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One interpretation of the mechanism of instability in stratified shear flows is based on the idea that
two independently propagating waves may interact to cause mutual growth in one another. This
theory is used in the present study to develop a diagnostic that can be used to identify different types
of unstable modes. We focus on stratified shear layers that are susceptible to both the Kelvin–
Helmholtz �KH� and Holmboe �H� modes of instability—though the formulation is more general.
The diagnostic is found to be useful in differentiating between KH and H modes in the symmetric
stratified shear layer �where the center of the shear layer and the density interface coincide�. The
asymmetric stratified shear layer is also examined since there is no clear distinction between KH-
and H-type modes in this flow. The KH mechanism of growth is predicted to extend to stronger
stratifications �i.e., larger bulk Richardson numbers� than in the symmetric case, in qualitative
agreement with nonlinear numerical results. However, the transition is found to be a gradual one in
which the KH mechanism gives way to the H as the bulk Richardson number is increased. In order
to demonstrate the utility of the method, we apply it to instability observed in the Fraser River
estuary. © 2010 American Institute of Physics. �doi:10.1063/1.3379845�

I. INTRODUCTION

When considering the possibility of turbulence produc-
tion and mixing in a sheared density stratified environment,
it is important to determine whether or not a particular flow
configuration represents a stable solution of the equations of
motion. This problem has a long history that started with the
work of Helmholtz1 and Kelvin2 on the stability of homoge-
neous and stratified vortex sheets in the 19th century. Since
then, numerous authors have examined cases of increasing
complexity in an attempt to understand the basic instability
mechanisms that are present in flows with greater physical
relevance.

Significant progress was made by Rayleigh3 who exam-
ined a piecewise-linear representation of the homogeneous
shear layer, denoted by U�z�, which consists of a finite shear
thickness h �see Fig. 1�. A stability analysis on this idealized
shear layer produced results that are in qualitative agreement
with subsequent studies of smooth profiles, such as the hy-
perbolic tangent shear layer sketched in Fig. 1.4 This sug-
gests that the piecewise-linear shear layer is sufficient to cap-
ture the basic instability mechanism that is also present in
more realistic smooth profiles. Motivated by geophysical
flows, Holmboe5 extended Rayleigh’s analysis to include a
stable density stratification. The piecewise-linear shear layer
was retained and a layered, piecewise-constant density pro-
file �̄�z� was added with a step change in density of �� at the
shear layer center �Fig. 1, with d=0�. As in the homogeneous
�Rayleigh� case, these idealized profiles give qualitatively
similar results to the smooth profiles shown in Fig. 1.6 In

representing Holmboe’s5 piecewise profiles with smooth
functions, it is necessary to introduce another length scale,
given by the density interface thickness �. Qualitative agree-
ment between the smooth and piecewise profiles is achieved
when � is sufficiently small �i.e., R�h /��3, in general�
with the piecewise �̄-profile representing the limit of vanish-
ing �.

Holmboe’s5 stability analysis shows the presence of two
distinct types of unstable modes. Which mode of instability
develops is found to be dependent on the wave number k,
made dimensionless by ��kh /2, and the relative strength of
the stratification, measured by the dimensionless bulk
Richardson number J�g�h / ��U�2, where g�=��g /�0 is the
reduced gravity, and �0 a reference density. The resulting
stability diagram is shown in Fig. 2�a� for smooth “tanh”
profiles with R=5. At low J, the stratification is relatively
unimportant, and the resulting mode of instability is essen-
tially a stratified analogue of the Rayleigh instability. It is
common in the literature to refer to this mode as Kelvin–
Helmholtz �KH�, despite the closer association with
Rayleigh’s shear layer, and we keep with this convention
throughout. When J is sufficiently large, the qualitative be-
havior of the instability changes. Unstable Holmboe �H�
modes develop due to a destabilizing influence of the
stratification,5,7 reaching a peak growth rate at finite J.

This distinct change in the stability properties that occurs
across the KH-H transition can also be seen in the nonlinear
development of the instabilities.8–10 Figures 2�b�–2�d� show
plots of the density and vorticity fields for KH and H insta-
bilities, taken from a series of direct numerical simulations
�DNS�, once they have reached a large amplitude nonlinear
stage of development. For details of the simulations see
Appendix A. The KH instability �Fig. 2�b�� exhibits the well-
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known billows of overturning fluid caused by a rolling up of
the shear layer vorticity �as in the homogeneous shear layer�.
These billows become susceptible to secondary instabilities
and subsequently breakdown to drive turbulent mixing of the
density field.9,11,12 The nonlinear form of H instabilities
�Figs. 2�c� and 2�d�� consists of cusplike propagating waves
that protrude into the upper and lower layers. These
generally do not involve a complete overturning of the den-
sity interface. It is perhaps not surprising that this different
finite amplitude behavior between the KH and H modes has
recently been found to have a pronounced effect on the mix-
ing of mass and momentum in the shear layer; in some cases
changing the effective diffusivity by an order of magnitude
across the KH-H transition.13 Not only the amount of mix-
ing, but also the character of the mixing has been found to
depend on the resulting mode type. The KH instability fo-
cuses mixing within the density interface, often tending to
produce an intermediate density layer, whereas the H insta-
bility focuses mixing and turbulence on either side of the
interface.12,14 It is therefore important to predict which mode
of instability is to occur when quantifying mixing and mo-
mentum transfers.

An important feature of Holmboe’s profiles is that they
exhibit a symmetry about the shear layer center �once the
Boussinesq approximation has been made�. However, obser-
vations of stratified shear instabilities in the field often dis-
play some type of asymmetry. This asymmetry can take
many forms such as a vertically displaced density interface
relative to the shear layer center, a different proximity of the
upper and lower boundaries, and different velocity profile
curvatures above and below the density interface, to name a
few. For reasons of brevity we shall specifically focus on
asymmetry between the shear layer center and the vertical
location of the density interface, and refer to it simply as
“asymmetry.” This asymmetry has been observed in the
field,15–18 and is also common in laboratory experiments.19–21

The implications that asymmetry has on the stability of
the flow was first studied by Lawrence et al.20 and subse-
quently by Caulfield et al.22 Using the piecewise model of
Holmboe5 with a density interface located a distance d below
the shear layer center, as shown in Fig. 1, Lawrence et al.20

found that two distinct branches of instability were present,
each consisting of propagating modes. No distinct transition

from KH to H modes is apparent. One of the two modes
always consists of larger growth rates than the other �referred
to as the dominant mode�, and has often been found to be the
only mode observed at large amplitudes.20,23 Stability results
for the dominant mode of the asymmetric stratified shear
layer using smooth profiles with R=5, and the asymmetry
parameter a�2d /h=0.5, are shown in Fig. 3. In general, no
distinct transition between KH and H modes is obvious from
the results of linear stability theory when an asymmetry is
present �a�0�. The asymmetric laboratory observations of
Lawrence et al.20,24 show a continuous change in behavior
from overturning billows to cusplike waves. This can also be
seen in the simulation results shown in Figs. 3�b�–3�d�,
where instabilities resemble KH at low J, and become more
like H instabilities at larger J.

The lack of any distinct transition in the stability prop-
erties when the flow is asymmetric demonstrates the diffi-
culty in distinguishing between KH- and H-like instabilities
in this case, and raises the question of how to appropriately
define what is meant by KH and H modes. When the flow is
perfectly symmetric the marginal curve separating stationary
modes from propagating modes also coincides well with dis-
tinct changes in growth rate. These changes in stability char-
acteristics have been found to match reasonably well with
changes in the nonlinear behavior of the instabilities, with
stationary billows occurring in the KH region and cusplike
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FIG. 2. Stability diagram �a� of the Holmboe model of the stratified shear
layer for smooth �tanh� profiles with R=5. Dark contours are of growth rate
and gray contours of phase speed with the dark gray shading representing
the region of stability. The thick lines correspond to the stability boundaries
and the transition between stationary �below� and propagating �above�
modes. Representative density fields �upper plot� and vorticity fields �lower
plot� from DNS are shown in ��b�–�d��. The approximate location of the
instabilities on the stability diagram is indicated with letters. The different
widths of ��b�–�d�� are due to changes in the wave number of maximum
growth rate. The vertical domain height is taken to be 10h for the stability
diagram and in the DNS, which is sufficiently large to approximate un-
bounded domains.
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FIG. 1. Profiles of the stratified shear layers to be considered. The thick
lines indicate the smooth profiles and the thin lines represent the piecewise
profiles.

054104-2 Carpenter, Balmforth, and Lawrence Phys. Fluids 22, 054104 �2010�



propagating waves in the H region. It should be noted, how-
ever that nonlinear behavior characteristic of both types of
instabilities has been observed near the transition between
the two mode types.9,10 The fact that a transition between KH
and H behavior, based on the nonlinear dynamics, is ob-
served in asymmetric instabilities, suggests that we must re-
examine the distinction based on phase speed between the
two modes. We therefore develop a diagnostic to interpret
the unstable modes of asymmetric stratified shear layers.

The purpose of this paper is to utilize linear theory to
predict the occurrence of KH- and H-type modes in asym-
metric flows where the distinction between them is blurred.
The motivation for this is based on three previous findings:

�1� KH and H instabilities result from two different
linear growth mechanisms �to be discussed fully in
Sec. II�;5,25,26

�2� it is common to find asymmetry in geophysically rel-
evant flows;15–18 and

�3� the type of instability that develops can have a signifi-
cant influence on turbulent mixing and vertical
transports.13,14,27

We use results from a linear stability analysis of both
piecewise and smooth profiles of the asymmetric stratified
shear layer to predict the occurrence of KH and H modes.
These results are based on the “wave interaction” interpreta-
tion of shear instability that is reviewed in Sec. II. This is
followed by the formulation of a diagnostic in Sec. III that is
used to distinguish between the contributions that KH and H
modes make to the instability of the flow. Results of applying
the diagnostic to the symmetric �a=0� and asymmetric
�a�0� cases shown above are outlined and discussed in Sec.
IV. We then examine a set of profiles measured from a highly

stratified estuary in order to illustrate the applicability of the
formulation in a geophysical context. Conclusions are stated
in Sec. VI.

II. WAVE INTERACTION INTERPRETATION
OF INSTABILITY

The wave interaction interpretation attributes instability
in stratified and homogeneous shear flows to a mutual inter-
action between otherwise freely propagating stable waves in
the profiles. The majority of work that has utilized the wave
interaction interpretation has been performed on the ideal-
ized piecewise-linear representation of the stratified shear
layer,5,26,28,29 since this is the easiest possible geometry to
understand and apply the theory. Piecewise profiles of U and
�̄ are particularly simple because they have delta function
behavior of vorticity gradients U�, and density gradients,
represented by N2=−g�̄� /�0, where primes denote differen-
tiation with respect to z. At these locations, referred to as
interfaces, wave motion may occur. When isolated from one
another, the phase speed of waves on vorticity and density
interfaces is given by

cv = U�zv� +
�q

2k
and cd = U�zd� � � g�

2k
�1/2

, �1�

respectively, where �q=U��zv
+�−U��zv

−� denotes the jump in
vorticity across the vorticity interface. Note that the vorticity
interface supports a single unidirectional mode of propaga-
tion, whereas the density interface supports two oppositely
propagating modes.

The wave interaction interpretation requires that two in-
terfaces must be present, each supporting an oppositely
propagating wave mode, in order for instability to be pos-
sible. The two interfacial waves are then able to interact such
that �i� they are stationary relative to one another, and �ii� in
a “phase-locked” position such that they may cause mutual
growth. It is only possible for �i� to occur between two op-
positely propagating wave modes when there is shear in the
background profile. Condition �i� suggests that the region of
instability in the �J-plane should be close to the locus of
points where the two freely propagating interfacial wave
modes have equal phase speeds. Although this is not strictly
true, as each wave will interact and adjust the others phase
speed, in the limit of large � this interaction vanishes and the
approximation becomes accurate. This “resonance” approxi-
mation has proven useful in identifying different instability
modes in previous studies,25,26,29 and reduces to the
asymptotic large-� approximation used by Caulfield26 and
Caulfield et al.22

The resonance approximation may be used to identify
the wave interactions that lead to instability, and provides an
interpretation of the KH and H modes that are observed in
the piecewise symmetric stratified shear layer profiles of
Holmboe.5 Figure 4�a� shows the resulting stability diagram
with the resonance approximation as a dashed line. The
curve is obtained by equating the upper �lower� vorticity
wave speed with the rightward �leftward� propagating inter-
nal wave speed on the density interface. This results in
two curves that are coincident �due to the symmetry� that
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represent the rightward-propagating H+ mode, and the
leftward-propagating H− mode. The close agreement be-
tween the resonance approximation and the region of insta-
bility indicates that the H modes are caused by an interaction
between vorticity and internal wave modes. As J vanishes,
we approach Rayleigh’s homogeneous shear layer, where in-
stability must result from the interaction of the two vorticity
modes. This was clearly illustrated by Baines and
Mitsudera25 in considering the same profiles as Holmboe5

except with the lower vorticity interface removed, shown in
Fig. 4�b�. By comparing the stability diagrams in Fig. 4, we
see that the H region of instability remains largely un-
changed; however, the KH region is completely eliminated.
Since only two interfacial waves are able to interact—the
upper vorticity wave and the rightward-propagating internal
wave—only one type of unstable mode �the H+ mode� is
present. The KH instability is not present since it is caused
by the interaction of the upper and lower vorticity modes.

In the above description, we have only concentrated on
piecewise profiles. However, the same mechanisms are still
believed to apply to smooth profiles.25 In this case, rather
than having delta function behavior of U� and N2 at the
interfaces, those functions take on smooth distributions that
attain extrema in an “interfacial region.” The KH instability
is now a result of the inflection point in the U-profile that
separates two regions of oppositely signed vorticity gradi-
ents. Likewise, the H instability is the interaction of a region
of strong vorticity gradients �U�� with a strong density gra-
dient region �N2�. It does not require the presence of an
inflection point. Note that this is not a violation of the
Rayleigh3 inflection point theorem since this theorem applies
only to homogeneous flows. Similarities between smooth
profiles and piecewise profiles in terms of wave interactions
have been discussed previously by Baines and Mitsudera,25

and will also be seen in the results to follow.

Stratified shear layers consisting of two density inter-
faces may also be susceptible to a third instability type that
was first discovered by Taylor.30 The wave interactions lead-
ing to this instability were described systematically by
Caulfield26 and the first laboratory observations reported by
Caulfield et al.22 We therefore refer to these unstable modes
as Taylor–Caulfield �TC� modes. The TC mode results from
the interaction of two oppositely propagating waves on the
density interfaces that may become phase-locked due to a
background shear.26 Similar to the H modes, the TC modes
do not require the presence of an inflection point �in fact, U�
may be identically zero throughout the domain�. In general,
the instability of a stratified shear layer may be described in
terms of these three interaction types �i.e., KH, H, and TC�.
In Sec. III, we formulate a diagnostic in order to quantify the
strength of the three types of wave interactions.

III. FORMULATION OF A DIAGNOSTIC

In this section, we utilize condition �ii� from Sec. II that
the interacting waves must cause mutual growth in each
other, to formulate a diagnostic used to interpret unstable
modes of the stratified shear layer. The formulation is gen-
eral, and may be applied to any profiles in which distinct
interfaces can be identified. This allows for a classification of
the unstable modes in terms of the KH-, H-, and TC-
mechanisms, extending previous work by Caulfield.26

A. Taylor–Goldstein equation

We will be concerned with the small amplitude motions
of an incompressible inviscid Boussinesq fluid, with pertur-
bations taken about the basic profiles that are small enough
to be well approximated by the linearized equations of mo-
tion. Following the framework of Holmboe,5 we partition the
total perturbation vorticity of the flow, q, into a kinematic
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portion qK, and a baroclinic portion, qB. The kinematic vor-
ticity is created by the vertical displacement of vorticity gra-
dients in the U-profile, and is given in the linear approxima-
tion by

qK = − U�� , �2�

where � denotes the vertical displacement field. In
Boussinesq fluids, baroclinic vorticity is produced by the tilt-
ing of the constant density surfaces of the �̄-profile. This
baroclinic production of vorticity may be written, within the
linear approximation, as

DqB

Dt
= N2��

�x
, �3�

where the material derivative here and throughout the re-
mainder of the paper, has been linearized, and is given by

D

Dt
�

�

�t
+ U

�

�x
.

The total perturbation vorticity can now be written as the
sum of the kinematic and baroclinic portions, viz.,

q = �2� = qK + qB. �4�

Here we have used a stream function representation, �, of
the perturbation velocity field u= �u ,w�, such that u=�� /�z
and w=−�� /�x.

Changes in the vertical displacement field may be related
to the vertical velocity through the kinematic condition

D�

Dt
= −

��

�x
, �5�

and allows the problem, given by Eq. �2� through Eq. �4�, to
be expressed in terms of a single equation for �. Perturba-
tions can now be taken to be of the normal mode form, i.e.,

��x,z,t� = �̂�z�eik�x−ct�, �6�

for the stream function, where k is the horizontal wave num-
ber and c=cr+ ici is the complex phase speed. Substituting
this form results in the well-known Taylor–Goldstein �TG�
equation

�̂� + � N2

�U − c�2 −
U�

U − c
− k2	�̂ = 0. �7�

This equation, together with the condition that �̂ vanishes on
the boundaries �which may be taken at z= �	�, describes an
eigenproblem for the eigenvalue c, and the eigenfunction

�̂�z�. The flow given by the basic profiles is linearly unstable
if there is an eigenvalue with ci
0, in which case the growth
rate is �=kci.

B. Partitioning into kinematic and baroclinic fields

Once the normal modes are determined from solving the
TG equation, it is possible to use this information to examine
the roles that the kinematic and baroclinic fields play in the
growth of the resulting instabilities. This may be accom-
plished by first noting that the � due to the kinematic vortic-

ity alone, may be determined directly from �. By defining
this stream function field as �K�x ,z , t�, Eq. �4� implies that

� = �K + �B, and similarly �̂ = �̂K + �̂B, �8�

so that Eq. �2� may be written as

�̂K� − k2�̂K = − U��̂ . �9�

A similar form may be found for the baroclinic field from
Eq. �3� and expressed as

�̂B� − k2�̂B =
N2

U − c
�̂ . �10�

Since �̂ and c are both known from the solution to the TG
equation, Eqs. �9� and �10� can be expressed in the general
form

L��̂� = f�z� , �11�

where the linear operator L=d2 /dz2−k2, and f�z� may be
regarded as some known forcing function given by the right

hand sides of Eqs. �9� and �10�. We may now solve for �̂�z�
by inverting the operator L by the relation

�̂ = 

D

G�s,z�f�s�ds , �12�

where D is the domain, and G�s ,z� is the appropriate Green’s
function for L, which depends on the boundary conditions. In
this case it is given by

G�s,z� =
cosh k�zu + zl − z − s� − cosh k�zu − zl − �z − s��

2k sinh k�zu − zl�
,

�13�

for domains with upper and lower boundaries at zu and zl,
respectively. When the domain is unbounded then this re-
duces to G�s ,z�=−e−k�z−s� /2k.

From Eq. �12�, it is possible to partition the �̂ into kine-
matic and baroclinic effects. The contribution of each field to
the growth rate and phase speed of the normal mode distur-
bance can now be explicitly solved for by rearranging the
kinematic condition �5� and substituting the normal mode
form �6� to give

cr = U + Re� �̂K + �̂B

�̂
� , �14�

and

� = k Im� �̂K + �̂B

�̂
� . �15�

The relation for � in Eq. �15� will be used throughout the
remainder of the paper to assess the contributions of the ki-
nematic and baroclinic fields in the growth of unstable
modes.
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C. Piecewise profiles

We now apply these general relations to the piecewise
profiles of Fig. 1, leaving the formulation in terms of an
arbitrary number of multiple interfaces to Appendix B. Since
these profiles exhibit delta function behavior at the interface
locations, we may write

U��z� = �q1��z − z1� + �q2��z − z2� , �16�

and

N2�z� = g���z + d� , �17�

where the subscript 1 and 2 refer to the upper and lower
vorticity interfaces, respectively. Substituting the above into
Eqs. �9� and �10� and utilizing Eq. �12� allows us to deter-
mine the stream function associated with each interface
given the interfacial displacement ��̂�, as found by solving
the TG equation. We can then write these stream functions as

�̂K1, �̂K2, and �̂B, for the upper vorticity, lower vorticity, and
density interface, respectively. It is now a simple matter to
use Eq. �15� to express the total growth rate ��, obtained by
the solution to the TG equation� at each interface as a sum of
the growth rate contributions of all other interfaces. For ex-
ample, we may choose the upper vorticity interface �denoted
by the K1 superscript� and write

� = k Im� �̂K1�z1� + �̂K2�z1� + �̂B�z1�
�̂�z1�

	 , �18�

=�K1
K1 + �K2

K1 + �B
K1. �19�

Each of the growth rate terms on the right hand side of Eq.
�19� will be referred to as a partial growth rate. In a similar
fashion, we can repeat this for the other K2 and B interfaces
present. This leads to three sums as in Eq. �19� above, one
for each interface, and a total of nine different partial growth
rates. However, it is not possible for a vorticity interface to
cause growth in itself �i.e., �Kj

Kj =0 for any vorticity interface
j�, and so the number of terms in the partial growth rate sums
are reduced. This “self-interaction” is not possible since �̂

and �̂K must always have a phase difference of 0 or � radi-
ans, as can be seen from Eqs. �9� and �12�.

D. Smooth profiles

The same partial growth rate diagnostic is now devel-
oped for the continuous distributions of U� and N2, with the
generalization to an arbitrary number of interfaces described
in Appendix B. This is done by defining three interfacial
regions where either U� or N2 reaches an extrema �see Fig.
5�. The vorticity interface regions in this case extend from
the upper and lower boundaries to the inflection point at
z=0. Since the N2 profile exhibits only a single maximum at
z=−d, the density interface region is the entire domain, D.

The �̂K,B can then be defined for each interface using
Eq. �12� as

�̂K1,2�z� = − 

D1,2

G�s,z�U��s��̂�s�ds , �20�

in the case of the vorticity interfaces, with D1= �0,+	�,
D2= �−	 ,0�, and

�̂B�z� = 

D

G�s,z�
N2�s�

U�s� − c
�̂�s�ds , �21�

for the density interface.
Now that the stream function associated with each inter-

face is known, we may once again use Eq. �15� and �̂ to
calculate the partial growth rates. The difficulty with this is
that we do not know at what precise vertical location the
interface is located at; in smooth profiles we are only able to
identify interfacial regions. It is intuitively clear that the in-
terface should be concentrated near the extrema of U� or N2.
We therefore use these profiles as weight functions in an
integrated version of �15�. Using the upper vorticity interface
as an example, we multiply both sides by U� and integrate
over the interfacial region D1, represented by � D1

to give

� =
�U��K1D1

�U�D1

+
�U��K2D1

�U�D1

+
�U��BD1

�U�D1

, �22�

=�K1
K1 + �K1

K2 + �K1
B , �23�

after dividing by both sides by �U�D1
. Here we have defined

� j�z�=k Im��̂ j / �̂�, where j represents one of the three
�K1,K2,B� interfaces of interest. This gives us a direct ana-
logue to Eq. �19� for smooth profiles �although the choice of
U� or N2 as weight functions is a little arbitrary, we have
verified that other selections provide qualitatively similar re-
sults�. Partial growth rate sums as in Eq. �23� can also be
developed for the remaining two interfaces by choosing the

0

z

U ’’

N 2

D2

D1

, N 2U ’’

FIG. 5. Plots of U��z� and N2�z� for the smooth profiles shown in Fig. 1. The
position of the upper and lower interfacial vorticity regions are labeled as
D1,2, respectively.
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appropriate weight function �N2 in the case of the density
interface� and region of integration. It should be noted that
for smooth profiles we do not necessarily have �Kj

Kj =0, as for
piecewise profiles. This self-interaction is possible since

phase differences should be expected between �̂K and �̂
within the interfacial region.

IV. RESULTS

We now apply the partial growth rate formulation for
piecewise and smooth profiles to the stratified shear layers in
Fig. 1. The symmetric case is examined first, followed by the
asymmetric case where we let a=0.5. This particular value
for a was chosen to match the asymmetry that Lawrence
et al.20 observed in their laboratory experiments. In the case
of smooth profiles, we will take

U�z� =
�U

2
tanh�2z

h
� , �24�

and

�̄�z� = �0 −
��

2
tanh�2Rz

h
+ a� , �25�

and examine a single value of the interfacial thickness ratio
R=5, which is large enough to permit a significant region of
unstable propagating modes when a=0.

The profiles consist of two vorticity interfaces and a
single density interface. Therefore, the TC mode that results
from the interaction of two density interfaces can immedi-
ately be disregarded. The partial growth rate diagnostics in
Eq. �19� or Eq. �23� reduces to a sum of three terms for each
interface. However, we will limit our attention to only the
rightward-propagating H+ mode, the KH mode, as well as
the dominant asymmetric mode. In doing so, it will suffice to
apply the partial growth rate diagnostic only to the upper
vorticity interface, since each unstable mode will consist of
mutual growth between the upper vorticity interface, and one
of the lower vorticity or density interfaces. The diagnostic
equation then becomes

� = �KH + �H + �self, �26�

where the terms on the right hand side represent the partial
growth rate due to the interaction between the upper vorticity
interface and �from left to right� the lower vorticity, density,
and upper vorticity interfaces. These terms are identified
with KH, H, and self-interaction components, respectively.

A. Symmetric profiles

Beginning with the stability properties of the piecewise
symmetric stratified shear layer, we plot the partial growth
rates from Eq. �26� in Fig. 6. Recall that a vorticity interface
cannot interact with itself; therefore, for all the piecewise
results �self=0 and only �KH and �H are required in the sum,
i.e., the normal mode growth rate can be expressed as a KH
and H component according to Eq. �26�.

In the region of stationary �cr=0� instability, growth is
due entirely to �KH �Fig. 6�b��, while the density interface
acts as a stabilizing influence, indicated by the negative val-
ues of �H �Fig. 6�c��. In addition, the asymptotic result of an
unstable H mode consisting predominantly of a �H compo-
nent is recovered for large � �and J�, as expected. As J in-
creases, the KH contribution, �KH, first increases to a maxi-
mum near the transition from stationary to propagating
modes, and then slowly declines towards zero. This behavior
indicates that the interaction of vorticity interfaces, normally
associated with the stationary KH mode, does contribute to
the growth of the propagating modes, particularly near the
transition between the two. In other words, the KH mecha-
nism exerts a significant influence in the region of propagat-
ing modes.

This result should not be surprising if we consider, once
again, the stability diagrams of Fig. 4. The profiles of Baines
and Mitsudera25 �Fig. 4�b�� show a purely H-type growth
mechanism since no lower vorticity interface is present.
When this lower vorticity interface is introduced in Fig. 4�a�,
the KH region is produced in the stability diagram. However,
the growth rates in the propagating modes are also altered by
the addition of the lower vorticity interface, indicating that
the KH mechanism alters the growth rates of the propagating

J
(a)σ

0.
120.
080.
04

0.1
60.1

2

0.
08

0

0.1

0.2

0.3

0.12

0.2

0.08

0.16

-0.04

0

0.08-0.08

α
0.25 0.5 0.75

α
0.25 0.5 0.75

α
0.25 0.5 0.750 00

(b)σKH (c)σH

-0.08
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region of stable modes, whereas light gray shading denotes regions where the partial growth takes negative values. The position of the wave number of
maximum growth rate is indicated by the gray dashed line.

054104-7 Identifying unstable modes in stratified shear layers Phys. Fluids 22, 054104 �2010�



modes. The KH contribution to the total growth rate of the
propagating modes is greatest close to the transition, and it
should be noted that the neglect of the lower vorticity inter-
face does not significantly affect the stability properties of
the propagating modes at large J and �.

The same general behavior of the piecewise profiles is
also seen in the partial growth rates of the smooth profiles
shown in Fig. 7. Note that because the TG equation is solved
numerically on a finite domain for the smooth profiles �the
domain height was here taken to be 10h�, the resulting
growth rates in Fig. 7�a� exhibit certain differences with their
counterparts for the piecewise profiles in Fig. 6�a�, and, in
particular, the low-� modes become unstable.6 In addition,
when examining smooth profiles, �self must be included in
order to complete the sum in Eq. �26�. Although �self can be
a large term, it is always found to be a negative �stabilizing�
influence, and does not significantly affect the interpretation
of the dominant instability mechanism. For this reason we do
not show the details of �self in the results.

Just as in the piecewise results in Fig. 6, the continuous
profiles show that the stationary modes are dominated by the
KH component of the partial growth rates. This persists into
the propagating region, particularly at small �, where �H

continues to be negative. As J is increased, the H interaction
between shear layer vorticity and the density interface be-
comes the dominant mechanism of instability growth. We
can again conclude that a significant portion of the propagat-
ing modes experience a KH-type mechanism of inflection
point growth near the phase speed transition.

Since finite amplitude instabilities in stratified shear lay-
ers have generally been found to occur at the wave number
where the growth rate is a maximum, denoted by �max, it is
these disturbances which we should expect to be the most
relevant.31 It is therefore of interest to compare the relative
contributions of �KH and �H to the growth of the instability
along the wave number of maximum growth curve. This is
shown in Fig. 8 where the partial growth rates are plotted as
a function of J along the �max-curve. Note that since �max

changes discontinuously across the transition from stationary
to propagating modes, Fig. 8 shows that �KH and �H are also
discontinuous there. There are two locations of particular
interest in these plots: the transition from stationary to propa-

gating modes �vertical gray line�, and the point at which
�KH=�H �vertical dashed gray line�. The first location de-
notes the commonly accepted transition between KH and H
modes based on phase speed considerations, and the second
shows our diagnostic describing the predominance of either
the KH- or H-type growth mechanisms. In the case of the
piecewise profiles of Fig. 8�a�, these two locations are coin-
cident. However, the smooth profiles show that H-type
growth does not predominate until J has surpassed the tran-
sition to propagating modes. The partial growth rate diagnos-
tic appears to provide a good description of the nonlinear
dynamics for the few simulations performed, as shown in
Figs. 8�c�–8�f�.
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B. Asymmetric profiles

Whereas the symmetric profiles show a distinct transi-
tion from stationary to propagating instabilities, there is no
such transition in the case of asymmetric profiles. Instead,
two unstable propagating �cr�0� modes, each traveling in
opposite directions with respect to the mean flow, are present
for all J
0. However, we note that as J→0 we recover
Rayleigh’s homogeneous shear layer instability, and so KH
behavior is expected at small J. Also, for large J �and large
�� it can be seen that both instability regions are in alignment
with the resonance condition between the vorticity interfaces
and the interfacial waves on the density interface �obtained
by equating the phase speeds of each pair of waves, see Sec.
II�. We therefore expect that the unstable modes are of
H-type at large J, and some sort of transition between the
two linear growth mechanisms must take place.

This behavior is reflected in the partial growth rates of
the piecewise profiles shown in Fig. 9. Only the dominant
mode consisting of larger growth rates is plotted since it has
most often been found to control the development of the
instabilities into the nonlinear regime.20,23 Figure 9 shows
that both �KH and �H are positive over the majority of the
�J-plane where the unstable mode is present. Since �KH is a
decreasing function of J, and �H is an increasing function of
J, we expect a gradual transition from KH- to H-type modes.
In other words both KH and H growth mechanisms are

present throughout the majority of the unstable region,
and they replace one another in a gradual fashion as J is
increased.

The resulting plots for smooth profiles �Fig. 10� show
qualitatively similar results. Some difficulty was encountered
in the numerical solution of the TG equation for smooth
profiles near the stability boundary due to the near-singular
behavior of the solutions at the critical level �see Alexakis32

for further discussion�. Evidence of this can be seen in Fig.
10�c�, where the contouring of �H is a little irregular; how-
ever, we do not expect this to have significantly effected the
results.

Focusing on the most amplified wave number, Fig. 11
shows a gradual transition from a growth dominated by �KH

to one where �H becomes the stronger influence, as J is
increased. This is in accord with previous observations of the
nonlinear behavior of the instabilities,20,24 and can also be
seen in the results from the numerical simulations �Figs.
11�c�–11�f��. A KH-like behavior can be seen in the instabil-
ity for J=0.03 and 0.10 in Figs. 11�c� and 11�d�, where sig-
nificant overturning is present in the density field, and this is
to be expected with a larger value of �KH. By J=0.30, in Fig.
11�f�, we have a nonlinear form of the instability that is more
akin to the H instability, resembling a cusplike wave. There
is only a gradual transition visible in the nonlinear forms of
the instabilities, and they generally appear as a mix of both
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types—also to be expected from the partial growth rate pre-
dictions. A result that can be seen directly from Fig. 11 is that
the asymmetry extends the KH mechanism to larger values
of J than in the symmetric case.

V. APPLICATION TO FIELD PROFILES

We now give an example of how to apply the diagnostic
to U and �̄ profiles collected from the field. The profiles
shown in Fig. 12 were measured in the Fraser River estuary,
which have been smoothed and filtered using the methods
described in Tedford et al.18 Both of the U and �̄ profiles can
be seen to consist of a number of “layers,” which lead to
many possible interactions between interfaces. These inter-
faces can be identified by extrema in the profiles of U� and
N2 shown in Figs. 12�a� and 12�b�, respectively. The pres-
ence of multiple inflection points in U, and a number of

maxima in N2 indicate that any of the three instability types
�KH, H, and TC� mentioned in Sec. II may be present. A
linear stability analysis of these profiles predicts an unstable
mode with a maximum growth rate of �=0.024 s−1 at a
wave number of k=0.61 m−1 and a displacement eigenfunc-
tion amplitude ��̂�, shown in Fig. 12�c�. These predictions of
linear theory were found in Tedford et al.18 to be in good
agreement with observations recorded by an echosounder
�Fig. 12�d��, both in the wave number k, and the vertical
location given by the maximum of ��̂�.

We now determine which interfacial wave interactions
are responsible for generating the instabilities seen in the
echosounding of Fig. 12�d�. Due to the many interfaces that
are present in the profiles, we shall simplify the analysis by
noting that the dominant vertical location of the perturba-
tions is concentrated near the peak of ��̂� at z=10.9 m. This
suggests that the instability is due only to the influence of the
interfaces nearest this level. These consist of the two upper-
most vorticity interfaces, with extrema at z�11.5 and 10 m,
as well as the density interface at z�10.5 m. Assuming this
to be the case, we modify the observed profiles so that U�
and N2 vanish below, with U� remaining constant. The modi-
fied profiles will be denoted by an asterisk subscript �e.g.,
U��, and are shown in Fig. 12. Performing a linear stability
analysis on the modified profiles yields only a 1% change in
the peak growth rate, and negligible changes in kmax and ��̂�
�see Fig. 12�c��. We conclude that our choice of modified
profiles is justified by these negligible changes in the prop-
erties of the unstable mode �the mathematical reason being
the decay of the Green’s function �13� away from the inter-
facial regions�. We have also confirmed that the neglected
interfaces in the original U and N2 profiles have negligible
partial growth rate contributions.

The U� and N�
2 profiles are of similar form to the asym-

metric stratified shear layer examined in Sec. IV with the
exception that the two vorticity interfaces are of different
strength, and in the location of the vertical boundaries. Once
again we identify a �KH, �H, and �self associated with the
partial growth rates of the upper vorticity interface with the
lower vorticity, density, and upper vorticity interfaces, re-
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spectively. Applying the diagnostic formulated in Sec. III
results in ��KH,�H,�self�= �0.011,0.023,−0.010� s−1. This
leads us to conclude that the instabilities observed in Fig. 12
are primarily of the H-type, and appears to be in agreement
with the wavelike features observed in the echosounding im-
age in Fig. 12�d� �though the interpretation of density struc-
ture from echosounding images is imprecise, see Tedford
et al.18 and references therein�. These results also add further
quantitative evidence to support the observations of Tedford
et al.18 to have identified instabilities primarily of the H-type.
To our knowledge this would be the first time that H-type
instabilities have been identified in the field.

VI. DISCUSSION AND CONCLUSIONS

Based on the wave interaction view of stratified shear
instability,5,25,26 a diagnostic has been developed to interpret
the wave interactions in stratified shear layers that lead to the
growth of unstable modes. It can be viewed as an extension
of the resonance and large-� approximations used by
Caulfield,26 Caulfield et al.22 and Baines and Mitsudera,25 to
allow for a general classification of stratified shear instabili-
ties in terms of the KH-, H- and TC-mechanisms. These
types refer to vorticity-vorticity, vorticity-internal wave, and
internal wave-internal wave interactions, respectively. The
diagnostic has the advantage of quantifying wave growth in
the entire �J-plane, as well as being applicable to smooth
profiles.

The diagnostic is applied first to the symmetric and
asymmetric stratified shear layers. An interesting result of the
analysis was the observation that the KH mechanism contrib-
uted significantly to the propagating modes that are normally
classified as H-type. The asymmetric stratified shear layer,
whose region of instability consists entirely of propagating
modes, was generally found to be composed of a mix of both
KH- and H-type growth mechanisms. This highlights the fact
that in general stratified shear flows a strict classification into
one mode type or another is not always possible, and that an
alternative is to quantify the mechanisms that are present.
The diagnostic suggests that the KH mechanism is found at
larger values of J in the asymmetric case, and appears to be
in qualitative agreement with results from the numerical
simulations presented here, as well as those of Carpenter
et al.,14 which cover a range of asymmetries.

A potential drawback of the method is the large number
of wave interactions that must be accounted for in profiles
with multiple interfaces. In the field profiles examined from
the Fraser River estuary, the number of observed interfaces
would produce an unwieldy number of interactions that must
be accounted for. This issue was dealt with by using a knowl-
edge of the unstable mode to simplify the profiles without
significantly affecting the stability properties. This reduced
the analysis to that of the stratified shear layers examined
earlier. However, this simplification may not always be pos-
sible and there may arise cases in which the instability in-
volves the interaction of numerous interfaces.

Extending the use of the diagnostic to smooth profiles
allows for the direct interpretation of wave interactions in
geophysically relevant profiles measured in the field. These

profiles invariably display some type of asymmetry, and the
resulting modes of instability are likely to be of a “mixed” or
“hybrid” type, i.e., they may involve two or more interaction
types as is found in this study. This behavior has been noted
in numerous cases exhibiting asymmetry in a more general
sense, for example, the non-Boussinesq flow of Umurhan
and Heifetz,33 and the spatially developing flows of Pawlack
and Armi21 and Ortiz et al.,34 in addition to the vertically
offset profiles considered in the present study. In these mixed
mode circumstances, the partial growth rate diagnostic may
provide a useful tool in assessing the characteristics of the
instability so that predictions can be made regarding the non-
linear dynamics.
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APPENDIX A: DESCRIPTION OF THE NUMERICAL
SIMULATIONS

Results of the DNS shown in Figs. 2, 3, 8, and 11, were
performed using the code described by Winters et al.35 The
DNS were two dimensional with periodic boundary condi-
tions in the horizontal and free-slip conditions on the vertical
boundaries. In each case, a single wavelength of the instabil-
ity was simulated by choosing the horizontal domain length
Lx=FGM, the wavelength of the fastest growing mode pre-
dicted from linear theory. The vertical domain height
Ly =10h, which has been found sufficiently large to agree
well with the unbounded results from linear theory. The ve-
locity and density fields were perturbed initially with the
eigenfunctions so that they can develop relatively quickly
into finite amplitude waves.

Although the stability analysis and diagnostic formula-
tion applies in the inviscid, nondiffusive case only, it is nec-
essary to choose finite kinematic viscosity, �, and diffusivity
of the stratifying agent, �, in the simulations so that they
remain well resolved. The relative size of these are measured
by the Reynold’s number Re=�Uh /�, and the Prandtl num-
ber Pr=� /�, which were set to values of 1200 and 25, re-
spectively. Results from a linear stability analysis incorporat-
ing the viscous and diffusive effects at these values of Re and
Pr show only small differences in growth rate to the inviscid,
nondiffusive case near �max, where the DNS were performed.
For this reason we expect the DNS results to apply well to
the inviscid, nondiffusive problem, justifying a comparison
between the finite amplitude instabilities and the results of
linear theory.
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APPENDIX B: GENERAL FORMULATION
OF THE PARTIAL GROWTH RATE DIAGNOSTIC

We now derive the partial growth rate diagnostic for
multiple vorticity and density interfaces for piecewise pro-
files. The vorticity and density gradients �U� and N2� exhibit
delta function behavior at a number of discrete interface lo-
cations, allowing us to write

U��z� = �
j=1

n

�qj��z − zj� , �B1�

and

N2�z� = �
�=1

m

g����z − z�� , �B2�

where we are considering general profiles consisting of n
vorticity interfaces with jumps �qj, and m density interfaces
with jumps g��, at the vertical locations zj and z�, respectively.

When the delta-function forms in Eqs. �B1� and �B2� are

substituted into Eq. �12�, the integrals for �̂K and �̂B reduced
to sums, where each term represents the contribution of a
particular interface. If we now choose an interface of inter-
est, the pth interface say, and apply Eq. �15�, we are able to
break the total growth rate of the normal mode �, into the
individual contributions of each interfacial wave. This allows
us to write

� = �
j=1

n

�Kj
p + �

�=1

m

�B�
p , �B3�

where each term of the sums represents a partial growth rate,
and are given explicitly by

�Kj
p = − k Im��qjG�zj,zp�

�̂�zj�
�̂�zp�� , �B4�

and

�B�
p = k Im�g��G�z�,zp�

U�z�� − c

�̂�z��
�̂�zp�� . �B5�

Note that for piecewise profiles a vorticity interface cannot
cause growth in itself, i.e., �Kp

p =0, since �qp is a real num-
ber.

In deriving the partial growth rate formulation for
smooth profiles we presume that the domain can be split into
a number of interfacial regions, where either U� or N2

reaches some extrema. In the case of the U� profile, the
interfacial regions should also be separated by inflection

points in the U profile, i.e., zero crossings of U�. A �̂K,B can
then be defined for each interface, using Eq. �12�, as

�̂Kj�z� = − 

Dj

G�s,z�U��s��̂�s�ds , �B6�

and

�̂B��z� = 

D�

G�s,z�
N2�s�

U�s� − c
�̂�s�ds , �B7�

where the Dj,� denotes the domain of the jth kinematic vor-
ticity region and the �th baroclinic vorticity region. Using
Eq. �15�, we can write

� = �
j=1

n

�Kj�z� + �
�=1

m

�B��z� , �B8�

with �Kj�z�=k Im��̂Kj / �̂� and �B��z�=k Im��̂B� / �̂�. Finally,
to apply this condition to the pth interfacial region, we
multiply both sides of Eq. �B8� by a suitable weight function
F�z�, integrate over Dp, and rearrange to give a direct anal-
ogy to Eq. �B3� for smooth profiles,

� = �
j=1

n
�F�Kjp

�Fp
+ �

�=1

m
�F�B�p

�Fp
, �B9�

=�
j=1

n

�Kj
p + �

�=1

m

�B�
p , �B10�

where � p indicates integration over Dp. A natural choice for
the weight function is either F=U� if p corresponds to a
vorticity interface, or F=N2 if p is a density interface, as has
been used throughout the paper.
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