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We present a modelling study of locomotion over a layer of viscoplastic fluid motivated
by the self-propulsion of marine and terrestrial gastropods. Our model comprises a layer
of viscoplastic mucus lying beneath a fluid-filled foot that is laced internally by muscular
fibres under tension and overlain by the main body of the locomotor, which is assumed
to be rigid. The mucus is described using lubrication theory and the Bingham consti-
tutive law, and the foot using a continuum approximation for the action of the muscle
fibres. The model is first used to study the retrograde strategy of locomotion employed
by marine gastropods, wherein the muscle fibres create a backwards-travelling wave of
predominantly normal displacements along the surface of the foot. Once such a retro-
grade forcing pattern is switched on, the system is shown to converge towards a steady
state of locomotion in a frame moving with the wave. The steady speed of locomotion
decreases with the yield stress, until it vanishes altogether above a critical yield stress.
Despite the absence of locomotion above this threshold, waves still propagate along the
foot, peristaltically pumping mucus in the direction of the wave. The model is next used
to study the prograde strategy employed by terrestrial gastropods, wherein the muscle
fibres create a forwards-travelling wave of predominantly tangential displacements of the
foot surface. In this case, a finite yield stress is shown to be necessary for locomotion,
with the speed of locomotion initially increasing with the yield stress. Beyond a critical
yield stress, localized rigid plugs form across the depth of the mucus layer, adhering parts
of the foot to the base. These stop any transport of mucus, but foot motions elsewhere
still drive locomotion. As the yield stress is increased further, the rigid plugs widen hor-
izontally, increasing the viscous drag and eventually reducing the speed of locomotion,
which is therefore maximized for an intermediate value of the yield stress.

1. Introduction

Snails and slugs propel themselves forwards by sending waves of muscular contrac-
tions along the base of their foot, which overlays a layer of mucus. This unique form
of locomotion allows snails and slugs to traverse almost any obstacle without damage.
In particular, the mucus is thought to facilitate their ability to climb steeply inclined
surfaces. It has been suggested that the mechanism underlying this ability is associated
with the non-Newtonian rheology of the mucus, which is known to have an appreciable
yield stress, or minimum stress required to generate fluid-like flow (Denny 1980; Ewoldt
et al. 2007).
In this paper, we develop a continuum model to explore locomotion over a layer of

viscoplastic fluid, investigating two particular locomotion strategies. More specifically,
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marine snails often adopt a retrograde strategy wherein the foot muscles apply a pre-
dominantly normal force in the form of a backwards-travelling wave. The mechanics un-
derlying this strategy are central to many other forms of bio-locomotion and are similar
to those that underlie the operation of a peristaltic pump (e.g. Shapiro, Jaffrin &Wein-
berg 1969). By contrast, terrestrial snails typically adopt a prograde strategy whereby the
foot muscles apply a predominantly tangential force in the form of a forwards-travelling
wave (e.g. Jones 1973; Denny 1981). Our analysis focuses on understanding how the yield
stress influences the speed of locomotion in both of these strategies.
Studies of retrograde locomotion strategies in general began with the seminal work of

Taylor (1951) who determined the locomotive action of a planar sheet that undulates with
normal displacements while immersed in an infinite body of Newtonian fluid. Closer to the
geometry of a gastropod is the configuration studied by Katz (1974), who generalized
that of Taylor (1951) to allow for a rigid wall lying parallel to the locomotive sheet.
This study included a lubrication theory for displacements of the sheet comparable with
the distance between the oscillating sheet and the rigid wall. Recently, this theory has
been extended by Balmforth, Coombs & Pachman (2010) to allow for a non-Newtonian
intervening fluid and to incorporate the elastic dynamics of the deforming sheet.
The only detailed model of prograde locomotion over a fluid film of which we are aware

is that proposed by Chan, Balmforth & Hosoi (2005). These authors kinematically impose
a wave of tangential displacements of the surface of the foot and study the resulting
flow in an underlying layer of viscoplastic fluid. They find that the speed of locomotion
is proportional to the mean tangential displacement generated by the wave. However,
their model omits any consideration of the detailed balance of forces that act to generate
locomotion. In particular, by specifying the foot displacement, their model automatically
assumes that locomotion occurs and cannot address its dynamical activation.
In the current article, we build on these earlier studies by formulating a fully dynamic

model for the foot and mucus layer of a gastropod. Motivated by studies of gastropod
anatomy (e.g. Jones 1973; Denny 1981), our formulation models the foot muscles as
strings under tension that can contract to exert both normal and tangential forces at
the base of the foot. Following Chan et al. (2005) and Balmforth et al. (2010), we model
the viscoplastic mucus using a Bingham constitutive law and lubrication theory. We
subsequently formulate two singular asymptotic limits of our general model, which we
use to study separately the dynamics of retrograde and prograde locomotion.
In our analysis of retrograde locomotion, we extend the study of Balmforth et al. (2010)

by addressing the dynamical activation and behaviour of the locomotor as it evolves
from a state of rest. Having determined the conditions for convergence towards steady
locomotion, we proceed to explore the dependence of the steady locomotion velocity
on the yield stress, the elastic properties of the foot and the amplitude of the muscular
forcing. We focus in particular on confirming the hypothesis proposed by Balmforth et al.

(2010) that a yield stress is generally detrimental to the retrograde locomotion strategy,
slowing and even halting locomotion entirely.
Our study of prograde locomotion extends that of Chan et al. (2005) by formulating

the model in terms of the muscular and elastic forces of the foot. This dynamic for-
mulation shows how the resultant of the forwards forces exerted by the muscle fibres
necessarily vanishes, as otherwise there is an unphysical acceleration of the main body
of the locomotor relative to the foot. A notable implication is that prograde locomotion
is impossible with Newtonian mucus. However, significant locomotion can be activated
by combining a yield-stress mucus rheology with muscular forcing patterns that have
certain spatial structure.
We begin in §2 by developing our general thin-film model that describes the elastic
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Figure 1. Schematic illustration of our model showing (a) the geometry of the foot, mucus and
muscle fibres in the foot cavity, and (b) a specific pair of muscle fibres anchored between the
body and a point on the foot surface. In (b), the fibre pair is shown in its neutral state (thin)
and its perturbed state (thick). The vertical scale has been exaggerated.

mechanics of the foot and the viscoplastic fluid mechanics of the mucus layer. In §3–4,
we use a combination of numerical and asymptotic approaches to explore retrograde and
prograde strategies. In §5, we compare the two locomotion strategies and discuss why
gastropods in marine and terrestrial environments might adopt certain strategies.

2. Theoretical model

The structure of gastropod anatomy has been highlighted from studies of flash-frozen
specimens (Jones 1973; Denny 1981). As shown schematically in figure 1, this structure
constitutes a flexible foot of characteristic thickness 10−3m that sits atop a layer of
mucus of much smaller characteristic thickness 10−5m. These studies indicate that the
main body of the gastropod, which lies above the foot, is essentially rigid. We proceed
to develop a continuum model of this three-tier system.

2.1. The foot

The foot is a pressurized, fluid-filled cavity containing contractible pairs of muscular fibres
anchored between the lower surface of the foot and the body in two inclined directions
(Jones 1973; Denny 1981). Locomotion is generated by sequential contractions of these
muscular fibres, which can exert both normal and tangential resultant forces upon the
lower surface of the foot, depending on whether the fibres in each pair are contracted
individually or in unison. Images of the underside of a snail undergoing locomotion show
that the contractions take the form of travelling waves with characteristic wavelength
2πL ≈ 0.01 m and wave speed c ≈ 0.001 m s−1, respectively (Lai et al. 2011). On this
basis, we consider only periodic sections of the system of length 2πL, treating each period
of the locomotive forcing wave as an identical unit. Neglecting also the edge effects at
the sides, front and back of the foot, we consider a two-dimensional cross-section along
the length of the system.
Let y = 0 and y = Y (x, t) denote the heights of the rigid horizontal surface under the

mucus layer and the lower surface of the foot, respectively, and let ∆− δ(x, t) denote the
thickness of the foot, where ∆ is the unperturbed thickness and δ ≪ ∆ is a small vertical
displacement. If H is the unperturbed thickness of the mucus layer, then

δ = Y −H. (2.1)
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Under the assumption that the mucus and the fluid inside the foot cavity are incom-
pressible, conservation of mass demands that

〈Y 〉 = H and 〈δ〉 = 0, where 〈...〉 ≡ 1

2πL

∫ 2πL

0

(...) dx (2.2)

denotes the mean over one period of the wave. The vertical position of the main body
must therefore remain fixed and translate purely horizontally with velocity U(t).
We model the muscular fibres inside the foot as strings under tension, and prescribe

contractive forces to these fibres to drive the locomotive waves. Consider a point on the
lower surface of the foot at position x. We assume that the ends of the two fibres attached
to this point are each separated by an unstretched horizontal distance a, and that the
inclinations and horizontal displacements of the fibres are small (∆ ≪ a and Ξ ≪ a,
respectively). The leftward and rightward fibres then have the leading-order extensions

[(a± Ξ)2 + (∆− δ)2]1/2 − (a2 +∆2)1/2 ≈ ±Ξ, (2.3)

respectively. If the tensions generated by the fibres are in proportion to their extension
(2.3), then the forces in the leftward and rightward fibres are given to leading order by

F± = T0 ∓ ΛΞ+ T±, (2.4)

where T0 is the unperturbed tension in each fibre, Λ is an elastic modulus and T± denote
the muscular contractive forces that are exerted to drive the locomotive waves. Assuming
that the fibres are distributed densely, we treat F± as continuous functions of position and
time. The resultant of the forces (2.4) can be resolved into the leading-order horizontal
and vertical components,
[

F+ − F−,
∆− δ

a
(F+ + F−)

]

≈
[

−2ΛΞ + T+ − T−,
2T0

a
(∆− δ) +

∆

a
(T+ + T−)

]

,

(2.5)
where we have assumed that T++T− = O(δT0/∆) ≪ T0, which is the scale of the applied
tension required to generate a vertical foot displacement of order δ.
The fibre force in (2.5) must be balanced by the stresses exerted on the lower surface of

the foot by the fluid inside the foot cavity and the mucus. When both of these layers are
shallow, the vertical stresses are dominated by the pressures of the foot cavity and mucus,
denoted pC and p respectively. A balance between the vertical forces on the surface of
the foot then demands that

2T0

a
(∆− δ) +

∆

a
(T+ + T−) = pC − p (on y = Y ). (2.6)

In view of our assumption that the foot is much thicker than the mucus layer (∆ ≫ Y ),
we treat the cavity pressure pC as constant compared with the mucus pressure p. For
similar reasons, we neglect the viscous traction exerted by the fluid in the foot cavity on
the lower surface of the foot. The balance of horizontal forces at the surface of the foot
is then given to leading order by

2ΛΞ− T+ + T− = −τ − ∂Y

∂x
(p− pC) (on y = Y ), (2.7)

where τ is the viscous shear stress exerted by the mucus.
In the absence of any fibre inertia, the net reaction to the force in (2.7) pulls back on

the main body of the locomotor, leading to the equation of motion

MU̇ = 〈τ + Yx(p− pC)〉 (on y = Y ), (2.8)
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where M is the mass of the main body per unit area, and we have used a dot to denote
d/dt and an x subscript to denote ∂/∂x, a short-hand notation that we extend to the
other partial derivatives below.

2.2. The mucus layer

We model the mucus as a thin layer of viscoplastic fluid with negligible inertia (cf.
Chan et al. 2005; Ewoldt et al. 2007; Balmforth et al. 2010). On applying the lubrication
approximation, the equations of continuity and force balance take the leading-order forms

∂u

∂x
+

∂v

∂y
= 0,

∂p

∂x
=

∂τ

∂y
,

∂p

∂y
= 0, (2.9a,b,c)

respectively, where u and v are the horizontal and vertical components of the velocity.
We use the Bingham model to describe the yield-stress rheology of the mucus (Bird

et al. 1983). To leading order, the constitutive relation simplifies to














τ = µ
∂u

∂y
+ τY sgn

(

∂u

∂y

)

|τ | > τY ,

0 =
∂u

∂y
|τ | < τY ,

(2.10a,b)

where µ is the dynamic viscosity and τY is the yield stress. Relation (2.10a) applies to
fully yielded sections of the fluid, while (2.10b) applies to plug-like sections that have no
vertical shear to leading order. Note that (2.10b) need not imply that the fluid forms a
truly rigid plug: the full yield condition involves all the components of the stress tensor
and, in regions where (2.10b) applies, extensional stresses can become comparable with
shear stresses and cause the fluid to yield weakly (Balmforth & Craster 1999). The
resulting flow is not a true plug and is more correctly referred to as a pseudo-plug. A key
difference between the two is that τ is determined in pseudo-plugs, whereas it is formally
indeterminate over true plugs, as in classical plasticity theory (Prager & Hodge 1951).
Equation (2.9c) implies that p = p(x, t) only. Integrating (2.9b), we obtain

τ(x, y, t) = τB + y
∂p

∂x
= τS − (Y − y)

∂p

∂x
(2.11)

where τB ≡ τ(x, 0, t) and τS ≡ τ(x, Y, t) denote the shear stress at the base and foot
surface, respectively. The no-slip condition imposed at the surface of the foot determines
the vertical and horizontal kinematic surface conditions

v(x, Y, t) =
∂Y

∂t
+ uS

∂Y

∂x
, u(x, Y, t) = uS = U +

∂Ξ

∂t
+ uS

∂Ξ

∂x
. (2.12a,b)

Combining (2.12a) with the depth integration of (2.9a), we obtain

∂Y

∂t
+

∂q

∂x
= 0, where q ≡

∫ Y

0

u dz (2.13)

is the volumetric flux per unit width of the flow.

2.3. Dimensionless model system

We non-dimensionalize the system above by defining

(x̂, Ξ̂) ≡ 1

L
(x,Ξ), (ŷ, Ŷ ) ≡ 1

H
(y, Y ), t̂ ≡ ct

L
, (û, Û , ûS) ≡

1

c
(u, U, uS),

q̂ =
1

cH
q, p̂ ≡ H2

µcL
(p− pC), (τ̂ , τ̂S , τ̂B) ≡

H

µc
(τ, τS , τB). (2.14)
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On dropping hats, (2.11) and (2.10) become

τ = τB + ypx = τS − (Y − y)px,

{

τ = uy +B sgn(uy) |τ | > B,
uy = 0 |τ | < B,

(2.15a,b)

where B ≡ τY H/µc is the Bingham number. Equations (2.13) and (2.12b) remain as

Yt + qx = 0, Ξt = uS(1− Ξx)− U, (2.16a,b)

and the force-balance equations (2.6)–(2.7) become

p− p0 +ARfR = DR(Y − 1), τS + pYx = AP fP −DPΞ, (2.17a,b)

where p0 ≡ 2∆T0/a. Finally, the equation of motion (2.8) becomes

MU̇ = F ≡ −〈τS + pYx〉 ≡ −DP 〈Ξ〉. (2.18)

The system above depends on the dimensionless parameters

M ≡ cHM
µL

, DR ≡ 2H3T0

µcLa
, DP ≡ 2HLΛ

µc
, (2.19a,b,c)

which are a dimensionless mass per unit area and dimensionless normal and tangential
stiffnesses, respectively. Further,

ARfR(x, t) ≡
H2∆

µcLa
(T+ + T−), AP fP (x, t) ≡

H

µc
(T+ − T−), (2.20a,b)

appearing in (2.17a, b), represent scaled normal and tangential forcings, each with dimen-
sionless amplitudes AR and AP , and spatial patterns fR(x, t) and fP (x, t). Equations
(2.20a, b) do not uniquely specify these amplitudes and forcing patterns; we remove this
ambiguity later by prescribing the forcing patterns fR and fP at the beginnings of §3
and §4, respectively. Our use of P and R subscripts above stems from the significance
of the associated quantities in the prograde and retrograde locomotion strategies, as we
detail in §2.5 below.
The quantity F appearing in (2.18) represents the net horizontal force on the foot

exerted by the fibres. If the muscular forcing has non-zero mean 〈fP 〉 6= 0, then the
locomotor will be driven to accelerate or decelerate relative to the mucus until a uni-
form horizontal displacement Ξ0 ≡ (AP /DP )〈fP 〉 is established, which balances the net
tension and the net applied muscular force. These net forces can be absorbed into the
system variables by redefining the horizontal displacement and the pattern of muscular
forcing as Ξ−Ξ0 and fP −〈fP 〉, respectively. Likewise, any mean normal force 〈fR〉 can
be removed by suitably redefining the constant p0 in (2.17a). In other words, we can set
〈fR〉 = 〈fP 〉 = 0 without any loss of generality.
Equations (2.15)–(2.16) are the basic ingredients of a model allowing for both normal

and tangential displacements of the surface of the foot, driven by two different types
of forcings. The main approximations exploited in arriving at these relations are that
the mucus layer and the surface of the foot are both shallower than the wavelength
of the locomotive waves, that the mucus layer is much thinner than the cavity of the
foot and that inertial effects are negligible in both. As a result, we arrive at a lubrication
problem inside the mucus layer, with geometrical nonlinearities arising from the kinematic
conditions (2.16a, b) and rheological nonlinearity in the Bingham constitutive law (2.15),
coupled to linearly elastic forces in the cavity of the foot.
Estimates of the dimensionless parameters can be made as follows. Typical wavelengths

and wave speeds for both terrestrial and marine gastropods are 2πL ≈ 0.01 m and
c ≈ 0.001ms−1. For the mucus of two species of terrestrial slug, Denny & Gosline (1980)
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A B C D E

Figure 2. Illustration of the velocity profiles of the five flow configurations (2.23). The plug of
each profile is indicated by a shaded bar. We have depicted the case px < 0; for px > 0, the
curvature of the profiles has the opposite sign.

and Ewoldt et al. (2007) propose that µ ≈ 10− 20Pa s and τY ≈ 100− 200Pa. Similar
values are quoted in the literature for the mucus of marine gastropods (e.g. Holmes et al.
2002). Hence, given mucus thicknesses of H ≈ 10−5m and 10−4 m that are characteristic
of marine and terrestrial gastropods, respectively (Denny 1981; Lai et al. 2011; Holmes
et al. 2002), we estimate that B can range over the orders of 0.1 to 1. For a typical mass
per unit area M of a few grams per square centimetre, we estimate the dimensionless
mass parameter (2.19a) to be of order M ≈ 10−5. Similar estimates for both B and M
follow for the robotic snail of Chan et al. (2005). The stiffness and amplitude parameters
contained in (2.19b, c) and (2.20a, b) are more difficult to estimate and likely depend
significantly on the specific locomotion strategy employed. In §2.5, we instead use the
characteristics of each locomotion strategy to suggest appropriate asymptotic limits of
these parameters.

2.4. Flow configurations

The state of the system is described by Y (x, t), Ξ(x, t) and U(t). The pressure p(x, t) and
surface stresses, τB(x, t) and τS(x, t), constitute subsidiary variables that are related to
these state variables through the force balances (2.17a, b). Given Y , Ξ and U at a given
instant, the velocity field u(x, y, t) can be constructed from an integration of (2.15) sub-
ject to the no-slip condition u(x, 0, t) = 0 and the surface-stress condition τ(x, Y, t) = τS .
As is typical of viscoplastic lubrication problems in general (e.g. Hewitt & Balmforth
2012), this construction is complicated by switches in the constitutive law (2.15b), cor-
responding to the appearance of rigid plugs or pseudo-plugs, or simply plugs for short.
Having constructed u, we can use (2.16a, b) and (2.18) to determine the evolution of
Y (x, t), Ξ(x, t) and U(t).
By inverting (2.15b), we can express the rate of shear in terms of the shear stress by

uy =

{

τ −B sgn(τ) |τ | > B,
0 |τ | < B.

(2.21)

Combining (2.21) with (2.15a), we determine that u has a parabolic vertical profile in
fully yielded sections of the flow. Conversely, u is independent of y in the unyielded
plugs. The switches in (2.21) occur at τ = ±B. Given that τ varies linearly from τB
to τS according to (2.15a), at most two such switches can occur at any given location
of x. We denote the yield surfaces at which these two changes occur by Y±(x, t), where
Y− < Y+. We allow Y± to lie outside the domain of the mucus, corresponding to situations
where a plug intersects one of the boundaries. By setting τ = ±B in (2.15a), we obtain

Y± =
1

px
(−τB ±Bσ), where σ ≡ sgn(px). (2.22)
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Depending on whether Y± lie inside or outside the mucus layer, there are five possible
flow configurations:

A : 0 < Y− < Y+ < Y, The profile contains a central plug
B : Y− < 0 and 0 < Y+ < Y, A plug is attached to the lower surface
C : Y± < 0 or Y± > Y, Fluid is yielded across the depth of the layer
D : 0 < Y− < Y and Y+ > Y, A plug is attached to the surface of the foot
E : Y− < 0 and Y+ > Y, A plug spans the depth of the layer

(2.23)

each of which is illustrated in figure 2 for px < 0. Formulae for u, τS and q in terms
of px and Y for each configuration are given in appendix A. These formulae follow on
integration of (2.15) subject to the no-slip conditions at the upper and lower surfaces,
given the particular arrangement of yield surfaces associated with each configuration
(2.23) (cf. Balmforth et al. 2010; Hewitt & Balmforth 2012).

2.5. Retrograde and prograde locomotion

Retrograde locomotion is characterized by predominantly normal displacements of the
surface of the foot. We configure our general system to model this strategy by assuming
that the foot is horizontally stiff, DR ≫ DP . In accordance with (2.17b), the surface of
the foot then undergoes negligible tangential deformations independently of the forces
exerted on it by the mucus layer, so Ξ ≪ 1. In turn, (2.16b) then implies that the
horizontal velocity of the lower surface of the foot simply equals that of the main body,
so uS ≡ U . This simplified retrograde model can be characterized by the three equations

∂p

∂x
+AR

∂fR
∂x

= DR
∂Y

∂x
, uS ≡ U,

∂Y

∂t
+

∂q

∂x
= 0, (2.24a,b,c)

where the former follows from differentiation of (2.17a) with respect to x.
By contrast, prograde locomotion is characterized by predominantly tangential dis-

placements of the surface of the foot. We configure our general system to model this
strategy by assuming that the foot is vertically stiff, DR ≫ DP . As implied by (2.17a),
the surface of the foot then undergoes negligible normal deformations independently of
the forces exerted on it by the mucus layer, so Y ≈ 1. To further simplify our analysis
of the prograde strategy, we adopt a small-amplitude approximation AP ≪ 1, under
which the nonlinear term in the kinematic surface condition (2.15b) can be neglected.
This neglect can be justified by noting that the displacement and velocity of the surface
of the foot each scale with the forcing amplitude AP and hence ΞxuS ∼ A2

P ≪ uS ∼ AP .
Such an approximation can be expected to be relevant for gastropod locomotion, where
the contractions of the surface of the foot are an order of magnitude smaller than the
wavelength of the forcing wave (Lai et al. 2011). In summary, our simplified prograde
model is characterized by the three equations

τS = AP fP −DPΞ, Y ≡ 1,
∂Ξ

∂t
= uS − U. (2.25a,b,c)

3. Retrograde locomotion

We proceed to analyse the simplified retrograde problem described in §2.5 above with
the model forcing pattern fR = sin(x + t), corresponding to a sinusoidal wave that
travels at unit dimensionless speed in the negative x-direction. To simplify our analysis,
we introduce the new spatial coordinate ξ ≡ x + t, equivalent to a shift of the system
into the frame of the wave. Equations (2.24a, c) then become

pξ = DYξ −A cos ξ, Yt + Yξ + qξ = 0, (3.1a,b)
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Figure 3. Solutions to the initial-value problem for retrograde locomotion. Panel (a) shows the
evolution of the locomotion velocity U(t) in the case with A = D = 1 and M = 0.1, for Bingham
numbers B = 0, 0.05, 0.1 and 0.15 (all thin). The thick, dashed curve shows a solution with
M = 0.001 and B = 0. Panel (b) shows the surface profile Y (ξ, t) as a density on the (ξ, t)-plane,
where ξ ≡ x− t, for the two solutions in panel (a) with B = 0.1 (left) and B = 0.15 (right).

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

t

U

D = 0

0.1

1

Figure 4. Evolution of the locomotion velocity U(t) in the case with A = 1, B = 0 and
M = 0.1 for stiffnesses of D = 0, 0.1 and 1.

respectively, where we have dropped the R subscript from fR, DR and AR.

3.1. The initial-value problem

With Ξ negligible, the state of the system is described by the two remaining state variables
Y (ξ, t) and U(t). We begin by solving the system defined by (2.15a, b), (2.18) and (3.1a, b)
numerically as an initial-value problem, which is initialized from a state of rest and
uniform thickness, U(0) = 0 and Y (ξ, 0) = 1. To accomplish this, we discretize ξ on a
fixed uniform grid and use centred differences to approximate the spatial derivatives. At
each time step, we first evaluate pξ using (3.1a) and then calculate the flow configuration,
flux q and surface stress τS using the formulae in appendix A. We then use (3.1b) and
(2.18) to compute Yt and U̇ , employing quadrature to evaluate period averages, and then
advance the system in time using the Matlab integrator ode15s.
A complication arises in solving the initial-value problem at the initial instant and at

any subsequent instants at which the locomotor is brought to rest, U = 0. Specifically,
such instants admit the possibility that a rigid plug spans the depth of the mucus layer,
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Figure 5. Steady-state surface stresses, τB and τS , yield surfaces Y±, and pressure gradient pξ,
for (a) the locomotive state with B = 0.1 and (b) the stationary state with B = 0.15. The plugs
and stress bands in which the plugs form |τ | < B have been shaded.

causing the force on the right-hand side of (2.18) to become indeterminate. We postpone
a detailed discussion of this issue until §3.2, and first provide an overview of our solutions
to build a useful foundation on which to base that discussion.
Figure 3 shows sample solutions for the evolution of U(t) and Y (ξ, t) in the case

A = D = 1 for a selection of B. Figure 4 displays the effect of varying the stiffness
D with A = 1 and M = 0.1. In each case, the forcing wave begins by generating a
perturbation to the surface profile Y that is subsequently overridden and left behind
by the wave. As the wave cycles through the periodic domain, the solution oscillates
with the period of the forcing wave 2π. As indicated by figure 4, these oscillations are
damped if D > 0, at a rate which increases with D, and the solutions converge towards
states that are steady in the frame of the wave. On the other hand, cases with D = 0
exhibit perpetual oscillations that undergo large-time modulations in amplitude, but
never decay. The solutions with M = 0.001 and M = 0.1 are barely distinguishable in
figure 3(a), reflecting the existence of a well-defined limit M → 0 in which the inertia
of the body vanishes and the position of the locomotor responds instantaneously to the
viscous tractions exerted by the mucus layer. Note that the oscillations are therefore not
inertial, and are instead associated with the propagation of the forcing wave.
The steady-state distributions of the surface stresses τB and τS , pressure gradient pξ

and yield surfaces Y± in the case B = 0.1 are shown in figure 5(a). These distributions are
representative of states in which the locomotor is moving forwards U > 0. The solution
contains a pattern of flow configurations (2.23) in the sequence A-D-C-B-A-B-C-D-A
proceeding from ξ = 0 to 2π. The thin C regions that connect the B and D regions are
essentially indistinguishable in figure 5(a). The composite B-C-D regions surround the
two locations where pξ, τB and τS change sign.

3.2. Activation and arrest of locomotion

As noted above, one must exercise caution in solving the initial-value problem if, at some
time, U = 0. At this juncture, E regions may form within the mucus layer, causing the
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the pinning events wherein U = 0 and F ∗ < 0.

shear stress τ to become indeterminate. The resultant force F in (2.18) cannot then be
evaluated. In this situation, the locomotor can remain pinned in place for an extended
period of time, with (2.18) discarded and replaced by the pinning condition U̇ = U = 0.
The flow configurations of the pinned states follow the pattern A-E-A-E-A, as illustrated
in figure 5(b).
Whenever U = 0, the key question to address is whether the drag exerted by the rigid

plugs in the E regions is sufficient to pin the locomotor, or whether the driving force
exerted by the foot breaks those rigid plugs and activates locomotion. This question can
be answered by examining the state given by the current surface profile together with
the limiting locomotion speed U → 0+, corresponding to that which would be realized
if locomotion were to resume. For this hypothetical state, the E regions are replaced
by composite B-C-D regions and the stresses become determinate. In particular, the
surface stress τS

∗ can be constructed in this state and used to evaluate an activation

force, F ∗ ≡ −〈τS∗ + pYξ〉. If F ∗ > 0 then (2.18) predicts that U̇ > 0 and hence the
U → 0+ state is consistent with a successful activation of locomotion. On the other
hand, if F ∗ < 0, then (2.18) predicts that U̇ < 0, implying that the locomotor cannot
accelerate away from rest and instead remains pinned.
In all the non-Newtonian examples of the initial-value problems presented in figure 3,

the locomotor is pinned briefly at the commencement of each computation, with U(0) = 0
and F ∗(0) < 0 applying in the initial state. For the example with B = 0.1, shown in
more detail in figure 6(a), F ∗(t) remains negative until t ≈ 1.2, whereat the plugs break
and locomotion is reactivated. A second, brief interval of pinning occurs around t ≈ 6.3,
but thereafter U remains positive and locomotion continues unimpeded. By t ≈ 40, the
locomotion speed is close to its steady-state value and F = F ∗ → 0, consistent with a
large-time balance of horizontal forces. For B = 0.15, shown in figure 6(b), the evolutions
of U and F ∗ are qualitatively similar to the case B = 0.1 until t ≈ 6. After this time,
however, the locomotion becomes punctuated by further intervals of pinning. The last



12 S. S. Pegler & N. J. Balmforth

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.005

0.01

0.015

0.02

U

−2Q

−2Q∗

−10−1F ∗

B

Bc Bs

locomotive stationary

no fluid
motion

Figure 7. Steady-state locomotion velocity U and flux Q plotted against Bingham number B
for A = D = 1. The thinner curve shows the flux Q∗ that would result if U = 0 were imposed
for B < Bc, as discussed in §3.4.

such interval, which commences at t ≈ 11, persists indefinitely, with F ∗ converging
towards a negative value at large times. Despite the absence of locomotion during this
final interval, the surface of the foot converges towards a shape that is steady in the frame
of the wave, as illustrated by figure 3(b), corresponding to a pattern of displacements
that continue to propagate in the frame of the laboratory. By comparing the two density
plots of figure 3(b), we see that the evolution of Y is essentially identical to that of the
locomotive case B = 0.1, and is therefore largely insensitive to the horizontal translation
of the surface of the foot.

3.3. Steady locomotive states

The large-time steady states can be constructed more directly by considering the steady
forms of (3.1a, b), which after integration of the first of these, imply

Y + q = 1 +Q, 〈τS + pYξ〉 = 0, (3.2a,b)

where Q = 〈q〉 is the net flux of mucus. These equations, in conjunction with 〈Y 〉 = 1,
define an eigenvalue problem for Y (ξ) in which Q and U play the role of eigenvalues.
We solve this problem numerically using a Newton-Raphson iteration scheme in which
the spatial derivatives and integrals are approximated in the manner described in our
solution to the initial-value problem in §3.1.
Figure 7 shows the steady locomotion speed U as a function of the yield stress B for

A = D = 1. As suggested by our solutions to the initial-value problem shown in figure
3(a), U decreases monotonically with B from the Newtonian case B = 0, before vanishing
at a critical value Bc(A,D). Figure 8 illustrates how Bc increases with both A and D.

For B > Bc, we solve for the stationary states with U = 0 by modifying our eigenvalue
solver. Specifically, we abandon the shear-stress constraint (3.2b) and the eigenvalue U
and instead impose the pinning condition U = 0. We confirm the consistency of these
stationary states by evaluating the activation force F ∗ and verifying that it is negative
for B > Bc, as illustrated by the dashed curve in figure 7.

We explore the onset of steady locomotion as B is reduced from Bc in more detail
by considering the asymptotic limit of small amplitude and stiffness. By performing a
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imation (3.3) in the case A = 10−3 is shown as a thick curve.

perturbation analysis in this limit (see appendix B), we determine the approximation

U

[

1− 2B

πA
log

(

BU

A2

)]

∼ 1

48
A2 − 2B2

πA
(A ≪ 1, D → 0), (3.3)

where B ≤ Bc(A, 0) =
(

πA3/96
)1/2

. In the Newtonian case (B = 0), (3.3) implies that
U ∼ A2/48, which is consistent with the small-amplitude results of Katz (1974). For
B > 0, the second term on the right-hand side of (3.3) provides a first-order correction
to the Newtonian result. Specifically, the correction originates from the yield stress in
the weakly yielded B and D regions that surround the two locations where pξ changes
sign. Locomotion is thus most strongly constrained by the yield stress in the near-rigid
plugs that are close to spanning the depth of the mucus layer. The logarithmic term in
(3.3) originates from the global contribution of the yield stress in the strongly yielded
A regions that occupy the majority of the mucus layer. The prediction for U implied by
(3.3) is compared with numerical solutions in figure 9.

3.4. Generation of flux

As shown in figure 7, both the stationary and locomotive states generate a flux Q < 0
in the direction opposite to that of locomotion. The magnitude of Q is seen to increase
with B from a finite value at B = 0 towards a maximum near Bc. Notably, despite the
existence of static fluid in the E regions for B > Bc, the yielded fluid in the A regions
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as a dashed curve in the case B = 0. The lower part of the plot shows the net flux Q for the
same values of B and D = 0 (thick) and 1 (mid-weight). The flux Q vanishes and is not plotted
for B < Bs, where Bs is given by (3.4). For the cases with D = 0, the critical amplitude A∗ at
which a shock first forms is indicated by a star.

are still able to deliver a net flux. This is possible because the yield surfaces Y± change
position as the forcing wave propagates, so fluid crosses the borders of the E regions.

In the stationary states (B > Bc), the system becomes equivalent to a kind of peri-
staltic pump (e.g. Shapiro et al. 1969). Indeed, if we artificially impose U = 0 and ignore
(3.2b), then we recover a two-dimensional model of peristaltic pumping that is related
to the axisymmetric problems of Vajravelu et al. (2005) and Takagi (2009). The contin-
uation of the flux Q for B < Bc with U = 0 imposed is shown as a thin curve in figure
7, where it is seen to continue increasing as B is reduced, obtaining a maximum in the
Newtonian case. By contrast, the flux Q of the locomotive states soon begins to decrease
as B reduces below Bc. This occurs because the translation of the upper surface opposes
the peristalsis. For gastropods, the generation of a backward flux is wasteful because it
demands an enhancement of mucus production.

There is yet a further threshold Bs(A) above which the net transport of flux Q vanishes
entirely. Beyond this threshold, the forces exerted by the foot are insufficient to yield the
fluid anywhere. This occurs critically when the yield surfaces Y± lie entirely outside the
mucus layer, so maxξ(Y−) = 0. Combining this criterion with (2.22), we deduce that
2Bs = maxξ |pξ| and hence

Bs =
1
2
A, (3.4)

where we have used (3.1b) to substitute for pξ and noted that Y ≡ 1 in the static state.
Unlike Bc, (3.4) is independent of D, which follows from the fact that the elastic force is
identically zero when the foot suffers no deformation.
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3.5. Effects of forcing amplitude and stiffness

Figure 10 shows the locomotion speed U and net flux Q as functions of the forcing
amplitude A for a selection of Bingham numbers B = 0, 2 and 5, and stiffnesses D =
0, 1 and 5. In the Newtonian case (B = 0) with D = 1, U increases approximately
quadratically with A at small forcing amplitudes in accord with (3.3), which is plotted
as a dashed curve. However, this trend does not continue for A & 2. Instead, U reaches
a maximum at A ≈ 8 and then proceeds to decrease. The eventual reduction of U is
due to the enhancement of the viscous drag in the thinnest part of the mucus layer,
which becomes increasingly constricted at large A as the foot is pressed closer to the
base (Balmforth et al. 2010).
Comparison between the Newtonian (B = 0) cases of D = 1 and D = 5 in figure 10

shows that an increase in D leads to a reduction in U at sufficiently small amplitudes
A . 6. This reflects the fact that the elastic force resists the vertical deformations
that drive locomotion. However, given a sufficiently large forcing amplitude A & 6,
increasing D leads to a larger locomotion velocity U . This occurs because the resistance
to deformation provided by the elastic force eventually opposes the localized constriction
of the mucus layer that provides the dominant resistance to locomotion at large A.
For large stiffnesses (D ≫ 1), it is clear from (3.1a) that a correspondingly large

amplitude A ∼ D is needed for any significant locomotion to be generated. If A ∼ D ≫ 1,
then the leading-order balance in (3.1a) is between the elastic and muscular terms on the
right-hand side, implying that the forcing in this limit directly dictates the displacement
of the foot according to

Y ∼ 1 + (A/D)f (A ∼ D ≫ 1). (3.5)

The convergence of Y towards the asymptote (3.5) is illustrated in figure 11, where we
have plotted Y for increasing values of A = D in the case B = 0. Note that if A ≥ D,
then (3.5) predicts that Y intersects the lower boundary in the thinnest region of the
mucus layer, so (3.5) cannot apply in these regions. Instead, pξ remains significant in
(3.1c) and its intervention prevents the intersection of the surfaces, as is seen to occur
near ξ = 3π/2 in figure 11.
With a perfectly flexible foot (D = 0), U is essentially the same as the case D = 1

for A . 2, as indicated by the plots of figure 10. However, as A increases towards a
critical value, given by A∗(B) = A∗(0) ≈ 2.2 in the Newtonian case, the surface profile
Y develops a discontinuous gradient at the location of greatest forcing ξ = π, and no
smooth solutions exist at larger forcing amplitudes. The thick curves representing D = 0
in figure 10 have correspondingly been terminated at A∗. Given a finite stiffness D > 0,
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however, the surface maintains a smooth profile as A is increased beyond A∗, but develops
a steep shock, as illustrated for B = 0.3 in figure 12. Here, we have set D = 0.01 and
plotted Y (ξ) for several values of A that straddle the critical amplitude A∗(0.3) ≈ 2.6.
The sudden loss of symmetry about ξ = π as A increases beyond A∗ is a notable feature.
As illustrated by the stars in figure 10, A∗(B) increases with B, with the approximate
relationship A∗ ≈ 2(B + 1). For B & 0.9, the critical amplitudes A∗ occur within the
branch of stationary states, so there are no smooth locomotive states in these cases if
D = 0.

4. Prograde locomotion

The simplified model of prograde locomotion problem described in §2.5 allows for
tangential displacements of the foot surface but precludes any vertical deformations.
With this simplified model, it is possible to rescale Ξ, U, u, p and τ by AP , such as to
eliminate AP from the problem and introduce a rescaled Bingham number B′ ≡ B/AP .
Equivalently, we set AP = 1 and use B to denote B′ throughout this section. We also
drop the P subscript from DP and fP .
With Y ≡ 1, the state of the system is described by Ξ and U only. On transforming the

coordinate system into the frame of the wave (ξ, t), where ξ ≡ x − t, equations (2.16a),
(2.25a, c) and (2.18) give

q = Q(t), τS = f −DΞ, Ξt = uS − U + Ξξ, MU̇ = 〈τS〉 = −D〈Ξ〉, (4.1a,b,c,d)

respectively.Notably, (4.1a) implies that the flux q is spatially uniform at all times.
For the purpose of illustration, we consider the model forcing pattern

f(ξ) =
g − 〈g〉

[

〈g2〉 − 〈g〉2
]1/2

, where g ≡ e−γ cos ξ (4.2)

and γ ≥ 0 is a forcing parameter. The pattern (4.2) satisfies the property 〈f〉 = 0 and
has been normalized so that 〈f2〉 = 1. As shown in figure 13, the limiting case γ → 0
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Figure 13. Prograde forcing pattern (4.2) for γ = 0, 4 and 40.

corresponds to a sinusoidal forcing pattern f = −
√
2 cos ξ. For γ > 0, the forwards-forced

region is of smaller horizontal extent than the backwards-forced region, but attains a
greater magnitude.

4.1. The Newtonian problem

In the Newtonian case B = 0, the lubrication equation (A 2) simplifies to

τS = uS + 1
2
pξ and hence 〈τS〉 = 〈uS〉. (4.3a,b)

Taking the period averages of (4.1b, c, d), we obtain

〈τS〉 = −DX, 〈uS〉 = U + Ẋ, MU̇ = DX, (4.4a,b,c)

respectively, where X(t) ≡ 〈Ξ〉 is the net horizontal displacement of the lower surface of
the foot. By combining (4.3b) and (4.4a, b, c), we determine the evolution equation

M(Ü +DU̇) +DU = 0, (4.5)

which shows that U evolves as a damped linear oscillator. With the initial condition
Ξ(ξ, 0) = U(0) = 0, corresponding to an initially unperturbed state, (4.5) implies that
U = 0 for all time, so the locomotor remains stationary. Even if the system were ini-
tialized in some other fashion, (4.5) still implies that U → 0 as t → ∞. Steady loco-
motion with this prograde strategy is therefore impossible with Newtonian mucus. This
result contradicts Katz’s (1974) analysis of the low-amplitude biharmonic problem, which
demonstrates that prograde locomotion is feasible with Newtonian fluid (see also Tuck
1968). The discrepancy arises because of our linearization of the horizontal kinematic
condition in (2.12b) performed in §2.5. Though appropriate for gastropods, this approx-
imation rules out a weak form of locomotion analogous to steady streaming or Stokes
drift.
Note that the frequency of the oscillations [(MD)−1 − 1/4]1/2 implied by (4.5) is set

by M and D, revealing them to be inertio-elastic, and overdamped for DM > 4. The
transient dynamics are therefore different from the retrograde case considered in §3.1,
where the oscillations of the initial-value problem were found to be associated with the
propagation of the forcing wave.

4.2. The viscoplastic initial-value problem

For viscoplastic cases (B > 0), we again consider the evolution of the system from an
unperturbed initial state with Ξ(ξ, 0) = U(0) = 0. We solve the initial-value problem
described by (2.15a, b) and (4.1a, b, c, d) numerically by, once again, discretizing ξ on a
fixed uniform grid and employing centred differences to approximate spatial derivatives.
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Figure 14. Locomotion speed U(t) against time for γ = 4 and B = 0.6 in initial-value com-
putations with (a) D = 1, M = 1 (thick) and M = 0.1 (thin), and (b) M = 1 and D = 0.1
(thin), 1 (dashed) and 3 (thick). Panel (c) shows the tangential foot displacement Ξ as a density
on the (ξ, t)-plane in the case with M = D = 1. In (a), the dashed line shows the result of a
computation with M = D = 1 in which the forcing is switched on more gradually by multiplying
the forcing pattern f by the time-dependent function tanh2(t/10).

At the beginning of each time step, pξ and Q are unknown and must be determined
such that (4.1a) is satisfied at each grid point, with u constructed using the formulae
in appendix A, together with the continuity condition, 〈pξ〉 = 0. To accomplish this,
we use a Newton-Raphson scheme in which pξ and Q are iterated from their values in
the previous time step. Having obtained pξ and u, we use (4.1c, d) to integrate Ξ and U
forwards in time.
As in the retrograde problem, there is a complication in solving the initial-value prob-

lem whenever E regions appear in the mucus layer. The main consequence here is that
pξ becomes indeterminate over these regions and the constraint 〈pξ〉 = 0 ceases to be
applicable. Instead, (4.1a) and the stagnancy of the flow in the E regions together imply
that q = Q = 0. This no-flux condition can be used to solve for pξ outside the rigid
plugs, thereby providing uS and the means to evolve Ξ using (4.1b). Over the rigid plugs
themselves, the displacement of the foot surface is frozen in time, so Ξt = 0.
Sample numerical solutions to the initial-value problem with γ = 4 and B = 0.6 are

shown in figure 14. Panel (a) shows computations with the two different dimensionless
masses per unit area of M = 0.1 and 1, for fixed D = 1. Panel (b) shows cases with
stiffnesses of D = 0.1, 1 and 3, for fixed M = 1. As in the retrograde problem, the switch-
on of the muscular forcing at t = 0 generates a disturbance in Y that decomposes into a
component that is carried along in the wave frame and a component that propagates with
a different speed. As illustrated in figure 14(c), this component decays as it recirculates
through the domain. The system eventually converges towards a state that is steady in
the frame of the wave.
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Figure 15. Steady-state solutions for prograde locomotion for γ = 4 and D = 0. Panel (a)
shows the locomotion speed U and flux Q as a function of B. The dotted curves show asymptotic
approximations for B ≪ 1 and B → Bs ≈ 2.5, given by (4.8) and (4.14), respectively. The force
F ∗, defined in (4.10), indicating when flux is generated is shown as a dashed curve, and the
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Y± for B = 0.3, 0.6 and 0.9, respectively, the locations of which are shown by stars in (a). The
distributions of uS, pξ, τB and τS are also plotted in (b) and (c).

The most notable characteristic of the non-Newtonian solutions to the initial-value
problem compared with the Newtonian solutions is that the large-time steady-state values
of U are non-zero. The yield stress therefore generates locomotion. One can understand
this result by noting that the yield stress acts to impede flow within the fluid layer,
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thereby restricting the foot speed uS at each x-location. Therefore, if f(ξ) contains a
backwards-forced region that is longer but weaker than the forwards-forced region, such
as that provided by (4.2) with γ > 0, then the yield stress will block flow preferentially
in the backwards direction. The resulting asymmetry implies that U = 〈uS〉 > 0, so
locomotion is activated in the forwards direction, despite the vanishing of the net driving
force, 〈τS〉 = 0. Indeed, if γ is sufficiently large then it is possible for the yield stress
to stop backwards motions of the foot surface entirely, so uS ≥ 0; an example of such a
state is shown later in figure 15(d).
Figure 14(b) illustrates how the stiffness D controls the convergence of the system

towards the steady state in a manner that is similar to the retrograde problem. Unlike
that problem, however, the frequency of the oscillations is dependent on D and M , which
identifies them as inertio-elastic. As indicated in our discussion of the Newtonian problem
in §4.1, the frequency of the oscillations diverge in the limit M → 0, which, in view of
our small estimate of M ≈ 10−5 given in §2.3, should be applicable to the biological
setting. However, gastropods do not display any significant oscillation as they initiate
locomotion, implying a disparity between the predictions of our model and the biological
observations, indicating a possible limitation of our idealized model. The addition of
some other physical effect may be needed in order to prevent the unphysical divergence
of the oscillation frequency in the limit M → 0 and to explain the prediction of transient
oscillations for parameter settings relevant to gastropods. One possibility is that the
viscous traction in the foot cavity, which we have neglected, may intervene to prevent
any rapid oscillation of the cavity. Another possibility, identified in the Newtonian case
in §4.1 above, is that the evolution is overdamped. However, this seems unlikely if M ≈
10−5. A further possibility, which appears more plausible, is that the oscillations in
our computations are an artefact of our imposition of an instantaneous switch-on of
the forcing wave at t = 0, leading to an abrupt start to the system that is physically
unrealistic. By computing solutions to the initial-value problem with a forcing whose
amplitude is gradually ramped up over a time longer than the period of oscillation,
we have verified that the oscillatory transients are suppressed. An example of such a
computation, obtained by multiplying fP by a time-dependent function tanh2(t/10), is
shown as a dashed line in figure 14(a).

4.3. Steady locomotive states

We can compute the steady states more directly by considering the steady forms of
(4.1b, d), namely,

Ξξ = U − uS , 〈τS〉 = −D〈Ξ〉 = 0. (4.6a,b)

In cases where the steady state contains no E regions, pξ is determinate over the full
domain and (4.1a, b), (4.6a, b) and 〈pξ〉 = 0 constitute an algebraic problem for pξ, Ξ, Q
and U . We solve this problem using a similar discretization of ξ and Newton-Raphson
iteration to that described in §4.2, but including (4.6a, b) as objective functions and Ξ
as an iteration variable. To compute the solution in flux-less cases, we impose Q = 0 and
abandon the constraint 〈pξ〉 = 0.
Figure 15 displays steady-state solutions for γ = 4 and D = 0. Note that, although we

do not expect the system to converge towards a large-time steady state if D = 0, these
solutions are typical of small but finite stiffness. As shown by panel (a) of this figure,
the steady-state locomotion velocity U increases with B from zero in the Newtonian case
up to a maximum Uopt(γ,D) ≡ maxB(U) ≈ 0.049 at B = Bopt ≈ 0.47. Thereafter,
U decreases and eventually vanishes at the critical value B = Bs ≈ 2.5, corresponding
to the cessation of all fluid motion. Thus, although the yield stress is responsible for
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activating locomotion by suppressing backward motion, its impedance of forward fluid
motion ultimately stops locomotion.

The corresponding flux Q, also shown in figure 15(a), initially decreases from zero as B
is increased from the Newtonian case, implying the activation of a backwards transport
of mucus. Before the fastest locomotion speeds are achieved, however, the magnitude of
the flux reaches a maximum and then decreases back to zero, vanishing beyond a critical
value Bc ≈ 0.43.

Figures 15(b)-(d) show the yield surfaces Y± for three different Bingham numbers
B = 0.3, 0.6, and 0.9. The corresponding distributions of the surface velocity uS , pressure
gradient pξ, and surface stresses τB and τS , are also shown for the first two cases. In the
flux-generating case B = 0.3 < Bc, the flow configurations follow the pattern A-B-C-D-A-
D-C-B-A. As the yield stress increases beyond Bc, however, the flux becomes blocked once
the B-C-D regions fuse into E regions. As shown in figure 15(c) for the case B = 0.6 > Bc,
the flow configurations then follow the sequence A-E-A-E-A. At yet larger yield stresses
B > Ba ≈ 0.65, the flow configuration changes a third time due to the disappearance
of the backwards-forced A region. Only the forwards-forced A region then remains, as
illustrated by the case B = 0.9 > Ba shown in figure 15(d).

4.4. Activation of locomotion

We explore the activation of locomotion in more detail by analysing the near-Newtonian
limit B ≪ 1. In this limit, the flow pattern is dominated by A regions that are separated
by narrow combinations of B-C-D regions, each surrounding the two locations where pξ
changes sign. Over the A regions, the formulae for the flow profiles (A 2) and (A1), with
(2.22) used to eliminate Y±, can be simplified in the limit B ≪ 1, to give

Q ∼ τS
2

− pξ
3

+

(

1

2
− τS

2

p2ξ

)

Bσ, uS ∼ τS − pξ
2

+

(

1− 2τS
pξ

)

Bσ, (4.7a,b)

where σ ≡ sgn(pξ), and we have omitted terms of O(B2). In view of the steady-state
condition 〈τS〉 = 0, the spatial averages of (4.7a, b) imply that U and Q are each O(B).
In turn, it then follows from (4.7a) that pξ = 3τS/2 + O(B). Using this expression to
evaluate pξ in the first-order terms in (4.7a, b) and then taking the period averages of
these equations, we deduce that

U ∼ − 1
3
B〈σ〉+O(B2), Q ∼ 1

18
B〈σ〉 +O(B2), (4.8a,b)

where σ ∼ sgn(τS) represents the direction in which the yield stress opposes motion at
each location of ξ.

Finally, we determine τS by substituting the leading-order approximation uS ∼ −Ξξ ∼
τS/4, obtained by combining (4.6a) and (4.7), into the ξ-derivative of (4.1c) to obtain

τS
′ − 1

4
DτS = f ′, (4.9)

where we have used primes to denote d/dξ, which can be reduced to quadrature. For
D = 0, this final step is unnecessary because (4.1b) implies directly that τS = f , so
〈σ〉 = 〈f〉. For our illustrative forcing patterns (4.2), we therefore have 〈σ〉 < 0 if γ > 0,
implying that the yield stress suppresses more flow over the wider backwards-forced
regions than the narrower forwards-forced regions. Also, 〈σ〉 increases with γ, indicating
that larger values of γ are more favourable for generating locomotion in the limit B ≪ 1.
The asymptotes (4.8a, b) are shown as dotted curves in figure 15.
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Figure 16. Critical Bingham number above which flux generation is arrested Bc(γ,D) plotted
as a function of γ for stiffnesses of D = 0, 2, 4, 6, 8 and 10. In the case D = 0, the flux-less
and flux-generating regions of parameter space are indicated, and the critical Bingham number
Ba(γ,D) at which all backwards motions of the foot surface are first arrested by the yield stress
is shown as a dashed curve.

4.5. Blockage of flux

For B > Bc, the flux q vanishes because of the appearance of rigid plugs that span
the depth of the mucus layer. The threshold Bc(γ,D) can be conveniently computed by
considering the force balance on steady states with the no-flux condition q = 0 imposed.
As indicated by comparing the cases with B = 0.3 < Bc ≈ 0.34 and that of B = 0.6 > Bc

in figure 15(b), the breaking of the rigid plugs as B is decreased from Bc corresponds to
the replacement of the E regions by D regions. The net force associated with breaking the
rigid plugs, F ∗ = 〈τS〉 = 〈τB〉, can be split into two parts, F ∗ = FA+FD, which represent
the contributions to F ∗ from the A and D regions in the limit B → B−

c . Denoting 1D(ξ)
as the characteristic function that equals unity over the D regions and zero elsewhere,
and noting that the D regions form when τS = −B, we can write

F ∗ = FA + FD = 〈τS(1− 1D)〉+ 〈τB1D〉 = 〈τB(1− 1D)〉 −B〈1D〉. (4.10)

Figure 15(a) includes a plot of F ∗ against B for the flux-less solutions (B > Bc) in the
case with D = 0 and γ = 4. For B > Bc, F

∗ is negative, implying a consistent flux-less
state. At B = Bc, F

∗ vanishes, corresponding to the breakup of the rigid regions and
the generation of flux for B < Bc. Figure 16 displays computations of Bc(γ,D), which
we determined by locating the zero of F ∗ as B is varied over the flux-less solutions.

4.6. Arrest of locomotion

The arrest of locomotion at B = Bs(γ) occurs when the remaining forwards-forced A

region vanishes. In the limit B → Bs, fluid motion takes place only in the vicinity of
maximum forcing ξ = π, where the surface stress τS only slightly exceeds the yield stress,
and (Y−, 1− Y+) ≪ 1. Guided by (2.22), we set

τS = B + T , τB ∼ −B + T , pξ ∼ 2B + T (B → Bs), (4.11a,b,c)
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Figure 17. Locomotion speed U with D = 0 shown (a) as a function of Bingham number B for
γ = 0.4, 2, 10 and 50, and (b) as a density over the (B, γ)-plane. In (b), the optimal Bingham
number B = Bopt(γ, 0), which maximizes U for a given forcing parameter γ, is shown as a solid
curve and the global maximum over all B and γ is indicated by a dot.
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Figure 18. (a) Locomotion velocity U as a function of Bingham number B for γ = 4 and D = 0,
1, 5, 10 and 20. The asymptotic approximation for U close to the arrest of fluid motion (4.14)
is shown as a dotted curve. Panel (b) shows the maximum speed over all Bingham numbers,
Uopt(γ,D) ≡ maxB U , as a function of γ for stiffnesses of D = 0, 2 and 5. The dots show the
global maxima.

where T (ξ) ≪ B. Substitution of (4.11a, b, c) into (A 1), we find that the leading-order
surface velocity in the A regions simplifies to

uS ∼ −T 2/4B (B → Bs). (4.12)

By substituting (4.12) into (4.6a), we deduce that Ξ = O(T 2), which, provided that
D is order unity, implies that the elastic force in (2.24a) is negligible to leading order.
Under this assumption, (2.24a) indicates that the muscular forcing directly prescribes
the surface stress according to τS ∼ f . Combining this with (4.11a) and expanding f
about ξ = π, we obtain

T ∼ f(π)− k(ξ − π)2 −B (|ξ − π| < ζ), (4.13)

where ζ ≡ [(f(π) −B)/k]1/2 is the half width of the A region and k ≡ f ′′(π)/2.
Given that ζ = 0 when B = Bs, we find that Bs = f(π). Hence, fluid motion is arrested

once the maximum of the forcing falls below the yield stress. The critical value Bs(γ)
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is an increasing function of γ, reflecting the fact that forcing patterns with a stronger
forwards-forced region generate locomotion more readily at larger yield stresses.
Finally, we determine the leading-order locomotion velocity as B → Bs by substituting

(4.12) into (4.1b) to give

U = 〈uS〉 ∼
1

8πBs

∫ ζ

−ζ

(Bs −B)
2
dξ ∼ (Bs −B)5/2

4πBsk1/2
(B → Bs), (4.14)

which we plot as a dotted curve in figures 15(a) and 18(a).

4.7. Optimization of locomotion

In both the asymptotic limits B ≪ 1 and B → Bs, we found that locomotion is enhanced
for larger values of γ. To determine whether this conclusion holds for intermediate values
of B, we compute U as a function of B for various values of γ in the case D = 0. As
shown in figure 17(a), increasing γ from zero initially has the effect of increasing U for
all values of B. This trend continues until γ ≈ 14, where Uopt(γ, 0) = maxB(U) ≈ 0.06 is
optimized over all γ at a Bingham number of B = Bopt ≈ 0.34. Although Uopt decreases
with γ for γ & 14, U still increases with γ for sufficiency small and large B, in accord
with (4.8a) and (4.14). Thus, the advantage of increasing γ is limited for intermediate
values of B. The maximization of U in the parameter space (B, γ) is illustrated further
by the density plot of figure 17(b).
As indicated by figure 18(a), increasing the stiffness D decreases U for all values of

B, suggesting that the perfectly flexible case is optimal for locomotion. This reflects
the fact that the elastic force invariably resists tangential deformations of the surface of
the foot. Nevertheless, the foot of a gastropod cannot be perfectly flexible and, as we
showed in §4.2, the locomotor does not converge towards a steady state if D = 0. In
order to optimize locomotion, gastropods may use the smallest D permissible subject to
the material constraints of its anatomy.
Figures 17(a) and 18(a) illustrate that the maximum speed over all yield stresses Uopt

depends on both the forcing parameter γ and the stiffness D. The plots of Uopt(γ,D)
against γ for three different values of D in figure 18(b) demonstrate that this optimal
speed becomes relatively insensitive to γ once that parameter is sufficiently large (γ & 10).
The global maxima of these curves, U∗

opt(D) = maxB,γ(U), or maximum speed over all
yield stresses and forcing parameters, are indicated by dots. With the typical values of γ
close to these maxima, the forwards-forced regions of the forcing patterns span about one
fifth of the spatial domain. This is comparable or slightly greater than the documented
area of locomotive waves of terrestrial slugs and snails (Denny 1981; Lai et al. 2011).
However, a substantial fraction of the foot of these gastropods is actually bordered by a
rim that does not participate actively in locomotion.
In summary, our model predicts a maximum locomotion speed of U ≈ 0.06 attained

at the smallest possible stiffness D, a Bingham number of B ≈ 0.34 and a forcing pa-
rameter of γ ≈ 14. In terms of dimensional variables, this maximum speed translates to
0.06APH/µ, where AP ≡ (T+ − T−)/fP is the dimensional amplitude of the imposed
forcing in (2.7). Notably, this maximum is independent of the wave speed c. Assuming
that gastropods maximize their speed, and using the characteristic values of U , H and µ
given in §2, we estimate that AP ≈ 2× 104 Pa. This estimate is one order of magnitude
larger than the direct stress measurements quoted by Denny (1981) and Lai et al. (2011).
It seems unlikely, however, that such creatures are built for speed.
It is plausible that gastropods instead favour the optimization of mucus preservation.

If this is the case, then the optimal parameter settings predicted by our model are simply
those leading to a flux-less state with B > Bc(γ,D), the outlines of which are illustrated
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in figure 16. Even if B < Bc, the net flux is always small compared with the speed of
locomotion, with the ratio Q/U having the maximum value 1/6 in the Newtonian case,
as indicated by figure 15 and (4.8a, b). Therefore, the prograde strategy is essentially
optimized for the preservation of mucus across the full range of parameter space.

5. Conclusions

Our goal in this article was to formulate a general model describing the mechanics of
locomotion over a layer of viscoplastic fluid, and to compare the retrograde and prograde
locomotion strategies employed by marine and terrestrial gastropods. Our solutions to
the initial-value problem show that the locomotor undergoes an oscillatory convergence
towards a steady state. In the retrograde case, the frequency of the oscillations equals
that of the forcing wave, while in the prograde case it is inertio-elastic. In either case, the
oscillatory transients are partly the result of a relatively sudden switch-on of the forcing
in our computations. If the forcing waves are turned on more gradually, there are no
transient oscillations, which is more in line with the gait of real biological organisms.
With the retrograde strategy, the yield stress always hinders locomotion, ultimately

preventing it entirely beyond a critical Bingham number. That threshold corresponds to
the formation of rigid plugs that span the depth of the mucus layer. The rigid plugs form
underneath the most weakly forced sections of the foot. When this occurs, fluid is still
yielded under the more strongly forced regions, resulting in peristaltic pumping of fluid
in the direction of the waves.
With our prograde strategy, locomotion is impossible with Newtonian mucus. How-

ever, given a forcing pattern with forwards-forced regions that are narrower but stronger
than the backwards-forced regions, the yield stress restricts more fluid motion in the
backwards-forced regions, leading to a net forwards motion of the foot surface and hence
locomotion. Beyond a critical yield stress, rigid plugs form across the mucus layer, block-
ing any flux of mucus in the direction opposite to that of locomotion; above a second
threshold, the yield stress prevents backward motions of the foot altogether. By this
stage, the yield stress impedes fluid flow only within the forwards-forced regions, and so
locomotion speeds decline with any further increase of the yield stress. Locomotion is
therefore maximized at an intermediate value of the Bingham number. Optimizing over
all the parameters of the model, we find that the locomotion speed is greatest when the
forwards-forced regions of the forcing pattern span about one fifth of a wavelength, and
when the tangential stiffness of the foot is smallest.
Two key aspects of the locomotion of gastropods are the need to adhere to the sub-

strate and to preserve mucus (Denny 1980). These requirements are all problematic for
the retrograde locomotion strategy: there are no rigid plugs in the locomotive states
to assist with adhesion and the retrograde waves pump a significant flux of mucus in
the direction opposite to that of locomotion. In employing the retrograde strategy, it is
possible that marine snails exploit the ambient Newtonian water to supplement mucus
production. They also have a reduced need for adhesion because of buoyancy. By con-
trast, the requirements to adhere and preserve mucus are ideally suited to the prograde
strategy employed by terrestrial gastropods. In this strategy, there is no conflict between
adherence and locomotion, and the presence of rigid plugs also prevents any wasteful
backwards flux of mucus.
Denny (1981) suggested that the primary reason for the slug Ariolimax columbianus

to adopt the prograde strategy originated from the difficulty of the foot muscles in over-
coming lubrication pressures in the mucus layer and lifting the foot vertically. However,
Jones (1973) suggested that significant vertical displacements do occur during the loco-
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motion of Agriolimax reticulatus, and the recent study of Lai et al. (2011) provides clear
evidence for these in other gastropods. This issue could be further explored using the
general model we formulated in §2, which allows for vertical displacements of the foot
surface during prograde locomotion. Lai et al. (2011) also demonstrate that systematic
variations occur within the envelope of the prograde wave train as one proceeds from the
tail to the head of the gastropod, and detect fluid recirculations through the lateral rim
of the foot, both of which could be modelled using the three-dimensional generalization
of our model.
Finally, gastropod mucus undoubtedly has a more complicated rheology than that de-

scribed by the Bingham model, including significant viscoelasticity and relaxation (Denny
1980; Ewoldt et al. 2007). Relaxation times of order one second are reported in the liter-
ature for snail mucus (see Ewoldt et al. 2007). The intrinsic time scale of our theoretical
model 2πL/c is of order ten seconds given typical wave speeds of millimetres per second
and wavelengths of order one centimetre. Hence, even though a time-dependent rheology
may play a role, a first approximation based on the Bingham model seems justified.

This work was initiated at the 2010 Geophysical Fluid Dynamics Summer Study Pro-
gram at the Woods Hole Oceanographic Institution, which is supported by the National
Science Foundation and the Office of Naval Research.

Appendix A. Flow configurations

Denoting σ ≡ sgn(pξ), the velocity u, flux q and basal stress τB associated with the
five possible flow configurations (2.23) are given by

A : 0 < Y− < Y+ < Y (|τB | > B, |τS | > B, τBτS < 0),

u =







uP + 1
2
pξ(y − Y+)

2, Y+ < y < Y,
uP , Y− < y < Y+,
uP + 1

2
pξ(y − Y−)

2, 0 < y < Y−,
uP ≡ − 1

2
pξY

2
−, (A 1)

q = 1
6
pξ[(Y − Y+)

3 + Y 3
− − 3Y 2

−Y ], τB =
uSpξ

Y pξ − 2Bσ
− 1

2
Y pξ. (A 2)

B : Y− < 0 < Y+ < Y (|τB| < B, |τS | > B),

u =

{

1
2
pξ(y − Y+)

2, Y+ < y < Y,
0, 0 < y < Y+,

(A 3)

q = 1
6
pξ(Y − Y+)

3, τB = σ[B + (2uSpξ)
1/2]− Y pξ. (A 4)

C : Y± < 0 or Y < Y± (|τB | > B, |τS | > B, τBτS > 0),

u = 1
2
pξy(y − Y ) +

yuS

Y
, q = 1

2
uSY − 1

12
pξY

3, τB =
uS

Y
− 1

2
Y pξ +Bσ. (A 5)

D : 0 < Y− < Y < Y+ (|τB | > B, |τS | < B),

u =

{

uS , Y− < y < Y,
uS + 1

2
pξ(y − Y−)

2, 0 < y < Y−,
(A 6)

q = − 1
6
pξY

2
−(3Y − Y−), τB = −σ[B + (−2uSpξ)

1/2]. (A 7)

E : Y− < 0 and Y < Y+ (|τB | < B, |τS | < B), u = uS = q = 0, τB undetermined.
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Appendix B. Low-amplitude retrograde locomotion

We develop an approximation for the steady locomotion velocity U in the simplified
retrograde problem under the assumption that A and D are small. Neglecting the elastic
force in (3.1b), we obtain the pressure gradient pξ = −A cos ξ. Let

A ≡ ε2, B ≡ ε3B3, (U,Q) = ε4(U4, Q4) + · · · , Y = 1 + ε2Y2 + ε3Y3 + · · · , (B 1)

where ǫ ≪ 1. In this small-amplitude limit, the flow is dominated by A regions, which
are separated by two composite D-C-B regions surrounding the two locations ξ = π/2
and 3π/2 where pξ changes sign. By combining (B 1) and (A2), we can determine that

Y2 = − 1
12

cos ξ, Y3 = 1
4
B3σ. (B 2)

In the A regions, (A 2) provides the basal shear stress

τB ∼ 1
2
ε2Y cos ξ + ε4U4

( | cos ξ|
| cos ξ| − 2εB3

)

(A). (B 3)

Noting that the edges of the A regions and the D-C-B regions occur where |τB| = B
and |τS | = B, we use (B 3) to determine that the latter occupy |ξ − π/2| < εζ and
|ξ − 3π/2| < εζ, respectively, where ζ ∼ 2B3 + 2(εU4B3)

1/2. The C regions that lie
between the B and D regions have widths of O(ε2) and hence are too narrow to contribute
significantly to the force on the foot. Using (A 4) and (A7), we can determine that the
basal shear stresses in the B and D regions are given to leading order by

τB ∼



















ε3B3 (D : 1
2
π − εζ < ξ < 1

2
π),

ε3B3 − ε2(ξ − 1
2
π) (B : 1

2
π < ξ < 1

2
π + εζ),

ε3B3 + ε2(ξ − 3
2
π) (B : 3

2
π − εζ < ξ < 3

2
π),

ε3B3 (D : 3
2
π < ξ < 3

2
π + εζ).

(B 4)

Finally, substitution of (B 3) and (B 4) into the basal stress constraint (A 7) gives

U4

[

1− 2

π
εB3 log(ε

3B3U4)

]

∼ 1

48
− 2

π
B2

3 , (B 5)

where the logarithmic term on the left-hand side originates from the integral of the last
term on the right-hand side of (B 3). Recasting (B 5) in terms of the variables used in
§3, we obtain (3.3). Note that the logarithmic dependence of U4 on ε implied by (B 5)
indicates that our construction cannot be viewed as a formal asymptotic expansion.
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