and 100. The ordinate is
∑N

n=1[xn(t) − x1(t)]2. The
dotted lines show the rates of convergence estimated from the stability exponentΛ of Section 4.

steady equilibrium.1 This is typical over the range
20 < D < 57 (and is similar to the states explored
in [29]). However, there are a variety of different
kinds of states found by the initial-value calculation.
For example, for values ofD in the range 5–20,
the equilibria generated in the initial-value problem
are doubly peaked (Fig. 4a). At yet lowerD, steady
states can emerge with more complicated structure
(Fig. 4d); in these final states, the number of principal
peaks increases as we lowerD, until we come close
to the maximum number ofN/2 peaks, correspond-
ing to a “zig-zag” solution. We explore the steady
states in more detail in Section 5.

Another regime is present at small values ofD.
Here, the system can evolve to a time-dependent so-
lution. Some of the time-dependent solutions are sim-
ilar to the steady equilibrium states, save that in the
wider regions between the main peaks, low-amplitude

1 By “peak”, we mean large positive or negative excursions of
the variablexn or yn between zero-crossings, orprincipal peaks.

oscillations occur (Fig. 4b and c). These oscillations
can be periodic or aperiodic; we explore these states
in Section 6. Other time-dependent states that emerge
at yet smaller coupling strength have no such under-
lying spatial structure. The dynamics of these states
is more like an ensemble of weakly coupled, but indi-
vidually evolving, chaotic elements. We explore such
states in Section 7.

In Fig. 5 we give a crude classification of the end
states of the various initial-value computations. In fact,
the picture displays much more than the results of
these computations; essentially, this figure displays a
“regime diagram” of the LFPU system. The signifi-
cance of the other curves that are shown in the fig-
ure is made clear in the following sections. With the
reader’s indulgence, we will leave a discussion of all
the results until Section 8.

The initial-value computations are classified accord-
ing to the number of principal peaks in the time-
averaged spatial structure; we use the schemeSn and
An to indicate a solution withn principal peaks, andS
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Fig. 3. Initially synchronized evolution ofxn(t) at D = 53. Subsequently, att ≈ 60, the system shows a sudden transition to an almost
steady equilibrium state. Note that the state created by this transition evolves on a much slower timescale from a symmetrical (under
n → N − n and reflection) structure to an asymmetrical one. The final, steady equilibrium state is shown in the lower panel.
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Fig. 4. Initial-value problems atD = 15, D = 3, D = 1.5 andD = 1. Shown are values ofxn(t) againstn and t at intervals of 0.05.
The first and final pictures show states that ultimately becomes steady; there are two and 15 primary peaks in the spatial structures (they
are A2 and A15 states in the terminology of Fig. 5). The second and third cases evolve to states that are time dependent with spatially
localized oscillations over the widest regions between the main peaks. These final states persist for at least 500 time units, and have two
and three main peaks (tA2 and tA3 states), respectively.

or A indicate whether the state is symmetric or asym-
metric on reflection aboutxn = 0 (A1 ≡ A andS1 ≡
S). Note that the time-dependent states are evolved for
up to 500 time units and no further; they are not nec-
essarily attractors. In fact, evolution can proceed on
much longer timescales (see Sections 6 and 7).

We also add points to Fig. 5 corresponding to
initial-value computations forN = 10 and 20; these
computations were less expensive and we evolved the
lattices for longer to be more confident that the end
states were attractors.

4. Stability of synchronized states

For large values ofD, the system evolves to a
spatially homogeneous equilibrium, corresponding to

synchronization. This state is given by(xn, yn, zn) =
(X, Y, Z), where(X, Y, Z) is a trajectory of the Lorenz
system. It is straightforward to show that this state is a
solution of the LFPU system for all values ofD; that
is, it is an invariant manifold in the phase space of the
system.

To study the stability of the spatially homogeneous
states we set

xn(t) = X(t) + X (t) e2iπkn/N ,

yn(t) = Y (t) + Y(t) e2iπkn/N ,

zn(t) = Z(t) + Z(t) e2iπkn/N , (6)

for k = 1, 2, . . . , (N − 1)/2 or N/2 (depending on
whetherN is odd or even). Substitution into the equa-
tions then gives the system,
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Fig. 5. Regime diagram for the LFPU system. The results of initial-value problems atN = 10, 20 and 50 are shown by points with
symbology described below. The curves are (i)DS(N), the stability boundary of the synchronized state; (ii)D0(N), the upper stability
boundary of the symmetrical steady stateS; (iii) DH(N), the Hopf bifurcation along one of theA solution branches (described more fully
in Section 5 — it is theA1 branch, as defined there); (iv)Deg, the lower stability threshold of the even grid mode; (v)Dog, the lower
stability threshold of the odd grid mode; (vi)Dt ≈ 10.14, the coupling strength for which the pseudo-translation eigenvalue has magnitude
10−3 for the S state. The types of end-states are shown by the symbols plotted at the respective values ofD; this classification is based
on the number of principal spatial peaks in structured states, and the temporal behaviour. Empty circles indicate synchronized states. Stars
are singly peaked steady states (S or A solutions). Crosses are doubly peaked states (denotedA2 solutions). Plus signs are triply peaked
states (denotedA3). Dots show states with more peaks,An. If the state was time dependent, there is a circle around the symbol; thus a
circled cross indicates a time-dependent, doubly peaked solution (tA2). The states at smallestD markedt were time-dependent, had no
fixed spatial structure, and identifying principal peaks was ambiguous; theset states may not be attractors.
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d

dt


XY
Z


 = M


XY
Z


 − 4D sin2q


XY
Z


 ,

M =

 −σ σ 0

r − Z −1 −X

Y X −b


 (7)

andq = πk/N . Stability follows from the asymptotic
behaviour of(X ,Y,Z) as t → ∞. In fact, if we
let (X ,Y,Z) = (X̃ , Ỹ, Z̃) exp(−4Dt sin2q), then the
amplitudes satisfy the system,

d

dt


 X̃Ỹ
Z̃


 = M


 X̃Ỹ
Z̃


 , (8)

which is identical to that used to compute the lead-
ing Lyapunov exponent,Λ0, of the Lorenz equations
(Λ0 ≈ 0.9055 for r = 28, σ = 10 andb = 8/3).
Hence,(X̃ , Ỹ, Z̃) ∼ expΛ0t ast → ∞. Thus, insta-
bility exists if

Λ(q) = Λ0 − 4D sin2q > 0 (9)

[19,37]. This relation reflects the competition between
the chaotic separation of neighbouring trajectories (as
measured byΛ0), and diffusive smoothing.

The fact thatΛ(0) = Λ0 is the Lyapunov expo-
nent of the Lorenz equations and therefore positive
indicates that there must always be a range of wave
numbers for which the homogeneous state is unstable.
More precisely, the exponentΛ becomes negative for
4D sin2q ≈ 0.9055. Thus all perturbations withq less
than qc = sin−1√0.227/D are unstable. The ques-
tion of stability then amounts to whether the minimum
wave number in the system, given byk = 1, falls into
this unstable range:π/N < qc. In other words, the
state is stable if

π

N
> sin−1

√
0.227

D

or D > DS(N) = 0.227

sin2(π/N)
. (10)

For N = 50, this predicts a critical value ofD of
57.42, which is in agreement with estimates based
on numerical experiments given earlier. The thresh-
old, DS(N), is drawn in Fig. 5. Note, also, that syn-

chronization in the continuum case is unstable to long
wavelength perturbations in sufficiently large systems.
(See also Ref. [38].)

5. Steady states

Below the synchronization threshold, the lattice
acquires a nonhomogeneous spatial structure. In this
parameter regime, stable steady states appear.

5.1. Equilibria and their stability

To find the steady states explicitly, we set the
right-hand sides of (1)–(3) to zero. Then we obtain
the boundary-value difference equations

0 = σ(ȳn − x̄n) + D(x̄n+1 + x̄n−1 − 2x̄n), (11)

0 = rx̄n − ȳn − x̄nz̄n + D(ȳn+1 + ȳn−1 − 2ȳn), (12)

0 = ȳnx̄n − bz̄n + D(z̄n+1 + z̄n−1 − 2z̄n). (13)

Solutions to these equations are easily furnished on
solving the difference equations by Newton iteration.

For future use, we also quote the continuum version:

Dξ̄χχ = σ(ξ̄ − η̄), Dη̄χχ = η̄ − rξ̄ + ξ̄ ζ̄ ,

Dζ̄χχ = bζ̄ − ξ̄ η̄. (14)

Some sample equilibrium solutions are shown in
Figs. 6–9. Figs. 6 and 7 show a class of symmetrical
equilibrium states with a single principal peak, and
Fig. 8 shows an asymmetrical version. The end-state
of the initial-value calculation shown in Fig. 3 is a
member of this latter family. A doubly peaked family
is shown in Fig. 9. Related solutions are generated
by applying the symmetry operation,(xn, yn, zn) →
(−xn, −yn, zn), or by discretely shifting the solutions
across the lattice.

The stability of the steady states is determined by
setting

xn = x̄n + x′
n eλt , yn = ȳn + y′

n eλt ,

zn = z̄n + z′
n eλt , (15)

substituting into the governing equations, linearizing
in the primed quantities, and then solving the eigen-
value problem,
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Fig. 6. Steady equilibrium states with a single peak for (a)N = 50 and (b)N = 100. We denote this state asS. Dotted lines show the
value ofX at the fixed point of the Lorenz equations. The “steepest” solutions are least strongly coupled.

Fig. 7. Steady equilibrium states (as shown in Fig. 6) projected onto the(xn, yx) and (xn, zn)-planes forN = 50 andN = 100. Strikingly,
the values ofxn, yn and zn almost fall on a curve whose shape is independent ofN andD.
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Fig. 8. Asymmetrical steady equilibria atD = 10, 30, 50 and 70. This branch of solutions is denotedA1 and is related to the end-state
of the initial-value calculation shown in Fig. 3. There is a “mirror-image” family of solutions withxn → −xn, yn → −yn and zn → zn.
The “smoothest” solutions are most strongly coupled.

λx′
n = σ(y′

n − x′
n) + D(x′

n+1 + x′
n−1 − 2x′

n), (16)

λy′
n = rx′

n − y′
n − x̄nz

′
n − z̄nx

′
n + D(y′

n+1

+y′
n−1 − 2y′

n), (17)

λz′
n = ȳnx

′
n + x̄ny

′
n − bz′

n + D(z′
n+1 + z′

n−1 − 2z′
n).

(18)

Fig. 9. Symmetrical steady equilibria with two principal peaks; we denote this state asS2. The “steepest” solutions are least strongly coupled.

Analysis of the stability of the steady states indi-
cates that they remain stable for values ofD exceeding
the synchronization threshold. Hence, there is a pa-
rameter range where both stable synchronization and
spatially homogeneous stable steady states are pos-
sible attractors. The initial condition (5) used in the
initial-value problems evidently favours the synchro-
nized state over this regime.
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5.2. Creation and bifurcations of steady states

The steady statesSk appear by bifurcating from the
trivial state,xn = yn = zn = 0. (Because of the dis-
crete translational symmetry, this is a highly degen-
erate bifurcation for a large lattice.) The trivial state
xn = yn = zn = 0 is actually an unstable, synchro-
nized solution, and so we may apply the stability the-
ory of Section 4 to uncover the location of the bifur-
cations.

It is straightforward to show that the trivial
state has an unstable eigenvalue given byλ0 =
[
√

(1 − σ)2 + 4rσ − (1+σ)]/2 ≈ 11.83. This eigen-
value corresponds to synchronized perturbations, and
so the trivial state is unstableinsidethe “synchroniza-
tion manifold”. But, there is also atransversestability
exponent,Λ0 = λ0 − 4D sin2(kπ/N), where k is
any integer. This exponent changes sign whenλ0 =
4D sin2(kπ/N), or D ≈ 2.96/ sin2(kπ/N), which is
the bifurcation point at which the state,Sk, emerges.

Fig. 10. Stability eigenvalues of the symmetrical states shown in Fig. 6(a). Shown are the real parts of the eigenvalues of largest size; the
dots show real modes and stars represent complex conjugate pairs. The real mode labelledC crosses through zero at the bifurcation points
of the asymmetrical solution branchesA1 − −A3 shown in Fig. 11. The modeT approximates the translational mode of the continuous
system, as described in Section 5.3 (note how this eigenvalue coincides with that of theC mode and becomes negative at smallD). The
two complex conjugate pairs,R1 andR2, destabilize the state at smallD; they are examples of “radiative instabilities” which are discussed
in Section 6.

The mode of longest scale withk = 1 leads to the
S1 ≡ S state shown in Figs. 6 and 7, and thek = 2
bifurcation generates theS2 state shown in Fig. 9.

The bifurcations are pitchforks, and occur at suc-
cessively lower values ofD ask increases. Evidently,
there are only as many asN/2 independent bifurca-
tions of this kind, with the mode with shortest length-
scale emerging at smallestD. For an even lattice, this
corresponds tok = N/2; when N is odd, the last
mode to bifurcate hask = (N − 1)/2. The resulting
SN/2 andS(N−1)/2 states correspond to the “zig-zag”
solutions mentioned earlier.

When theSk states bifurcate, they share the stability
properties of the trivial state at largerD, and so they
are all unstable. As we lower the coupling strength,
however, further bifurcations occur that stabilize the
Sk states. We illustrate this fork = 1.

Numerical evaluations of the stability eigenvalues
for the single-peakedS1 solutions of Fig. 6 are dis-
played in Fig. 10. There are three different kinds of
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instabilities suffered by the stateS ≡ S1 that are
evident in this figure. First, for largeD the mode
marked B is unstable (see the right panel of Fig.
10); when the associated eigenvalue passes through
zero, theS state first becomes stable. Second, over
the range 10< D < 100, theC mode “oscillates”
several times through zero leading to two bands of
instability. Third, conjugate pairsR1 and R2 bifur-
cate to instability at smallD. Note that there is an-

Fig. 11. In panels (a) and (b) we display bifurcation diagrams for asymmetrical equilibria. Shown is the amplitude measure
∑N

n=1xn/N

againstD. The branchS denotes the symmetrical solutions. Branches shown by dotted lines are unstable. Panel (c) shows the spatial
structure of the states,A0, A1, A2 andA3, at D = 15; the “peak” becomes wider on progressing along the branches. The break of stability
in the A3 branch occurs because of a change in the sign of the pseudo-translation eigenvalue. The unstable, symmetrical solution continues
to largerD, until D ≈ 1000 where it bifurcates off the trivial state,xn = yn = zn = 0.

other eigenvalue, markedT , with a very small mag-
nitude forD > 10. We discuss this mode further in
Section 5.3.

A related bifurcation diagram is shown in Fig.
11. The point at which theB mode becomes sta-
ble, D = D0 (N = 50) ≈ 303.5, corresponds to
a symmetry-breaking bifurcation where two asym-
metrical, single-peaked families of solutions emerge.
These solutions are always unstable; we label them
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asA0 states.2 As a result of the bifurcation, the sym-
metrical solution becomes stable forD < D0(N).
The curveD0(N) is shown in Fig. 5.

There is a second symmetry-breaking bifurcation at
D ≈ 77.5. Here the symmetrical solution loses sta-
bility to another asymmetrical state, theA1 solution.
That solution is the one which is typically observed as
the final state in the initial-value computations of Sec-
tion 3 for 20< D < 57. This asymmetrical solution
family is also shown in Fig. 8. The solution remains
stable down toD = DH ≈ 15, where there is a Hopf
bifurcation (see the star on Fig. 11). This occurs when
a complex conjugate pair of eigenmodes becomes un-
stable, just as theR1 and R2 modes destabilize the
symmetrical branchS at lower values ofD (see Fig.
10). However, theA1 branch suffers the Hopf bifur-
cation at relatively largeD. The locus of the Hopf bi-
furcation along theA1 branch,D = DH(N) is again
shown in Fig. 5. The consequences of this oscillatory
instability are explored in Section 6.

More symmetry-breaking bifurcations occur on the
S branch as we lowerD, leading to an interesting pat-
tern in the bifurcation diagram. The symmetrical solu-
tions restabilize nearD = 34.33 by shedding a second
pair of asymmetrical solutions denotedA2. The next
bifurcation generates the stableA3 solution branch.
The fifth bifurcation generates yet another unstable
pair of solutions. However, at this coupling strength,
the solutions are very discrete and we abandon theAj

classification scheme (cf. Fig. 14 below). TheA0, A1,
A2 andA3 solutions are compared in Fig. 11c atD =
15. Evidently, as one proceeds from branch to branch,
the number of subsystems contained in the “peak” in-
creases.

In addition to the series of bifurcations that occur,
the structure of the states also changes in an inter-
esting way as we varyD. For both symmetrical and
asymmetrical states, as we decreaseD, the equilib-

2 Because it turns out that there are many solutions branches
with the same number of peaks, the labellingAl used earlier
is not unique. Instead, we useAl

j , which denotes the unique
solution branch,j , with l principal peaks. In particular, the different
asymmetrical branches appear at different values ofD. We usej

to denote these branches in the order that they appear as we lower
D. Note also thatAj ≡ A1

j .

rium states become characterized by flat plateaux
connected by steep steps (see Figs. 6 and 8). The
plateaux lie at the value of the spatially homoge-
neous, time-independent equilibrium (the nontrivial
fixed point of the Lorenz equations):X = Y = Xf =
±√

b(r − 1) andZ = Zf = r − 1. Hence the equi-
librium solutions look to be approaching the discrete
analogues of heteroclinic connections of the two
constant phases or fronts.

5.3. Equilibria near the continuum limit; indiscrete
solutions

We rationalize the existence of the mode marked
T in Fig. 10 and the apparent approach to “discrete
fronts” in terms of the continuum limit. In this limit,
the stability problem becomes

λη′ = σ(η′ − ξ ′) + Dξ ′
χχ ,

λη′ = rξ ′ − η′ − ξ̄ ζ ′ − ζ̄ ξ ′ + Dη′
χχ ,

λζ ′ = η̄ξ ′ + ξ̄ η′ − bζ ′ + Dζ ′
χχ , (19)

where (ξ̄ , η̄, ζ̄ ) denotes a equilibrium solution to
the continuum equations, and(ξ ′, η′, ζ ′) eλt is the
infinitesimal perturbation to that state. There is an
exact solution to (19) withλ = 0 and(ξ ′, η′, ζ ′) =
(ξ̄χ , η̄χ , ζ̄χ ). This corresponds to the mode associ-
ated with the continuous symmetry of translational
invariance.

In the discretized system, the translational invari-
ance is broken, and the continuous symmetry is re-
placed by the discrete version; an integral shift of the
solution across the lattice. Nevertheless, providedD

is sufficiently large, the system behaves much like the
continuous one and there is an analogue of the transla-
tion mode, withλ ≈ 0; this is ourT mode. However,
the eigenvalue is finite; when it is positive, there is a
weakly unstable mode corresponding to a drift across
the lattice.

In fact, for strong coupling, there are two families
of almost identical equilibrium solutions with slightly
different distributions along the chain. One family has
a stable “pseudo-translation” mode; the other is un-
stable. Such pairs of modes are illustrated in Fig. 12.
One solution corresponds approximately to the shift
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Fig. 12. (a) Two distinct, symmetrical equilibrium states atD = 20 that result from the breakage of the continuous translational symmetry
in the discrete problem. Both have stability eigenvalues of order 10−8, but one is positive, indicating the state is unstable, and the other
negative (indicating stability). In (b), we show a similar pair for theA1 solution atD = 15. The solutions with a subsystem in the vicinity
of xn = yn = zn = 0 are “centred” and unstable; the “off-centred” solutions are stable.

of the other solution acrosshalf a lattice spacing. The
unstable states correspond to “centred solutions” with
a subsystem in the vicinity ofxn = yn = zn = 0, and
the stable equilibria to “off-centre solutions” (see Fig.
12).

In other words, there are two sets of interlaced
steady equilibria arrayed across the lattice, one sta-
ble and the other unstable. If initialized at the un-
stable equilibrium, the system subsequently drifts to
the stable state. This situation is analogous to that
in discrete nonlinear field theories. There, the differ-
ence in the energies of the two families provides a
potential energy barrier between the neighbouring sta-
ble states; this is the so-called Peierls–Nabarro barrier
[39].

When D becomes small, the pseudo-translation
eigenvalue increases in absolute value reflecting the
emergence of effects of discreteness. In fact, the value
of this eigenvalue provides us with a measure of

how close a particular equilibrium state approximates
one in the continuous system (for the symmetrical
S states this eigenvalue has magnitude 10−3 when
D = Dt ≈ 10.14, onceN exceeds about 15;D = Dt

is sketched in Fig. 5).
Note that we can rescale the independent coordinate

in (14) so as to remove the explicit dependence onD.
In other words, the equilibria of the continuous sys-
tem depend only on the coupling parameter through
the scale ofn. Thus phase portraits on the(ξ, η) or
(ξ, ζ ) planes would be independent ofD, and the lo-
cations for whichn were integer would vary along the
trajectories. This is essentially what we see in Figs. 7
and 8.

In the continuous system, the heteroclinic connec-
tions are solutions to (14). Near the fixed points, we
let

ξ̄ = Xf + ξ̃ , η̄ = Xf + η̃ and ζ̄ = Zf + ζ̃ , (20)
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and then solve the linear system

Dξ̃χχ = σ(ξ̃ − η̃), Dη̃χχ = η̃ − rξ̃ + Zf ξ̃ + Xf ζ̃ ,

Dζ̃χχ = bζ̃ − Xf (ξ̃ + η̃). (21)

This furnishes the eigenvalues of the flow:

(ξ̃ , η̃, ζ̃ ) ∼ expνχ

with Dν2 = 13.8546 or − 0.094± 10.1945i (22)

(these are the stability eigenvalues of the nontrivial
fixed point in the Lorenz equations). The rate of de-
cay of the front to the left is given by the eigenvalues
with positive real part; that to the right by eigenval-
ues with negative real part. The least rapidly decaying
eigenvalues are those generated by the second relation
in (22); these eigenvalues are complex and have argu-
ment close toπ/4. Thus the front solutions must be
characterized by an oscillatory approach to the fixed
values, with a decay rate comparable to the oscillation
scale. The fact that the tails of the fronts are oscilla-
tory has important implications. In particular, based
on the analogy with Shil’nikov theory [40], we there-
fore anticipate a vast set of solutions of the continuum
system containing multiple fronts [41,42].

In fact, the bifurcation diagram of Fig. 11 is very
similar to that observed for pulses in Benney’s equa-
tion [43,44], which can be interpreted in terms of
homoclinic dynamics. Differences arise here because
the system (14) is reversible (see [45–47]), and be-
cause eventually the characteristic thickness of the
near-heteroclinic transitions approaches the lattice
spacing. Thereafter, the discreteness of the system
ruins any parallel with the continuous system (as
illustrated by the disappearance of an approximate
translation mode in the stability eigenspectra — see
Fig. 10).

5.4. Equilibria for smallD; highly discrete solutions

The stable steady states that appear at larger cou-
pling strength continue to exist as we proceed to the
limit D → 0. But in this limit, we may better analyse
such solutions using another approach.

When D = 0, we haveN uncoupled Lorenz
systems. Because forr = 28 these systems are all

chaotic, we expect that the LFPU lattice is therefore
incoherent in this limit. However, we can neverthe-
less easily construct a multitude of steady equilibria
that satisfy (11)–(13) withD = 0. The equation
implies that each subsystem must be located at one
of the three fixed points of the Lorenz equations
(which clearly shows why these states are unstable),
(0, 0, 0) (±√

b(r − 1), ±√
b(r − 1), r − 1). Hence,

we can build an equilibrium by distributing the sub-
systems at either of these three points. For example,
(x̄n, ȳn, z̄n) = (±√

b(r − 1), ±√
b(r − 1), r − 1) and

(x̄n, ȳn, z̄n) = (0, 0, 0) comprise three unstable (syn-
chronized) equilibria. However, any permutation of
choices from the three fixed points suffices to define
an equilibrium atD = 0. Though these solutions
are all unstable, they are intimately connected to the
steady states we observe at stronger coupling.

By way of illustration, we considerN = 2. Then
we have the states

x1 = √
b(r − 1), x2 = √

b(r − 1),

x1 = √
b(r − 1), x2 = −√

b(r − 1),

x1 = √
b(r − 1), x2 = 0,

x1 = 0, x2 = 0,

(23)

and a slew of others obtained from applying the two
symmetries of the system, reflection and a shift of the
lattice.

Evidently, asN increases, the number of these un-
stable states rises dramatically. Though they are all
unstable atD = 0, many of them become stable as
a result of Hopf bifurcations as we raiseD. This is
illustrated in Fig. 13 forN = 2, 3 and 4.

Importantly, the first state to become stable as we
raise D is invariably the “grid mode”. That is, the
mode with

(x1, x2, x3, x4, . . . ) = (
√

b(r − 1),

−
√

b(r − 1),
√

b(r − 1), −
√

b(r − 1), . . . ). (24)

For an even lattice, this mode is a perfect zig-zag,
and was denoted by theSN/2 state above. But when
N is odd, there are two lattice points with the same
values for xn and yn somewhere along the chain.
This is the S(N−1)/2 state. The “even grid mode”
becomes stable forD = Deg ≈ 0.114, indepen-
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Fig. 13. Bifurcation diagrams of steady states for (a)N = 2, (b) N = 3 and (c)N = 4. The dotted curves denote unstable solutions; solid
curves show stable branches. The stars indicate the Hopf bifurcations that stabilize certain of the states at smallD.

dent of N . The “odd grid mode” is stabilized asD
passes throughDog ≈ 0.17, a number that varies
slightly with N . Both Deg andDog are displayed in
Fig. 5.

Thus, for largeN and small D, we anticipate
an exceptionally large number of stable equili-
bria. Some of these were observed in the initial-
value calculations of Section 3. This multiplicity
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of states is related to the “attractor crowding”
of Weisenfeld and Hadley [48] in coupled map
lattices and oscillators. Notably, forr < 24.7,
where the two nontrivial fixed points are stable,
the multitude of stable equilibria extend down to
D = 0.

Finally, we indicate how the multitude of unstable
equilibria atD = 0 are related to the equilibrium se-
quence,S, A0, A1, . . . . We do this by tracing equilib-
ria at D = 0 to larger coupling strength forN = 50.
Results are shown in Fig. 14. This figure shows how
equilibria develop on raisingD from states given, at
D = 0, by

xn=
{ −√

b(r − 1) for n ≤ j, j = 1 . . . , 25,
√

b(r − 1) for n > j, j = 1 . . . , 25,
(25)

and

xn =




0 forn = 1, j = 3, . . . , 26,

−√
b(r − 1) for 1 < n < j, j = 3, . . . , 26,

0 forn = j, j = 3, . . . , 26,
√

b(r − 1) for n > j, j = 3, . . . , 26.

(26)

Fig. 14. Bifurcation diagrams of steady states obtained by tracing equilibria atD = 0 to larger coupling strength. The two panels indicate
the bifurcation curves for the states given in (a) Eq. (25) and (b) Eq. (26). Displayed is the average ofxn over the lattice,

∑
nxn/N .

Most of the branches in Fig. 14 terminate in
saddle-node bifurcations (we do not trace the unsta-
ble branches with which these solutions collide). Two
pairs of the solution in panel (a) develop into theA1

and A3 solutions, and two pairs in (b) becomes the
A0 andA2 families. The solutions pair in this way to
produce the multiplicity of two in eachAj branch that
occurs through the splitting of the pseudo-translation
eigenvalue. Similarly, there is a branch in both pan-
els that pair together to become the two symmetrical
solutionsS.

6. Time-dependent solutions

At intermediate values ofD, spatially inhomoge-
neous, time-dependent states appear. These are related
to the Hopf bifurcations that invariably destabilize the
equilibrium branches as we lowerD.

6.1. Radiative instability for largerN

The fixed-point values that heteroclinic connec-
tions approach comprise a spatially homogeneous,
time-independent state that isunstable. Those fronts
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Fig. 15. A detailed view of the time-dependent state atD = 12. The panels show successively longer time intervals; the final picture
shows the time trace at the first lattice point.

are therefore unlikely to be stable solutions of the
PDE in the continuous system: the fronts contain
extensive regions over which the amplitudes are es-
sentially no different from the unstable fixed-point
values. The situation is again reminiscent of Benney’s
equation (or even the Kuramoto–Sivashinsky equa-
tion), where homoclinic pulses are unstable because
the featureless state to which the pulses asymptote is
itself unstable [44].

This is the origin of the Hopf bifurcation on theA1

branch atD ≈ 15. At this value ofD, the state has a
sufficiently wide plateau that the equilibrium becomes
susceptible to the instability of the spatially homoge-
neous, time-independent state. These instabilities lead
to the time-dependent states at smallD that are visible
in Fig. 4. In analogy with the terminology of nonlinear
field theory, we refer to the instabilities as “radiation”
since they are not localized to the fronts and are oscil-
latory. But whenD andN are small, and the system
is strongly discrete, this terminology is not useful.

A more detailed view of one of the time-dependent
states is given in Fig. 15. This solution corresponds to
an unstableA1 solution, and despite the appearance
of the first panel in Fig. 15, is not periodic in time.
In fact, the whole spatial structure slowly drifts across
the lattice, suggesting that the state is actually a torus.
This low drift is presumably the result of the presence
of the nearly neutral pseudo-translation mode; the pat-
tern drifts around the chain on timescales of order 104,
which is what one anticipates based upon the magni-
tude of that eigenvalue.

The lengthiness of the drift makes systematic stud-
ies of time-dependent solutions such as that in Fig. 15
rather laborious. Despite this, we traced this particu-
lar solution to both smaller and largerD. The state
continues to exist belowD = 9, and ends in what ap-
pears to be a saddle-node bifurcation atD ≈ 16.5.
Because the point of linear stability of theA1 branch
is D ≈ 15, we conjecture that this Hopf bifurcation is
subcritical, that an unstable time-dependent solution
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Fig. 16. Landau coefficients at various Hopf bifurcations. Shown are three sets of coefficients corresponding to (i) the Hopf bifurcation at
D ≈ 0.114 for the even grid mode, (ii) that atD ≈ 0.17 for the odd grid mode, and (iii) the Hopf bifurcation at variousD = DH(N)

along theA1 branch. For largerN , the cases (i) and (iii) lie almost along a common curve despite the fact that the bifurcations occur in
different parts of parameter space and for very different equilibria.

emerges, continues to largerD, and then turns around
in the saddle node to produce our stable branch.

We confirm part of this speculation by construct-
ing the cubic (Landau) coefficient at the Hopf bifur-
cation (which is positive, indicating subcriticality). In
fact, we have constructed this coefficient at various
points on the locus of the Hopf bifurcation along the
A1 branch,D = DH(N), for the same bifurcation that
occurs for the even and odd grid modes (atD ≈ 0.114
andD ≈ 0.17, respectively), and for a random selec-
tion of other states (such as theS solution) (Fig. 16).
The results are always the same; these Hopf bifurca-
tions are invariably subcritical. We conjecture that this
criticality is a general property of the LFPU chain for
r = 28, σ = 10 andb = 8/3. In this sense the lattice
behaviour mirrors that of the Lorenz model for which
the transition to chaos is through a subcritical Hopf
bifurcation.

To make feasible a study of the time-dependent
states we retreat to smaller lattices. In particular,
we consider systems withN = 20. For this lattice
size, the time-dependent states occur nearD ≈ 1,
where the chain is relatively discrete and there are no
pseudo-translation eigenvalues. The states therefore
did not drift on long timescales.

The time-dependent state that emerged from the
initial-value problem atD = 1.15 is shown in Fig. 17.
This state is singly periodic for this coupling strength.
However, it bifurcates to a torus at largerD, then
subsequently back to a limit cycle, as shown by the
Poincaré sections of Fig. 18. Those Hopf bifurcations
are the only supercritical bifurcations we observed in
the LFPU lattice. The branch subsequently ends at
D ≈ 3.1 in what is probably another saddle-node bi-
furcation. The state to which the solution converges
for largerD is anA1 state that is stable forD > 2.6.
Thus we conjecture that this state sheds a limit cycle
subcritically atD ≈ 2.6, and this cycle subsequently
turns around in the saddle node atD ≈ 3.1.

The periodic solutions also ends to smaller coupling
strength atD ≈ 1.01. Here, there appears to be a
subcritical Hopf bifurcation, and for smallerD, an
aperiodic solution develops. A Poincaré section of this
solution is shown in Fig. 19. No simple structure is
visible in it.

At this stage, we give up. There are too many
time-dependent attractors, each with its own sequence
of bifurcations, and categorizing them all is simply
not feasible. However, the computations highlight that
there are time-dependent solutions for smallD and



N.J. Balmforth et al. / Physica D 138 (2000) 1–43 21

Fig. 17. A time-dependent limit cycle forN = 20 andD = 1.15. Panel (a) shows a portion of the time series, and (b) and (c) show
projections onto the(xn, yn) and (xn, zn) planes. The plot of the lattice as points above the(n, t) plane is similar to that shown in Fig.
15a. The solution lacks any reflection symmetry of the form,n → M − n, for any (not necessarily integer)M.

largerN . These are all likely to have emerged from
limit cycles born in subcritical Hopf bifurcations that
subsequently turned around in saddle nodes. More-
over, they can be aperiodic, and probably chaotic.

6.2. Time dependent states for smallN ; clusters

At small D, the terminology used above is not
useful, and one cannot envisage instabilities that are
characteristic of wide plateaux in the steady equilib-
ria. Indeed, our preliminary initial-value computations
uncovered no similar states forN = 10 and smaller;
the states markedt in Fig. 5 are qualitatively different
and have a similar appearance to the incoherent lat-
tices we explore in Section 7 (the subsystems do not
have a time-averaged spatial structure that corresponds
to some underlying steady equilibrium state). These
states may not even be attractors (many of the compli-
cated time-dependent states that we found forN = 10
over the range 0.1142 < D < 0.29 ultimately con-
verged to steady equilibria). However, time-dependent

states do exist for lattices with smallN . To detect
these kinds of states, we make an extensive set of
initial-value computations spanning a range ofD for
N = 2, 3 and 4. The results are shown in Fig. 20.

For the two-system lattice, the dynamics can appar-
ently be relatively simply described: for sufficiently
large D, the systems synchronize. Then there is a
range ofD in which the statex1 = −x2 is a stable,
co-existing attractor (this is the even grid mode for
N = 2); DS < D < D0. WhenDeg < D < DS, the
synchronized state destabilizes, and the only steady
equilibrium is the grid mode. Finally, forD < Deg,
the lattice is incoherent (see Section 7). Over the range
in which the grid mode is stable, but the synchro-
nized state is unstable, there appear to be no attractors
other than the steady state; in the initial-value com-
putations, the system always converged to the steady
state, although the timescale became longer and longer
asD → 0.114 (see Fig. 20).

The absence of any time-dependent attractor for
D just above 0.114 (andN = 2) suggests that the
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Fig. 18. Poincaŕe sections forx1 = x2 projected onto the(x1, x8) plane. The solutions shown correspond toD = 1.05 to 3.1 in steps of
0.05. The sharp turn to the lower left is due to a symmetry-breaking bifurcation (marked SB in the picture). The solution branch ends in
a saddle-node bifurcation (SN) to smallerx8, and in a subcritical Hopf bifurcation (HB) at largerx8.

Fig. 19. Poincaŕe section forx1 = x2 at D = 1.004. Panel (a) shows the sequential values ofx1, (b) the section projected onto the(x1, x8)

plane.

incoherent state that exists over the range 0< D <

Deg abruptly disappears at that coupling strength. In
other words, there is a “phase transition” on the lat-
tice. However, this feature does not persist for larger
N . Here, the system does not always converge to a
steady equilibrium, but sometimes to a time-dependent
state. These solutions consist of states in which the lat-
tice is partitioned into “synchronized clusters” (these

are denoted by stars in Fig. 20). In particular, these
are states with(x2, y2, z2) = (x3, y3, z3) for N =
3, and(x1, y1, z1) = (x2, y2, z2) and (x3, y3, z3) =
(x4, y4, z4) in the caseN = 4. Time series and phase
portraits of these states are displayed in Fig. 21.

The clustered states shown in Fig. 21 are not very
robust to finite-amplitude perturbations: the introduc-
tion of a small difference (of order 10−10 or so) into
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Fig. 20. Convergence time of randomly initialized runs to steady states forN = 2, 3 and 4. Ten randomly initialized runs are shown for
each value ofD. In panel (a), the dotted line shows the logarithmic average of the convergence time; the solid line is an estimate based
on the largest stability eigenvalue of the steady states. Similar solid curves are included in panels (b) and (c). The stars in panels (b) and
(c) indicate cases in which the system converged to a state in which the subsystems were partitioned into synchronized clusters.

the synchronized coordinates causes the system to di-
verge from that state on a relatively rapid timescale.
None the less, the states appear to be linearly stable
attractors (we verified stability numerically by com-
puting Lyapunov exponents). We attribute this feature
to the geometry of the phase space near these attrac-
tors, which must be unusually complicated [36].

Fig. 21. Solutions partitioned into synchronized clusters. Panels (a)–(c) show a clustered state forN = 3 and D = 0.17, in which
(x2, y2, z2) = (x3, y3, z3) (shown by dotted lines). Panels (d)–(f) show anN = 4 state atD = 0.16, with (x1, y1, z1) = (x2, y2, z2) and
(x3, y3, z3) = (x4, y4, z4). Panel (c) shows a first return “map” ofz2 on the sectioṅz2 = 0 (z̈2 < 0), and (f) the return “maps” ofzj on
the sectionṡzj = 0 (z̈j < 0), for j = 1 and 3 (both are included because the clusters are symmetrical; although these objects are clearly
not one-dimensional, we refer to them as maps).

Synchronized clusters are a common feature of
globally coupled maps [30–32] and oscillators [24,49].
In those cases, the distribution of the subsystems on
the lattice has no special meaning, unlike for our
discrete lattice. Consequently, for globally coupled
elements, there is a multitude of clustered solutions
arising from simple permutations of the lattice index.
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With local coupling, however, arbitrary permutations
of the index of the subsystems on the lattice (n) do
not generate related solutions, and there is a much
smaller set of clustered solutions.

The grid solution is a very special clustered state,
as are some of the steady states considered earlier.
Indeed, just as we built coupled equilibrium states
by continuing uncoupled solutions to largerD, we
could also, in principle, perform a similar compu-
tation for general clustered solutions. This way we
could explicitly construct periodic and chaotic clus-
ters with finite D. The examples shown in Fig. 21
are probably chaotic (their numerically computed
leading Lyapunov exponents are positive). In fact, as
the return maps indicate, their structure is similar to
weakly perturbed Lorenz systems (the caseN = 3
looks very similar to a perturbed Lorenz model con-
sidered in [50]). TheN = 3 solutions persist over
the range 0.138 < D < 0.267. Other (stable) clus-
tered states that we constructed for largerD were
periodic and quasi-periodic. However, we found only
a small number of these types of solutions in the
initial-value computations shown in Fig. 20, and
none in the preliminary initial-value computations
reported in Section 3. Thus, time-dependent clus-
tered solutions must have relatively small basins of
attraction.

7. Incoherent lattices

When D < Deg or D < Dog, for even or odd
lattices, respectively, there are no more stable steady
states embedded in the phase space. At this stage, we
conjecture that the dynamics of each subsystem in the
lattice is chaotic and the ultimate state shows no spatial
coherence. Examples are shown in Fig. 22 forN = 2,
3 and 10; two lattices forN = 50 are displayed in a
different way in Fig. 23.

In Fig. 22, the lattice is initialized with random ini-
tial values. The appearance of the time series is much
the same for allN , as illustrated by the three panels
of the picture. Hence, the dynamics of any one sub-
system is largely independent of the size of the lat-
tice. Our computations of measures of complexity, de-

scribed shortly, go some way to quantifying this fea-
ture, and also confirm that the states are chaotic. In
other words, for these values ofD, we truly enter the
regime of weak coupling. We refer to the states shown
in Fig. 22 as “incoherent”.

Fig. 23 shows evolution from the initial condition in
(5). In this second instance, there is a rapid transition
to a state that is almost a grid mode. But the zig-zag
has “defects” nearn = 1, 10 and 30, which appear
because of the spatial structure of the initial condi-
tions. These defects consist of fully chaotic subsys-
tems. Slowly, these defects expand into the meta-stable
zig-zag pattern as subsystems gradually evaporate into
the chaotic phase. Eventually, byt ≈ 750 in Fig. 23a
and t ≈ 2000 in Fig. 23b, the zig-zag pattern com-
pletely disappears.

After initial transients of this kind, what we essen-
tially see in Figs. 22 and 23 is the vacillation of the
subsystems as they evolve erratically for periods, then
become briefly caught in a more coherent phase near
what appear to be fixed points,xn = ±xp ≈ ±8.40
(and with corresponding values,yn = yp and zn =
zp). In fact, a more detailed examination of the run-
ning average ofxn shows that these are not the fixed
points of the Lorenz equations (Xf = ±√

b(r − 1) ≈
±8.49); we suggest how these coherent phases come
about in Section 7.1.

It is interesting that once the initial zig-zag pat-
tern has evaporated, such states rarely reappear span-
ning more than two neighbouring lattice sites. The
main features in Figs. 22 and 23 are briefly coher-
ent episodes, wherein several neighbouring subsys-
tems converge to eitherxn = xp (the dark areas) or
xn = −xp (the white areas). That is, briefly coherent,
synchronized “blocks” appear sporadically.

Figs. 22 and 23 also indicate that the subsys-
tems wander over extensive portions of phase space.
This suggests that as soon as the steady grid so-
lution becomes stable forD = Deg or D = Dog,
the lattice may ultimately fall into that state after
exploring a very long transient. Alternatively, the
system may eventually converge to a cluster state.
However, there are no signs of convergence in Fig.
23b (there is no reappearance of “local” grid modes),
suggesting that this lattice may remain incoherent.
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Fig. 22. An incoherent lattice atD = 0.1 and N = 10. The second two panels show similar results forN = 3 and N = 2. Initial
conditions are random. The final picture shows running averages (over 20 time units) of the solutions shown in the first panel; horizontal
lines indicate the estimate±xp in (28).
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Fig. 23. Incoherent lattices forN = 50. Panel (a) showsD = 0.1 and (b) showsD = 0.125. Shaded is the running average ofxn (over 5
time units) with shading corresponding to level as shown in the key. Initial conditions are given by Eq. (5).

But to resolve the question of whether this state is
a very long transient or an attractor, it may take
prohibitively long computations, and we leave the
question open.

7.1. Coherent phases

During a coherent phase, an individual Lorenz
system persists in a stationary state for times much



N.J. Balmforth et al. / Physica D 138 (2000) 1–43 27

longer than the intrinsic timescale of variability in the
Lorenz equations (the coherent states persist for times
of order 102, whereas the time for the Lorenz model
to complete a circuit of one of the “butterfly wings”
is less than 1). As a working hypothesis, we suppose
that when one of the subsystems falls into such a state,
it is predominantly affected only by the average prop-
erties of the two neighbouring, incoherent systems.
Hence, because〈x〉 = 〈y〉 = 0 and〈z〉 = zs ≈ 23.61,
where 〈· · · 〉 indicates a temporal average (as given
by the Lorenz equations), the coherent subsystem
satisfies

ẋ = σ(y − x) − 2Dx, ẏ = rx − y − xz − 2Dy,

ż = xy − bz − 2Dz + 2Dzs. (27)

That is, the Lorenz equations, but driven by 2Dzs,
and additionally damped by the “diagonal” coupling
terms, (−2Dx, −2Dy, −2Dz)T. This system has
fixed points with

x = ±xp

= ±
√

[σr−(1 + 2D)(σ + 2D)](b + 2D)−2σDzs√
σ + 2D

≈ ±8.4037 (28)

(together with corresponding values fory and z), a
value that agrees with the running averages ofxn (see
Fig. 22). Note that if neighbouring states happen to fall
into coherent phases for comparable intervals, similar
arguments can be used to furnish the approximate fixed
point of the block; the resulting values ofxn are little
different.

The stability of the fixed point of the coherent sys-
tem can also be computed from (27). ForD = 0.1,
the fixed point has a leading stability eigenvalue of
−0.0545± 10.09i. That is, it isstable, which lends
some support to the idea that this state can persist for
long times. The eigenvalue increases as we lowerD,
and passes through zero forD ≈ 0.0633. This sug-
gests that there is a transition in behaviour near this
coupling strength.

We explore this possibility further by computing
the lengths of the coherent phases as a function ofD.
More specifically, we measure the lengths of the in-
tervals between the zero-crossings ofxn (see Fig. 24).

Roughly speaking, this measurement detects how long
each subsystem spends circulating around one of the
“butterfly wings” of the Lorenz model; in the coherent
phases, the circulation time is substantially prolonged.
However, the measurement also contains a character-
istic signature of the uncoupled subsystems. This sig-
nature is namely the curious, “quantized” structure to
the distribution of intervals portrayed in Fig. 24. It
arises because the circulations around each focus of
the butterfly wings are almost integral in number, and
persists for coupled systems withD < Deg.

For uncoupled systems, there is a maximum dura-
tion to the circulation around a single wing once the
trajectory is on the attractor. For the Lorenz model,
the maximum durationτmax ≈ 16.15. Any interval be-
tween zero-crossings that exceeds this maximum time
must arise due to coupling, and we identify that inter-
val as a coherent phase. A slight difficulty with this
interpretation is that asD varies, each individual sub-
system tends to circulate longer purely as a result of
the “diagonal” parts of the coupling terms. We remove
this effect by taking a Lorenz model and explicitly
adding the diagonal coupling terms, then computing
a modified maximum circulation time,τmax(D). As
the fixed points become stable in this modified Lorenz
model whenD is larger than 0.1, we cannot continue
to use this estimate for larger coupling strength. In-
stead, forD > 0.1, we useτmax(0.1) ≈ 32.57.

The durations of the coherent phases for varying
D are illustrated in Fig. 25. The typical duration in-
creases withD until D ≈ 0.085 where the lengths of
the coherent phases appear to be largest (though this
is not reflected in the mean values). There is no sud-
den transition nearD ≈ 0.065 as predicted by the
mean model described above, although this coupling
strength lies approximately midway between the on-
set of the coherent phases and where the mean value
levels off. As also illustrated in this figure, the coher-
ent phases always appear to be of finite duration. Thus
they appear to be only transient states; we never ob-
served an incoherent lattice with a persistent coherent
subsystem.

Evidently, coherent phases can be exceptionally
prolonged. One consequence of this feature of the
lattice dynamics is that it makes the computation of
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Fig. 24. The intervals between the zero crossings ofxn for a lattice withN = 10. Shown in panels (a) and (b) are the intervals plotted
in the succession that they were observed. In panels (c) and (d), these intervals are binned and the number of occurrences of an interval
inside a particular bin is plotted as a histogram. The casesD = 0 andD = 0.1 are shown. The duration of the computations was 2× 104

(all lattice sites are included). Panel (d) suggests that there may be a bi-modal distribution in the zero-crossing times.

statistical measures (as we attempt shortly) an in-
tensive exercise. The presence of coherent phases
also leads to particularly long-lived transients. This
is basically the origin of the difficulty in identifying

Fig. 25. Durations of coherent phases as a function ofD for N = 10. The points indicate the durations of phases during a long initial-value
computation (of length 2× 104). The dashed line shows the mean duration and the dot-dashed line the logarithmic average. The solid line
is the maximum circulation time for an isolated subsystem,τmax. The vertical dotted line shows the value ofD for which the fixed point
of the mean model subsystem (27) loses stability.

attractors forD ∼ 0.1. For this reason, we do not
display result forD > 0.1142.

Nevertheless, forD > 0.1142, the coherent phases
continue to occur. In fact, for such values ofD, the
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phases are clearly associated with intermittent events
wherein the system spends an extended period of time
near an invariant object in the phase space. For ex-
ample, withN = 3, the coherent phases are associ-
ated with intermittent events of full synchronization, or
with periods in which the system hovers close a cluster
solution of the kind described in Section 6.2. During
both events, at least one of the subsystems becomes
entrained into a coherent phase (some evidence of this
behaviour can already be seen in the second panel of
Fig. 22). In other words, at largerD, the alternation
between coherent phases and chaotic evolution can be
identified as a form of on–off intermittency [51].

As mentioned at the beginning of this section,
our explanation of the emergence of coherent phases
hinges on the idea that the dominant effect of the
coupling for smallD is through the driving of one
subsystem by the meanz-effect of its two neighbours,
and the extra dissipation provided by the diagonal
coupling terms. Shorter timescale fluctuations and the
reaction of the coherent subsystem on its neighbours
are assumed not to be important To gauge whether

Fig. 26. Time traces ofx2(t) for a passive subsystem driven by two uncoupled Lorenz systems for four different values ofD (the curves
are diplaced for the purpose of presentation). The sudden switch from the neighbourhood ofxp to that of−xp for D = 0.09 is shown in
more detail in panel (b).

this is the case we consider a “passive subsystem”;
that is, a Lorenz system with the extra dissipative
terms and driven by two other Lorenz systems:

ẋ2 = σ(y2 − x2) + D(x3 + x1 − 2x2),

ẏ2 = rx2 − y2 − x2z2 + D(y3 + y1 − 2y2),

ż2 = x2y2 − bz2 + D(z3 + z1 − 2z2), (29)

where(x1, y1, z1) and (x3, y3, z3) are the signals of
the two uncoupled Lorenz systems.

Time traces of the passive subsystem for various
values ofD are shown in Fig. 26. ForD > 0.07,
the passive subsystem passes through coherent phases
much like those of the full LFPU lattice. This confirms
that the back-reaction of the coherent subsystem on
its neighbours is not important to the creation of these
phases.

However, for larger values ofD, the coherent phases
become longer, and forD ≈ 0.1, the passive subsys-
tem becomes completely locked into this phase for the
length of the computation. This is unlike the LFPU lat-
tice and indicates that the back-reaction is ultimately
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Fig. 27. Lattice-averaged power spectra ofzn for N = 10 at D = 0, 0.025, 0.05, 0.075 and 0.10. Spectra are plotted against frequency.
The spectra are displaced for purposes of presentation.

at least partly responsible for the termination of the
coherent phase. There is also some evidence that these
events are terminated when one of the driving sub-
systems spends a prolonged period circulating around
one of the butterfly wings (see the detail in panel (b)
of Fig. 26).

7.2. Some measures of incoherence

We next compute some more quantitative mea-
sures of lattice incoherence. More specifically, we
compute power spectra, Lyapunov exponents and the
Kaplan–Yorke dimension (e.g. [52]). These measures
confirm that the lattices forD < Deg or D < Dog are
comprised of chaotic, weakly coupled elements.

We display lattice-averaged power spectra forN =
10 and five values ofD in Fig. 27. ForD = 0, this
amounts to averaging 10 realizations of the Lorenz
model. We display the spectra of thezn-coordinates
which show peaks at small period (less than unity)

corresponding to the characteristic circulation time
around the butterfly wings and its harmonics.

The spectra are all similar at small period (high
frequency), reflecting how the shorter timescale vari-
ability of the lattice is approximately described by a
weakly perturbed Lorenz system. At longer period,
there is a significant increase in power as we raiseD.
This corresponds to the onset of the coherent phases,
as shown in Fig. 25. The transition between spectra
that are dominated by the Lorenz-like, small-period
peak and the spectra that are reddened by the coherent
phases takes place betweenD = 0.05 andD = 0.075
in line with our previous arguments. In biological con-
texts, much emphasis is placed on the observation of
red spectra in the time series of real populations; this
has in the past been explained in terms of enviromen-
tal fluctuations of the parameters of a chaotic system
[53]. Here we see that spatial coupling of chaotic el-
ements can also redden a spectrum that is otherwise
dominated by a short-period peak (see also [54]).
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Fig. 28. Leading Lyapunov exponents forN = 2, 3, 4, 6 and 8. In panel (b) we display the average of theN leading exponents. This
average is roughly independent ofN and coincides approximately with the leading Lyapunov exponent of a single subsystem driven
passively by two Lorenz systems (dashed line), and of a subsystem on theN = 8 lattice, computed assuming the nearest neighbours to
provide a fixed driving signal (solid line).

The leading Lyapunov exponents of lattices with
N = 2, 3, 4, 6 and 8 are shown in Fig. 28. AtD = 0,
we haveN uncoupled Lorenz systems and so there are
N positive exponents withλ ≈ 0.9, andN exponents
that are identically zero (corresponding to time trans-
lation symmetry). For finite coupling strengths, only
one of this second set of exponents remains zero, since
in the coupled system there is only a single trajectory;
the remaining exponents become finite. Interestingly,
several become positive indicating that there are more
positive Lyapunov exponents for the coupled lattice.
Thus, based on this discriminant alone, the coupled
lattice would appear to be more chaotic than the un-
coupled system. More refined measures (as we show
below), however, do not share this property.

A second interesting feature of the Lyapunov ex-
ponents is that the average of theN leading expo-
nents is approximately independent ofN (see Fig.
28b). We attribute this behaviour to the fact that the
subsystems are weakly coupled and that they evolve

relatively independently. As a result, each is approx-
imately characterized by a single Lyapunov exponent
that is a function only of coupling strength. In fact,
this “average” exponent approximately corresponds to
the leading Lyapunov exponent of the passive subsys-
tem considered above, and to the leading exponent of
a subsystem on theN = 8 lattice assuming that the
coupling to the nearest neighbours is a fixed driving
signal (see Fig. 28).

A more quantitative measure of the independence
of the lattice size is given by the Kaplan–Yorke di-
mension. As shown in Fig. 29, when we scale this di-
mension by the lattice size, it is almost independent
of N . We also verified this approximate scaling with
lattice size by computing correlation dimensions. In
other words, each subsystem must be characterized by
a certain dimension; as we add more subsystems to the
lattice, we simply add correspondingly more dimen-
sions. The characteristic Kaplan–Yorke dimension of
a subsystem is apparently little different to that of the
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Fig. 29. Scaled Kaplan–Yorke dimension forN = 2, 3, 4, 6 and 8. The dimension is scaled byN in order to collapse the data almost to
a common curve.

Lorenz system (the vertical scale in Fig. 29 is rela-
tively small). The main reason for this property is that
the Lyapunov exponents that are not displayed in Fig.
28 are substantially larger in magnitude and negative.
Thus the Kaplan–Yorke dimension basically counts
only the number of relatively small Lyapunov expo-
nents; that is, the number of weakly unstable or stable
directions on the attractor (which is 2N ). The scaled
correlation dimension showed a little more variation
with D, but it also is less accurately determined.

The scaling of the characteristic properties with the
number of subsystems is indicative that the weakly
coupled lattice is an example of an “extensive” system
[55].

7.3. Pinning lattice sites; the coherent horizon

The measures computed above confirm that the lat-
tice as a whole is effectively incoherent for smallD.
Nevertheless, a subsystem influences the surrounding
elements; this is the origin of the coherent blocks that
are evident in Figs. 22 and 23. A natural question that
this observation raises is, how far along the lattice can
subsystems affect one another? This distance is a “dy-
namical horizon” beyond which the lattice elements

cannot “know” about one another, and must exist if the
lattice dynamics is independent of the lattice sizeN .
A natural way to characterize the dynamical horizon
is therefore in terms of cross correlations. We consider
that statistical measure in Section 7.4. First, however,
we describe computations that highlight this special
distance.

To bring out the dynamical horizon, we evolve a
lattice, and then abruptly “pin” one of the subsystems
at the point(−xp, −yp, zp) corresponding to the co-
herent phase. This pinning creates a signal that prop-
agates into the lattice, affecting principally the neigh-
bouring sites. An example is shown in Fig. 30. The
limited extent of the signal reflects the horizon.

For the particular coupling strength used in this
computation, neighbouring subsystems synchronize to
the pinned system, and the next nearest neighbours be-
come entrained nearby. The remainder of the lattice,
however, evolves much as before. Consequently, the
pinning nucleates a “crystal” of coherent subsystems
in the lattice much like the briefly coherent synchro-
nized blocks that appear on the free lattice. Evidently,
if a subsystem falls into the coherent phase, it exerts a
stabilizing mean effect on its neighbours, germinating
the synchronized crystal or block. Because the crystal
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Fig. 30. A lattice of sizeN = 21 with the pinned systemn = 11 at D = 0.1. The first picture shows the time series ofxn; the second
displays the running average (of length 5) ofxn, with shading corresponding to level as in Fig. 23.

of coherence has a finite size, we may define a dy-
namical horizon in terms of the “range of influence”
of the pinned subsystem. We measure this range in
terms of the mean value ofxn. For the free lattice,
this mean value,〈xn〉, vanishes (by symmetry). But
〈xn〉 = −xp for the pinned system, and the mean value
of the neighbours is depressed by the synchronizing
effect of the coupling. We show〈xn〉 againstn andD

for a lattice withN = 21 in Fig. 31.
For small coupling strengths, the pinning has little

effect on the other lattice sites and the mean values
remain close to zero. For largerD, the mean values
of the surrounding lattice sites become negative. Once
〈xn〉 < 2.55, we define the site to be in the range of
influence of the pinned site. This leads to the picture
shown in Fig. 31b. The threshold value is arbitrary,
and was chosen primarily to lie above any fluctations
in the average in the “uninfluenced” parts of the lat-
tice. These fluctations are rather large in a finite-length
computation because of the presence of the coherent

phases; for longer runs the fluctuations are smaller,
and in principle, we could define a wider horizon. We
return to this point in Section 7.4.

The central feature of the pinning computation is
that it describes how a subsystem that is forced to re-
main coherent affects the rest of the lattice. Thus, what
we identify as the range of influence is essentially that
for a coherent phase. In other words, the results shown
in Fig. 31 reflect a “coherent horizon”. This horizon
is likely to be farther than the true dynamical hori-
zon because the coherent subsystem affects its neigh-
bours through the mean value of all ofxn, yn andzn.
But for an incoherent system, the average value ofxn

and yn is zero, and so the long-time effect is much
reduced.

7.4. Cross correlations; incoherent horizons

A more quantitative measure of the degree to which
the subsystems influence one another comes from the
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Fig. 31. (a) Average values ofxn for a lattice with a pinnedn = 11 site over computational runs of length 2× 104. Values ofD between
0.05 and 0.11 in steps of 0.005 are displayed. The lines show the level〈xn〉 = −2.55. In (b), the averages are shown as shaded contours
on the(D, n) planes. The dashed contours show the level〈xn〉 = −2.55, and the dash-dotted contours show the same, but reflected about
the n = 11 lattice site. The solid line and stars display our estimate of the dynamical horizon based on these pairs of contour lines.

cross correlation:

Ci,j = 〈xixj 〉√
〈x2

i 〉〈x2
j 〉

, (30)

where the angled brackets indicate the temporal aver-
age. (Practically we replace the denominator by〈x2

i 〉
since the lattice sites have identical mean values.) For
uncorrelated subsystems,Ci,j = 0, andCi,i = 1.

We show the cross correlation as a function of
distance between two sites on the lattice (that is,
Cn,n+m againstm, averaged overn) in Fig. 32. The
correlation between two subsystems falls off quickly
with their separation along the lattice, and the corre-
lation is rapidly lost in the sea of error introduced by
the finite-length computation. Unsurprisingly, lattices
with smaller coupling show less correlation.

What is perhaps more surprising is that the trend
of the correlation is well approximated byCn,n+m ≈
Cm

n,n+1. That is, the correlation roughly follows a
simple power law. This kind of behaviour can be

rationalized if we interpret the interaction in a more
probabilistic fashion. That is, if we interpret the corre-
lation Cn,n+1 as the probability that a site is affected
by the nearest neighbour. Then a natural estimate of
the probability that the nearest neighbour affects our
lattice point isC2

n,n+1, and so forth.
This observation, however, obscures the meaning

of the dynamical horizon: there is no cut-off in the
correlation at finite distance along the lattice for an
error-free computation with infinite length. Indeed, ac-
cording to Takens’ theorem [56], one should be able
to reconstruct the attractor given access to an arbitrar-
ily long time series.3 However, physical time series
have finite length, and this is reflected in precision in
phase space: due to close returns, the longer the com-
putation is, the smaller the phase-space scales that are

3 There is no pressing reason why the coordinate of a weakly
coupled subsystem is not generic; the information about the rest
of the lattice is simply contained in small amplitude fluctuations
and the lattice dimension is very large.
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Fig. 32. Cross correlations,Cn,n+m, plotted against distance along the lattice,m, and averaged overn. This figure displays results for a
lattice of sizeN = 50, but the correlations are essentially the same for smaller lattices, as illustrated by the result forN = 20 andD = 0.1
which is also included (shown by the dash-dotted lines and circles). The stars showCm

n,n+1; that is, the nearest neighbour correlation raised
to the powerm.

explored by the system. Thus, there is always some
small-scale cut-off in phase space because of the fi-
nite length of the computation. Practically, this sort of
limitation is the origin of the horizon, and there is no
conflict with the embedding theorem. In other words,
the dynamical horizon is a function of the duration of
the computation.

With this image in mind, we define the horizon in
terms of the length of the computation. We measure
the “precision” by evolving two independent (uncor-
related) lattices and computingCn,n+m with xn(t) and
xn+m(t) taken from the different lattices, and then av-
eraging over as many values ofn andm as were used in
the computation of Fig. 32. This provides a mean cor-
relation, c̄(T ), and variance,̄v(T ), that are functions
of the length of the computation,T . Both tend to zero
asT → ∞. From the mean and variance we construct
an estimate of the precision,ς(T ) = c̄(T ) + 3v̄(T )

(giving a 95% level of confidence).
Then, in order to observe the correlation at a dis-

tancem along the lattice, the actual correlation must

exceed the precision, and so

Cn,n+m ≈ Cm
n,n+1 > ς(T )

or m < mc(T ) = logς(T )

logCn,n+1
. (31)

We illustrate this criterion in Fig. 33.
From the figure we read off the horizon for various

values ofT . For example, withT = 2×104 we find a
horizon ofm = 3 for D = 0.1. The horizons evident
from Fig. 33 approximately coincide with our cruder
estimates in Fig. 31.

An alternative definition of cross correlation to (30)
is provided by using thezn coordinates rather thanxn:

C̃i,j = 〈(zi − z̄)(zj − z̄)〉
〈(zi − z̄)2〉 , (32)

wherez̄ is the average value ofzn. We mention this al-
ternative estimate of the correlation because it shows
an interesting difference with that defined by (30).
More specifically, the alternative definition predicts
much smaller correlations for larger values ofD (by
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Fig. 33. Dynamical horizon estimates. Displayed is the distance,mc(T ), defined in (31) againstT , the length of the computational run,
for D = 2 × 10−3, 0.04, 0.08, 0.1 and 0.114. Distances below these curves are within the dynamical horizon.

a factor of about 3 atD = 0.1); for smaller coupling
strength, the two definitions predict comparable cor-
relations.

The reason behind the difference lies in the fact that
the alternative definition is based on the variation of
zn about its mean value. But that mean value lies near
zp, the value ofzn characterizing the coherent phases.
Thus, when a system falls into a coherent phase, its
contribution to the cross correlation in (32) is anoma-
lously small compared to how it contributes to (30).
But it is these phases that are most effective in the lat-
tice interactions because of their large (running) mean
values, and so they can provide significant contribu-
tions to the correlation. In other words, the alternative
definition is biased against the coherent phases, and
this reduces the observed correlations. Moreover, be-
cause the phases are predominant only at larger cou-
pling strengths, whenD is small the differences be-
tween (30) and (32) should be less pronounced, as is
observed.

In other words, the results derived from using (32)
lie closer to the values expected if we removed the
coherent phases. Thus, we measure something closer
to an “incoherent horizon”. Similar arguments to those

used to construct Fig. 33 then lead to estimates of the
horizon that are never further than the neighbouring
lattice site.

8. Discussion

The LFPU experiment is very different from the
Fermi–Pasta–Ulam experiment from which we coined
the name. This is perhaps not so surprising in view
of the fundamental differences in the dynamics of
the uncoupled elements. An essential difference be-
tween the two is that the Fermi–Pasta–Ulam chain
is a conservative system, whereas the LFPU lattice
is very dissipative. All in all, rather than coherent,
travelling excitations, the LFPU system shows a vari-
ety of low-dimensional dynamics including synchro-
nized chaos, spatially structured, steady equilibria,
and time-dependent states with time-averaged spatial
structure. In addition, when coupling is weak, the
lattice shows high-dimensional incoherence.

By way of a summary, we now return to Fig. 5,
which encapsulates many of our results. This regime
diagram provides a concise summary of the param-
eter regimes in which we encounter various types
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of dynamical behaviour. First, the results of the
initial-value problems give some idea regarding what
attractors might result from initial states of low am-
plitude. Due to the presence of the many multiple
equilibria, however, the picture portrayed by these
results is very incomplete. To gain a more complete
image, we turn to the curves also drawn in Fig. 5.

The lineD = DS(N) gives the lower limit of syn-
chronization: below this line, synchronized states are
unstable (this boundary may not be very distinct [22]).
Stable steady equilibria may be found over the ranges
Deg < D < D0(N) or Dog < D < D0(N), depend-
ing on whether the number of lattice sites is even or
odd. The fact that the lower limits of stable equilib-
ria in Fig. 5 for even and odd lattices (Deg andDog)
are so different suggests that lattices with evenN are
quantitively different to those with oddN . This sug-
gestion is probably misleading for two reasons. First,
although the steady states and their stability are dif-
ferent for even and oddN , the time-dependent lattice
dynamics is not obviously so: over the rangeDeg <

D < Dog, provided the system does not converge to
one of these equilibria, the lattice dynamics appears to
be similar for even and oddN . Second, from a phys-
ical perspective it is often more relevant to consider
lattices with a fixed spatial size but varying degree of
discretization. Such lattices are obtained from our sys-
tem (1)–(3) by rescaling the discrete variable byN .
Then, the diffusivity becomes̃D = D/N2, and so the
points of stability,Deg andDog, scale asN−2. Hence,
these rescaled diffusivities decrease withN , and so
the suggestion of a fundamental difference is, in this
sense, misleading.

The extent of time-dependent attractors is substan-
tially more difficult to estimate, since it is probably
given by the saddle-node bifurcation with the largest
coupling strength. Very roughly we estimate the up-
per limit by D = DH(N), the location of the Hopf
bifurcation that destabilizes theA1 branch of steady
equilibrium solutions. For largerN , this is the first
Hopf bifurcation to occur and so generates the first un-
stable oscillatory branch. That branch is probably the
one that turns around at the largest coupling strength.
Thus stable time-dependent states may well begin to
exist at values ofD just above this curve.

The other noteworthy boundary in Fig. 5 isD = Dt,
the line along which the pseudo-translation eigenvalue
of the symmetrical equilibria exceeds 10−3, signifying
the emergence of the effects of discreteness. At first
it appears peculiar that the threshold is independent
of N and that we cannot refine the lattice to better
achieve a continuum. But, again, this is because our
system size is not fixed as we varyN : discreteness
becomes important wheñD < Dt/N

2, for systems
of fixed size. Thus adding elements makes the lattice
more like a continuum, as expected.

This concludes our study of the LFPU experiment.
So far, our study has been rather abstract, and we
have avoided any proper discussion of real issues. We
close in this vein and mention only some potential
applications of our results.

8.1. Discreteness

One motivation we cited in Section 1 was to climate
dynamics. But one of the aspects of this application is
not to the climate problem directly, but to the sophis-
ticated numerical schemes that are used for simula-
tions: GCMs. One of the main features of these codes
is that they attempt to incorporate many of the phys-
ical ingredients to the climate problem in all three of
its dimensions. One consequence of this massive in-
put to the problem is that the codes cannot be partic-
ularly well resolved. Instead, they may be based on a
relatively coarse computational grid. As such, effects
of discreteness may enter the problem (e.g. [57]).

For our LFPU lattice there are some notable ef-
fects of discreteness. One of the most obvious is the
presence of the “grid mode”, the steady equilibrium
solutions that remains stable at the smallest coupling
strengths. This mode is different in even and odd lat-
tices, leading to some peculiar differences between the
two (but see the remarks above).

But perhaps a more important effect of discreteness
is the way it allows weakly coupled lattices to be-
come incoherent. For the relatively small lattices we
consider, only low dimensional temporal dynamics is
observed at the coupling strengths where the lattice is
not very discrete. High dimensional, temporal chaos
only appears for weak coupling. This warns us that



38 N.J. Balmforth et al. / Physica D 138 (2000) 1–43

the phenomenon that one might be tempted to iden-
tify as “turbulence” is really a property of the discrete
lattice and not of the related continuum system. Like-
wise, full synchronization is always unstable in suffi-
ciently large continuous systems, but it is one of the
key features of the discrete LFPU chain at large cou-
pling strength.

Another remark that one might make in this regard
is that when we are in the incoherent regime, the sys-
tem is independent of the lattice size,N . This is pre-
cisely the feature that is desired of numerical schemes
for PDEs. However, the desired property does not arise
because we solve the continuum properly, but, in fact,
reflects a fundamentally different aspect of the numer-
ical problem.

A related issue arises in theories of friction and
stick-slip phenomena, and in earthquake models. In
these models, it appears that much of the compli-
cated dynamics arises purely as a result of effects
of discreteness [10,58]. But whether this implies that
there is a serious physical flaw in the models is not
so clear, because one might argue that microscopic
heterogeneity is important in introducing effects like
discreteness.

8.2. Issues of predictability

Perhaps the most relevant application of the LFPU
dynamics is to the issue of reconstruction and pre-
dictability in very complicated physical systems (such
as the climate). The computations described in Sec-
tion 7 all point to the fact that in the weakly coupled
limit, the interaction between the LFPU subsystems
is close-range; that is, beyond a dynamical horizon
that depends on the computation time, the subsystems
have no knowledge of one another and the dynamics
is independent of the lattice size. This feature has dis-
turbing implications regarding the predictability of the
lattice: given information about only a single element,
it would not seem possible to predict the dynamics of
the entire LFPU system unless one had an arbitrarily
long, error-free time series. This barrier to predictabil-
ity was previously described by Lorenz [5] in the con-
text of a simple climate model, and expanded upon
further by von Hardenberg and Provenzale [8].

We have explored the issue somewhat further us-
ing the LFPU lattice. More specifically, we have taken
time series from the subsystems and then treated it
as experimental or observational data. From this data,
we used standard techniques to reconstruct the corre-
lation dimension of the system. Since we know what
the real phase space of the system is and can deter-
mine the correlation dimension directly, the time series
provided synthetic data to test the reconstruction. The
signal from a single subsystem (such as the time se-
ries ofzn(t) for a particularn) produced a correlation
dimension as a function of embedding dimension that
appeared to saturate at a certain, low value. However, a
careful inspection indicated that it also continued to in-
crease, albeit much more slowly, in larger embedding
spaces. In other words, the signal looked as though
it might converge at a misleadingly small estimate of
the dimension, but really did not converge. The com-
putation therefore mirrored the results of Lorenz and
von Hardenberg and Provenzale.

A time series constructed from many of the subsys-
tems (such as

∑
nzn(t)), however, fared better; it sim-

ply failed to converge. In other words, whilst this test
did not give an incorrect positive result, it facilitated
no conclusion at all. The reason behind this failure is
essentially that in order to determine the dimension of
a system as large as one of our weakly coupled, LFPU
lattices, we need a ridiculously long time series; a time
series that is of an impractically long length. Hence
methods that attempt to reconstruct the phase space
and then estimate statistical measures such as dimen-
sion are simply not useful in this context. Based on
results such as these, we see no reason to believe in
any of the predictions of low-dimensional attractors
in extensive natural systems, but this remark has been
made before.

An alternative approach to predictability is not to try
to reconstruct the whole system, but to assess how the
growth of an error in one of the subsystems becomes
spread across the lattice. That is, if we suddenly dis-
turb one of the subsystems, when is the disturbance
recorded at another lattice site (if at all). Clearly this
has some relation to the concept of the dynamical hori-
zon that we have discussed above, but it also bears
on questions of an initial-value flavour. This calcula-
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Fig. 34. The propagation of an error between two lattices that are initially identical but for a difference in the value ofx11 of 10−8. The
lattice size isN = 21 andD = 0.05. Shown is a contour plot of the error, [(xn − x′

n)
2 + (yn − y′

n)
2 + (zn − z′

n)
2]1/2, averaged over

63 different realizations of the computations, and also on exploiting the symmetry,n → 11− n. The dotted lines show contours of the
solution to Eq. (33).

tion enables us to estimate, for example, how our lack
of knowledge of the behaviour of some elements ul-
timately limits our ability to forecast the future of the
system (see also [7]).

To compute this propagation of error we take two
identical, evolved lattices, then suddenly introduce a
perturbation into thexn coordinate of one of the sub-
systems of one lattice. This difference precipitates a
divergence in the subsequent evolution of the two lat-
tices, and we measure the differences, or error, in each
of the subsystems. The result of such a computation
is shown in Fig. 34.

For this computation, we introduce an error in the
eleventh subsystem of a lattice withN = 21. Due to
different round-off errors in all the subsystems of the
two lattices, we also immediately introduce a global
error of order 10−14, dictated by the finite precision
of the computation. Both the local error atn = 11
and the global error subsequently grow due to the
hallmark of chaos: exponential separation of neigh-
bouring trajectories. Because the initial local error is
so much larger and since the lattice has finite size,

the global error is eventually swamped by that prop-
agating from the distinguished lattice site. This leads
to the characteristic “V-shape” in Fig. 34. Also, ul-
timately, the error in phase space is limited by the
size of the attractor, and we reach a finite maximal
error.

The propagation and growth of the error is well
approximated by the solution to the linear system (see
Fig. 34)

dxn

dt
= D(xn+1 + xn−1 − 2xn) + λxn (33)

with the initial condition

xn(t = 0) = 10−12 + 10−8δn,11, (34)

whereλ is a linear growth rate. Practically, we use
λ = 1.05, which is close to the maximum Lyapunov
exponent of this particular lattice. In other words,
the error propagation can be approximately described
by the overall growth due to chaotic separation, as
measured byλ, and the discrete diffusion across the
lattice.



40 N.J. Balmforth et al. / Physica D 138 (2000) 1–43

The continuum limit of Eq. (33) has a similarity
solution of the form

x(n, t) = A√
t
exp

[
λt − 1

4Dt
(n − 11)2

]
(35)

in the instance that the initial error is purely local. If
we ignore the more slowly varying, time-dependent
factor outside the exponential, then we observe that
a characteristic speed of propagation for the error is
given by 2

√
λD. This speed reproduces the linear por-

tions of the curves in Fig. 34.

8.3. Extensions

Some extensions of the present work include gener-
alizing the LFPU lattice so that the subsystems are no
longer identical, introducing the effects of determinis-
tic parameter fluctuations or noise, and changing the
form of the coupling.

To address the first issue we conducted a cursory
study like the preliminary initial-value computations
reported in Section 3. To generate inhomogeneous lat-
tices we introduced the parameter variation,rn = 28+
εn, whereεn was randomly chosen between [−1, 1].
For N = 20, the results were not qualitatively dif-
ferent for D < DS: equilibrium states, their radia-
tive instabilities and incoherent lattices all appeared at
roughly the same coupling strengths. This observation
is not especially surprising in view of the fact that the
qualitative properties of the equilibria and the weakly
coupled subsystems do not hinge on the subsystems
being identical.

What does change, however, is the behaviour for
coupling strengths at which the homogeneous lattice
synchronizes. Whenεn 6= 0, there is no longer an
invariant, synchronization manifold, and the lattice
cannot converge to global synchrony. Instead, in the
initial-value computations, the system tends to a state
that is almost synchronous in the sense that each in-
dividual orbit is similar, but there are O(1) differ-
ences in the coordinates,(xn, yn, zn) (see Fig. 35).
This state is similar to the phase-synchronized Rossler
systems considered by Osipov et al. [21]. However,
the state does not appear to persist indefinitely. Occa-
sional desynchronizing events drive the system away

from this state (as in the event neart = 10.5 in Fig.
35b; the events are evidently associated with close
passage by the origin). The result of this desynchro-
nization is that the system is eventually captured by a
steady equilibrium, provided one is stable. IfD > D0,
on the other hand, the system recovers some degree
of synchrony after a brief burst of disorder.

This dynamics is especially sensitive to slight dif-
ference in the initial-value computations. In fact, it is
not clear whether slight errors play a dominant role
in determining the ultimate fate of the system. This
type of behaviour is known in lower dimensional sys-
tems, and is associated with the complicated geom-
etry of the phase space in the vicinity of where the
synchronization manifold once was [59,60]. The main
feature of the dynamics elucidated in those studies is
that arbitrarily small differences in the subsystems can
produce sporadic desynchronizations, and arbitrarily
small differences in initial conditions can change the
state to which the system ultimately converges (there
are “riddled” basins of attraction). We conjecture that
these features are also common to the inhomogeneous
LFPU lattice.

For related reasons, it is likely that adding determin-
istic parameter fluctuations or noise to homogeneous
lattices has a similar effect on the synchronized state.
The steady states are also subject to perturbation in
this instance, but provided the disturbances are small,
there is no pressing reason to suppose that the states
are completely destroyed. Rather, the lattice may sim-
ply fluctuate near the unperturbed equilibria. These
kinds of perturbations may model additional internal
degrees of freedom. Once the lattice is incoherent, it
is plausible that the additional degrees of freedom af-
fect the mean properties of each subsystem, but not
the fact that the system as a whole is incoherent.

We have not undertaken any studies that attempt
to address the question of how changing the coupling
modifies the lattice dynamics, chiefly for fear of open-
ing Pandora’s Box. However, we may still ask the
question of what features of the lattice dynamics might
change in such a modification to the LFPU system.
For example, synchronized states can become suscep-
tible to different types of instability [20]. Notably, it is
no longer true that the systems must always synchro-
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Fig. 35. Pseudo-synchronization in a nonidentical lattice. Panels (a) and (b) show time series ofxn(t) andxn(t)−x1(t) for N = 20 andD = 15
and everyn. In panel (c) we display evolution over longer timescales. Shown is the quantityQ(t) = t−1(N−1)−1

∫ t

0

∑N
n=2[xn(s)−x1(s)]2 ds.

This integral mean-square difference does not converge to zero. ForD = 20, 30 and 40, the system ultimately diverges from a
phase-synchronized state to a steady equilibrium.

nize at sufficiently largeD. The steady equilibria may
also no longer exist; such states are not observed in
the coupled Rossler systems in [19,21]. However, the
incoherent limit is not likely to be very different (we

have verified that the behaviour of passive subsystems
is relatively insensitive to the precise form of the cou-
pling). Thus, only weakly coupled incoherence may
survive a change in the form of the coupling.
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