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The stability of a viscoplastic fluid film falling down an inclined plane is explored, with
the aim of determining the critical Reynolds number for the onset of roll waves. The
Herschel-Bulkley constitutive law is adopted and the fluid is assumed two-dimensional
and incompressible. The linear stability problem is described for an equilibrium in the
form of a uniform sheet flow, when perturbed by introducing an infinitesimal stress
perturbation. This flow is stable for very high Reynolds numbers because the rigid plug
riding atop the fluid layer cannot be deformed and the free surface remains flat. If the
flow is perturbed by allowing arbitrarily small strain rates, on the other hand, the plug is
immediately replaced by a weakly yielded “pseudo-plug” that can deform and reshape the
free surface. This situation is modelled by lubrication theory at zero Reynolds number,
and it is shown how the fluid exhibits free-surface instabilities at order-one Reynolds
numbers. Simpler models based on vertical averages of the fluid equations are evaluated,
and one particular model is identified that correctly predicts the onset of instability. That
model is used to describe nonlinear roll waves.

1. Introduction

Intermittent surges have been observed in mud flows in flooded rivers and flumes (En-
gelund & Wan 1984, Coussot 1997). The phenomenon has been theoretically rationalized
(Coussot 1997, Mei 2001) as an analogue of the classical roll-wave instability which gen-
erates the patterns that decorate falling viscous films (Benjamin 1957, Yih 1963) and
steepen into the shock-like structures seen in turbulent water courses (Cornish 1910,
Dressler 1949). These surges can present problems to hydraulic engineers, but the flow
of mud in general is a dangerous phenomenon and demands a theoretical understanding.

An important property of clay suspensions like mud is that the interactions between
clay particles create an extensive microscopic structure that withstands a certain stress
before deforming and allowing the fluid to flow. That is, mud has a yield stress (some
controversy exists over whether a real fluid actually possesses a true yield stress, Barnes
1999, but the concept is certainly a useful one and is adopted here). Moreover, on flowing,
the microstructure becomes gradually broken down, with the result that the effective
resistance continues to decrease with the applied stress (the shear-thinning effect). These
viscoplastic effects play key roles in the fluid dynamics of mud and place this fluid in the
realm of non-Newtonian fluid mechanics.

Existing theoretical models of mud surges are based on simplifications of the governing
viscoplastic fluid equations obtained from vertical averaging (Liu & Mei 1994, Jiang &
LeBlond 1993). The procedure is much like the von Karman-Pohlhausen power integral
method used in the classical theory of boundary layers, and proceeds by first prescribing
a fixed vertical structure to the flow. The governing equations can then be vertically
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integrated to remove entirely one of the spatial variables. The shear stress is replaced
by a parameterized drag term in the theory, much as in the St. Venant model used
in hydraulics, and for similar mathematical reasons one uncovers roll-wave instability.
The model predicts moderate values for the critical Reynolds numbers for the onset of
instability, and has had some success in rationalizing mud surges in terms of roll-wave
instability.

An unfortunate feature of vertically averaged models is that they are known to predict
incorrectly the critical Reynolds number for onset of roll waves in laminar viscous films
(Chang, Demekhin & Kopelevich 1993). In many situations, this error is not significant.
However, it reflects an uncontrolled approximation in the theory that is difficult to gauge,
especially when the theory is adapted to the non-Newtonian situation. In fact, it is not
necessary to vertically average the fluid equations to explore roll-wave instability, which
motivates us to proceed down different pathways in the current article.

Further motivation arises from recent work on pipe and channel flow, which suggests
that yield stresses can significantly stabilize fluid instabilities, and even remove them
entirely (Frigaard, Howison & Sobey 1994, Nouar & Frigaard 2001). By contrast, the
vertically averaged models show no such significant effect. In fact, as we outline presently,
certain stability arguments indicate that roll-wave instability is completely absent in
viscoplastic films. The essence of this argument is associated with how one perturbs the
regions of the flow which are not yet yielded. In uniform viscoplastic films flowing down
inclined planes, one such region always occurs adjacent to the free surface, forming a rigid
plug. If initial perturbations in stress leave that region intact, the plug effectively places a
rigid lid on the viscoplastic film, precluding roll-wave instability. It is precisely this effect
that has been used to argue that viscoplastic shear flows are far more stable than their
Newtonian counterparts (Frigaard, Howison & Sobey 1994, Nouar & Frigaard 2001).
Nevertheless, as we also argue below, there are different ways to perturb viscoplastic
films. In particular, when there are weak downstream variations in the flow, no truly
rigid plugs occur within the material and the free surface of the film can deform, to allow
roll-wave instability.

2. Formulation

A convenient constitutive model that incorporates shear thinning and yield stress is the
Herschel-Bulkley law. Kaolin slurries, one of the prototypical viscoplastic fluids, are fit
adequately by this model, as are many materials of chemical engineering. Kaolin slurries
are often used in experimental models of geophysical flows (Blake 1990, Liu & Mei 1989,
Griffiths 1997), in addition to being the basis of a range of industrial products. The
Herschel-Bulkley law is formulated mathematically as follows:

τij = (Kγ̇n + τy)
γ̇ij

γ̇
, for τ ≥ τy, (2.1)

and

γ̇ij = 0, for τ < τy , (2.2)

where the components of the deviatoric stress tensor, τ , are τjk ,

γ̇ij ≡
(

∂ui

∂xj
+
∂uj

∂xi

)

, τ =

√

1

2

∑

i,j

τijτji and γ̇ =

√

1

2

∑

i,j

γ̇ij γ̇ji. (2.3)

The model has three parameters, assumed constant: K (the consistency), τy (the yield
stress) and n (the power-law index).
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Figure 1. (a) A sketch of the geometry for a viscoplastic film flowing down an inclined plane.
In (b) we illustrate the uniform equilibrium and the associated distribution of the stress invari-
ant, together with the related distribution for the state to which an initially non-uniform flow
converges at low Reynolds number.

Given the constitutive law, we may write the governing equations for two-dimensional,
incompressible flow:

ρ(ut + uux + wuz) = −px + ∂xτxx + ∂zτxz + ρg sinφ, (2.4)

ρ(wt + uwx + wwz) = −pz + ∂xτxz + ∂zτzz − ρg cosφ (2.5)

and

ux + wz = 0, (2.6)

where ρ is density, p is pressure, φ is the angle of the inclined plane, and subscripts
denote partial derivatives except for the stress components. The geometry is illustrated
in figure 1.

We impose a no-slip boundary condition on the inclined plane:

u = w = 0 on z = 0. (2.7)

The upper surface, z = h(x, t), is a material surface and stress free:

ht + u(x, h, t)hx = w(x, h, t), (2.8)

(τ − pI)|z=h ·
(

−hx

1

)

= 0. (2.9)

(We ignore surface tension, though it is easily included.)

2.1. Dimensionless form

We now remove dimensions: We use the typical film thickness, H , to measure lengths
transverse to the film (which we loosely refer to as “vertical”), and L = H/ tanφ for
distances downslope (loosely called “horizontal”); typically, ε = H/L � 1, and much of
our analysis will focus on this limit. We then set

x = Lx̃, z = Hz̃, u = V ũ, w = HV w̃/L, t = Lt̃/V,

p = ρgHp̃ cosφ, γ̇jk =
V

H
˜̇γjk , τjk = ρν

V

H
τ̃jk, (2.10)

and so on, where V = gH2 sinφ/ν is a characteristic flow speed, and ν = K(V/H)n−1/ρ
is an effective kinematic viscosity. After dropping the tilde decoration, the dimensionless
equations become:

R(ut + uux + wuz) = −px + ε∂xτxx + ∂zτxz + 1, (2.11)

ε2R(wt + uwx + wwz) = −pz + ε2∂xτxz + ε∂zτzz − 1, (2.12)
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ux + wz = 0, (2.13)

τij = (γ̇n−1 +Bγ̇−1)γ̇ij for τ ≥ B,
γ̇ij = 0, for τ < B,

(2.14)

and

γ̇ =

(

2εux uz + ε2wx

uz + ε2wx −2εux

)

, (2.15)

where R = V H2/(νL) is a scaled Reynolds number based on the characteristic speed
V , and B = τyH/(ρνV ) is the Bingham number (dimensionless yield stress). Only the
stress-free surface conditions change on nondimensionalizing:

τxz = hx(ετxx − p) and ετzz − p = ε2hxτxz on z = h(x, t). (2.16)

2.2. The boundary layer model

By discarding terms of order ε and higher, we arrive at a simpler model from which
we begin any further reductions (cf. Chang et al. 1993). From the vertical momentum
equation:

0 = −pz − 1, or p = h− z. (2.17)

Replacing px = hx in the horizontal momentum equation:

R(ut + uux + wuz) = 1 − hx + ∂zτxz. (2.18)

3. The importance of being rigid

As shown in figure 1, the uniform equilibrium arrangement consists of a shearing layer
supporting a truly rigid plug in which the only non-zero stress component, the vertical
shear stress, lies below the yield value: h = 1, τxz = 1 − z, w = 0 and

u = U(z) =

{

n[(1 −B)1+1/n − (1 −B − z)1+1/n]/(n+ 1), if z ≤ 1 −B,
n(1 −B)1+1/n/(n+ 1), if z > 1 −B.

(3.1)

The undisturbed yield surface lies at the height z = 1 − B, which must be positive for
the film to be in motion (B < 1).

Above the yield surface, only the shear stress τxz is, in principle, prescribed; τxx = −τzz

is indeterminate (save for the requirement that the second invariant τ should not exceed
the yield stress). The physical interpretation of this indeterminacy is that the material
could be in an arbitrary “pre-stressed” state provided that it is not yielding. To fix ideas
on a particular situation, we adopt the simple case in which τxx = τzz = 0, which mirrors
the Newtonian version of the problem. Then τ ≡ τxz = 1 − z in equilibrium, as shown
in figure1. However, the discussion below is largely independent of this choice, except if
the pre-stressed plug happened to be arbitrarily close to yield.

Now, if we add an infinitesimal stress perturbation to the equilibrium state, we shift
the yield surface slightly, but the overlying fluid is not forced to yield. Consequently,
the disturbance does not destroy the plug, nor deforms the free surface, which is an
essential ingredient to the Newtonian instability mechanism of a falling film. To see this
mathematically, we perturb the flow about the basic state, introducing a streamfunction
to deal with continuity, and decompose into normal modes:

u = U + ψz , w = −ψx, ψ = Ψ(z)eikx+λt and h = 1 + ĥeikx+λt, (3.2)

where k is the streamwise wavenumber and λ the complex growth rate. On linearizing in
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the perturbation amplitudes, we arrive at the Orr-Sommerfeld equation,

R[(λ+ ikU)(Ψzz − ε2k2Ψ) − ikU ′′Ψ] = (∂2
z + ε2k2)[n|Uz|n−1(Ψzz + ε2k2Ψ)]

−4ε2k2∂z(|Uz|n−1Ψz) − 4ε2Bk2∂z

(

Ψz

|Uz|

)

, (3.3)

for the yielded regions. Above the perturbed yield surface, on the other hand, we must
impose ux = iku = ikψz = 0 and uz + ε2wx = ψzz + ε2k2ψ = 0. Thus Ψ = 0 inside
the intact plug which also demands ĥ = 0 from the kinematic boundary condition. In
other words, the yield surface acts like a rigid wall bounding the shear layer. The yield
conditions can be linearized and imposed on the unperturbed yield surface:

Ψ = Ψz = 0 and Ψzz + Ŷ Uzz = 0, on z = 1 −B,

where Ŷ is the amplitude of the yield surface deflection. As stated, the linear stability
problem is now identical with that for channel flow in which a rigid central plug bounds
the shearing boundary layers (Frigaard et al. 1994). The critical Reynolds number is
known to be significantly higher than that for Poiseuille flow of Newtonian fluid, which
is of order a thousand, and roughly marks the transition to turbulence. Thus, instability
is shear-driven and there are no unstable roll waves associated with the free surface,
implying that mud surges must originate for other reasons.

We contend this conclusion in two ways. First, if motion is initiated by perturbing
the velocity field rather than the stresses, the situation is quite different: because of the
form of the constitutive model, an arbitrarily small strain rate allows the fluid to yield
immediately, and the whole plug is brought above the yield stress and deforms. Second,
as we illustrate below using lubrication theory, the state to which a nonuniform flow
would converge (if there are no growing instabilities like roll waves) is not the uniform
equilibrium shown in figure 1(b): as the fluid spreads and the stresses decline, they do
so by approaching the yield value from above, but never fall beneath it (assuming that
the fluid microstructure is broken up in the same way as it reforms, and barring any
“healing” of the microstructure, neither of which are captured by the constitutive law).
In fact, any imperfect preparation of the flow will introduce streamwise non-uniformity,
and so create a weakly yielded state. Thus, the uniform equilibrium flow in figure 1 is not
the correct state about which to conduct a stability analysis. More plausibly, the plug
can deform, permitting perturbations to move the free surface and access the roll-wave
instability mechanism. We now proceed to formulate these statements in mathematical
terms.

4. The lubrication limit

At zero Reynolds number, we may reduce the governing equations considerably using
conventional lubrication theory. In this limit we find:

pz = −1, ∂zτxz = px − 1, p(x, h, t) = τxz(x, h, t) = 0, (4.1)

and

τxz = (|uz|n +B) sgn(uz), for |τxz| > B. (4.2)

The solution is p = h− z, τxz = (1 − hx)(h− z), and

u =
n|1 − hx|1/n

n+ 1
sgn(1 − hx) ×

{

[Y 1+1/n − (Y − z)1+1/n] z ≤ Y
Y 1+1/n z > Y

, (4.3)
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where the yield surface is

Y = h− B

|1 − hx|
. (4.4)

The vertical integral of the continuity equation in conjunction with the kinematic surface
condition now provides a nonlinear diffusion equation for the local fluid thickness:

ht + ∂x

[

nY 1+1/n|1 − hx|1/n−1

(1 + n)(1 + 2n)
(2nh+ h− nY )(1 − hx)

]

= 0. (4.5)

This relation, and its generalization to three dimensions, proves useful in studying various
spreading problems (Liu & Mei 1989, Balmforth et al. 2000, Balmforth & Craster 1999,
Balmforth, Craster & Sassi 2003).

The lubrication model predicts a similar structure to the flow as in the equilibrium
state: a yield surface divides a lower shear layer from an overlying rigid plug-flow of
unyielded material. However, the nonlinear diffusion equation also predicts that the fluid
as a whole spreads unevenly across the plane, which contradicts the conclusion that
the plug is rigid. This contradiction prompted suggestions that lubrication theory was
inconsistent for yield-stress fluids (Lipscomb & Denn 1984), and the use of “regularized”
constitutive laws which never truly yield but always flow (such as the bi-viscous model
described further later).

In fact, the contradiction is not real: the lubrication analysis retains only the leading
order of an asymptotic expansion in ε, and higher-order terms of the expansion reveal
that the upper layer is not rigid, but weakly yielding and sufficiently so to allow the fluid
to spread (Balmforth & Craster 1999). More specifically, above z = Y , we can no longer
neglect ux in comparison to uz. In fact, we must introduce

u = up(x, t) + εuε(x, z, t), (4.6)

which implies that

γ̇ ≈ ε

(

2upx uεz

uεz −2upx

)

, γ̇ ≈ ε
√

4u2
px + u2

εz, (4.7)

and then

τ ≈ B
√

u2
εz + 4u2

px

(

2upx uεz

uεz −2upx

)

. (4.8)

Thus, although the vertical shear stress falls below the yield value, other components of
the stress become as large and we find that τ = B + O(ε), as shown in figure 1(b). A
short calculation shows that the slight shear flow in the upper region is given by

uε = 2|upx|
√

(z − Y )(2h− Y − z) sgn(1 − hx). (4.9)

In other words, a slight strain rate keeps the stress above the yield value. Because the
region above z = Y is not completely rigid, we call it a “pseudo-plug”, and z = Y a
“fake” yield surface.

We may also use the lubrication model to give a first discussion of linear stability: Let
h = 1 + ĥeikx+λt. We find, on linearizing in ĥ, that

λ = −ik(1−B)1/n − k2(1 −B)1/n

(1 + n)(1 + 2n)
[1 + n+ 2nB(1 + nB)]. (4.10)

Hence, small perturbations about h = 1 decay in time. We therefore require a finite
Reynolds number for roll-wave instability, as in the Newtonian problem. Furthermore,
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within the pseudo-plug, as upx → 0 and hx → 0,

τ →
(
√

B2 − (1 − z)2 sgn(upx) 1 − z

1 − z −
√

B2 − (1 − z)2 sgn(upx)

)

. (4.11)

Thus, the associated second invariant converges to the yield value from above, but does
not fall below it, unlike the stress distribution of the uniform equilibrium (figure 1(b)),
as mentioned earlier.

5. Pseudo-plug theory

The message of the preceding sections is that wavy perturbations, if excited initially,
can induce the arbitrarily small strain rates that bring the entire fluid layer above the
yield value. The free surface then deforms with time, although the film is stable if R = 0.
To detect long-wave instability we must therefore work with finite Reynolds number,
whilst simultaneously demanding that the initial perturbations force the fluid to yield.
In other words, we require a stability theory for pseudo-plugs with inertia.

We proceed much as in lubrication theory, although now we begin from the leading-
order boundary-layer approximation,

R(ut + uux + wuz) = 1 − hx + ∂zτxz. (5.1)

To a similar approximation, γ̇ ≈ |uz|, and so

τxz = (|uz|n +B) sgn(uz), (5.2)

provided τ = |τxz| > B. Once again, there is an apparent yield surface on which this
inequality fails, and above that level we must set uz = 0. As for the lubrication model,
we now recognize that this does not imply that the fluid becomes truly rigid, but simply
that uz ∼ O(ε), and other stress components become of the same order as τxz to keep
the second invariant τ above the yield level. We therefore set (4.6) and (4.8) inside the
pseudo-plug. The vertical integral of (5.1) then provides

σ(h− z) = τxz ≡ Buεz
√

u2
εz + 4u2

px

, (5.3)

where

σ = 1 − hx −R(upt + upupx). (5.4)

Thus, the velocity correction is

uε = 2|upx|
√

(z − Y )(2h− Y − z) sgn(σ), (5.5)

with

Y = h− B

|σ| , (5.6)

and the stress tensor becomes

τ =

(

sgn(upx)
√

B2 − σ2(h− z)2 σ(h− z)

σ(h− z) −sgn(upx)
√

B2 − σ2(h− z)2

)

. (5.7)

As before, z = Y denotes a fake yield surface and divides the pseudo-plug from the shear
layer beneath. Note that, as z → Y +, τxx → 0, τxz → B sgn(σ) and, from continuity,

[w]z=h
z=Y + (h− Y )upx = 0. (5.8)
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These conditions must be applied on the solution inside the yielding region.
To summarize, we solve

R(ut + uux + wuz) = 1 − hx + ∂z(u
n
z ), τxz = |uz|n−1uz +B sgn(uz), (5.9)

for 0 ≤ z ≤ Y (|τxz| ≥ B), subject to

σ(h− Y ) ≡ (h− Y )[1 − hx −R(upt + upupx)] = B sgn(σ) = τxz, (5.10)

u = up and w = ht + (hup)x − Y upx (5.11)

on z = Y ≡ h − B/|σ|. In other words, the problem reduces to evolving the yielding
region alone, and applying boundary conditions on the fake yield surface that account
for the pseudo-plug. The system reduces to the lubrication theory if R = 0, and has the
equilibrium solution (3.1).

5.1. Stability theory

We introduce the normal-mode decomposition,

(u,w) = (U, 0)+(Ψz,−ikΨ)eikx+λt, h = 1+ĥeikx+λt, τxz = 1−z+τ̂xze
ikx+λt (5.12)

(with Ψ = Ψ(z) and τ̂xz = τ̂xz(z)), where U(z) is given in (3.1). Once the equations are

linearized in the perturbation amplitudes, we select the normalization, ĥ = 1. The linear
equation is then

n(Un−1
z Ψzz)z = ik + R(λΨz + ikUΨz − ikΨUz). (5.13)

No-slip on the base demands Ψ(0) = Ψz(0) = 0. We further linearize the boundary
conditions on the fake yield surface about its unperturbed position:

nUn−1
z Ψzz = 1 − ikB −RB (λ+ ikU) Ψz,

λ+ ikU + ik(Ψ +BΨz) = 0,

}

at z = 1−B. (5.14)

We may solve these equations numerically to find λ(k); such solutions are presented in
section 7.1. The limits of long and short waves, however, are accessible analytically; the
long-wave and short-wave dispersion relations are given below. The first of these provides
explicit stability conditions because the longest waves are the first to become unstable.

5.2. Long-wave analysis

We analyse long waves by introducing a power series solution in k:

λ = kλ1 + k2λ2 + ..., Ψ = Ψ0 + kΨ1 + ... (5.15)

At leading order, we must satisfy the equation,

(Un−1
z Ψ0zz)z = 0, (5.16)

subject to the conditions, Ψ0(0) = Ψ0z(0) = 0 and

nUn−1
z Ψ0zz = 1 and λ1 = −in(1−B)1+1/n/(n+ 1) − iΨ0 − iBΨ0z, (5.17)

on z = 1−B. The solution is

Ψ0 = (1 −B)1/nz − n

n+ 1
[(1 −B)1+1/n − (1 −B − z)1+1/n] (5.18)

and λ1 = −i(1−B)1/n.
At next order,

n(Un−1
z Ψ1zz)z = i+ R[(λ1 + iU)Ψ0z − iΨ0Uz], (5.19)
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Figure 2. The critical Reynolds number, Rc, against B for n = 1/3, 1/2, 1, 3/2 and 2, as
predicted by long-wave theory, is shown in panel (a). In panel (b), the critical Reynolds number
based on the actual surface speed, UpR, is shown.

subject to Ψ1(0) = Ψ1z(0) = 0 and

nUn−1
z Ψ1zz = −iB −RB

[

λ1 +
in

n+ 1
(1 −B)1+1/n

]

(1 −B)1/n (5.20)

and λ2 = −iΨ1−iBΨ1z on z = 1−B. Whence (after some algebra), we find the expression
for Ψ1 given in the Appendix and

λ2 =

[

2 +
n(7 + 9n)B

(1 + n)2
+

(11 + 19n+ 6n2)(2 + nB)n2B2

(2 + n)(1 + n)2

] R(1 −B)3/n

(1 + 2n)(2 + 3n)

− [1 + n+ 2nB(1 + nB)](1 − B)1/n

(1 + 2n)(1 + n)
. (5.21)

The critical Reynolds number for long waves is then

Rc =
[1 + n+ 2nB(1 + nB)](1 + n)(2 + n)(2 + 3n)(1−B)−2/n

2(2 + n)(1 + n)2 + n(2 + n)(7 + 9n)B + (11 + 19n+ 6n2)(2 + nB)n2B2
. (5.22)

In certain parameter limits, (5.22) reduces to a variety of simpler formulae: For New-
tonian fluid, n = 1 and B = 0, and the critical Reynolds number becomes Rc = 5/2, the
classical result of Benjamin and Yih. For the Bingham fluid,

Rc =
5(B2 +B + 1)

3B5 − 5B3 + 2
(Bingham, n = 1). (5.23)

The power-law fluid is given by B = 0, and the critical Reynolds number reduces to
Rc = 1+3n/2, in agreement with Ng & Mei (1994). Lastly, the material is nearly plastic
if B → 1. In this limit, the critical Reynolds number diverges as Rc = (1 −B)−2/n.

Figure 2(a) shows the critical Reynolds number against B for different n. Shear thin-
ning fluids are most unstable without yield stresses, but are substantially more stable
for larger B. Muds are often modelled as shear-thinning viscoplastic fluids with n ≈ 1/3,
and so mudflows of moderate speeds can be stabilized by yield stresses. Shear thickening
fluids (n > 1) exhibit the property that instability appears first at finite B.

The conclusions reached in the preceding paragraph merit an important qualification,
namely that the Reynolds number parameter, R, is based on the characteristic speed,
V , and not the actual surface velocity. In fact, the Reynolds number based on the actual
surface speed (which is V U(1) ≡ V Up in dimensional terms) can be rather different:
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Figure 3. The critical Reynolds number, Rc, against B for n = 1/3. The crosses and circles
show results taken from experiments of Coussot (1994); the circles show cases in which roll waves
were seen to develop, whereas the crosses show flows that had no discernible waves.

From (3.1) and (5.22), the alternative critical Reynolds number parameter is

UpRc =
[1 + n+ 2nB(1 + nB)]n(2 + n)(2 + 3n)(1 −B)1−1/n

2(2 + n)(1 + n)2 + n(2 + n)(7 + 9n)B + (11 + 19n+ 6n2)(2 + nB)n2B2
.

(5.24)
The dependence of this critical value on B and n is shown in figure 2(b). The comparison
of the two panels of the figure highlights how the primary effect of B is the reduction of the
surface velocity due to the introduction of yield stress. When this effect is considered, we
uncover a quite dramatic difference between shear-thining and shear thickening fluid as
B → 1: Shear thinning fluids become very stable in this limit, whereas shear-thickening
fluids can become unstable for arbitrarily small Reynolds number. Even the Bingham
fluid is seen to be less stable with yield stress.

We compare some of the predictions of the theory with experimental data collected by
Coussot (1994) in figure 3. Coussot’s experiments involved a shear-thinning clay slurry
flowing down a rectangular channel, which he described as a Herschel-Bulkley fluid with
n = 1/3. In addition to the parameters of the rheological fit (τy , K and n), he quotes
volume flux, slope angle and channel width for flows with and without roll waves. From
these variables (and using a nominal density value of 1.4 g/cm3), we may reconstruct the
dimensional quantities V and H , and thence B and R (the depth estimate, H , agrees
with actual experimental measurements to within 20 percent, as shown by Coussot). The
data points represented by crosses in figure 3 show the flows for which no roll waves were
observed over the 8m-long channel (which, though suggestive, does not necessarily imply
linear stability), and the circles show cases with roll waves. There is some overlap between
the two data sets on the figure, but the transition between them shows fair agreement
with the theoretical stability boundary.

5.3. A comparison with the bi-viscous case

The long-wave theory can be compared with a similar expansion for a bi-viscous fluid,
which we present in part to show agreement with the pseudo-plug theory, but also to
correct an error in previous literature (Hjorth 1990). The constitutive relationship for
the bi-viscous fluid is formulated in dimensionless terms as follows:

τij =

{

α−1γ̇ij for τ ≤ B∗,
γ̇ij + (1 − α)B∗γ̇ij/γ̇ for τ > B∗,

(5.25)
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where α gives the factor by which the normal viscosity is enhanced at small strain rates
and B∗ is a parameter analogous to a dimensionless yield stress. If α→ 0, the bi-viscous
fluid approaches a Bingham-like limit; when α → 1, the model becomes Newtonian.

The uniform equilibrium flow is given by

U =

{

(1 − α)Y 2
∗
/2 + αz(2 − z)/2 for z > Y∗,

(Y∗ − αY∗ + α)z − z2/2 for z ≤ Y∗.
(5.26)

where Y∗ = 1 − B∗. On perturbing about this basic state, the stability equations in the
boundary-layer approximation become:

ik +R(λΨz + ikUΨz − ikΨUz) = α−jΨzzz, (5.27)

with j = 0 for z ≤ Y∗ and j = 1 for z > Y∗. The associated boundary conditions provide
the relations,

λ+ ikU + ikΨ = Ψzz + Uzz = 0, on z = 1,
Ψ = Ψz = 0, on z = 0.

(5.28)

Demanding continuity of the velocity components and shear stress on the surface where
τ = B∗, gives the connection formulae,

Ψ(Y −

∗
) = Ψ(Y +

∗
), Ψz(Y

−

∗
) = Ψz(Y

+
∗

), Ψzz(Y
−

∗
) = α−1Ψzz(Y

+
∗

). (5.29)

A long-wave expansion provides the solution,

λ = kλ1 + k2λ2 + ..., (5.30)

with λ1 = −i(1−B∗ + αB∗) and

λ2 = λ̌2 +
αB∗

15
[R(8B3

∗
+ 11B2

∗
+ 4B∗ + 2)(1 −B∗)

2 − 5B2
∗

+RB3
∗
(7B∗ + 5)(1 −B∗)α+ RB5

∗
α2], (5.31)

where λ̌2 is the growth rate at α = 0, which turns out to be identical to (5.21) with n = 1.
Thus, for α → 0 we recover the previous results for the Bingham model (and also the
Newtonian ones when α = 1). In other words, the pseudo-plug theory is consistent with
the limiting bi-viscous model. The critical Reynolds number, R, for α 6= 0 is presented
in figure 4, along with the long-wave result and that for the vertically averaged model of
§6.1. The results are quite different from those obtained by Hjorth (1990), who claimed
that the flow was linearly stable in the limit α → 0. It is difficult to determine from
Hjorth’s article exactly where the difference arises, but based on the Orr-Sommerfeld
equation quoted there, it appears that the connection formulae are different from (5.29).

5.4. Short or weakly viscous waves for n = 1

The boundary-layer model is derived assuming that εk � 1, which limits the wavenum-
bers that we can consider in the linear theory. This feature can be observed directly
by comparing the stability equation of the boundary-layer model (5.13) with the full
Orr-Sommerfeld problem (3.3) (the latter is reduced to (5.13) by neglecting terms of
order ε2k2 and integrating once). Nevertheless, it is a useful exercise to consider very
short waves in the boundary-layer model for two reasons. First, the vertically integrated
models considered in a later section amount to approximations of the boundary-layer
theory (cf. Ruyer-Quil & Manneville 2000), and how well they perform can be judged by
considering the long and short-wave limits. Second, the short-wavelength analysis is also
related to the long-wave, weakly viscous limit of the full stability problem. Since short
waves are accessible analytically for n = 1, we now present the details.
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Figure 4. Critical Reynolds numbers against B for the long-wave theory, the vertically averaged
model of §6.1, and the biviscous model with four values of α (0.01, 0.1, 0.5 and 1; the critical
Reynolds number decreases monotonically with α). In panel (b), the curves are scaled by the
long-wave result.

For k � 1 or R � 1, the term Ψzzz in (5.13) is negligible over the bulk of the yielding
layer, in which case Ψ ∼ ΨI with

(U − c)2
d

dz

(

ΨI

U − c

)

= −R−1 (5.32)

(cf. Chang et al. 1993), where c = iλ/k is the complex wavespeed. We readily integrate:

ΨI =
U − c

R

{

K −
∫ z

0

dz̃

[U(z̃) − c]2

}

, (5.33)

where K is an integration constant. This solution cannot be made to satisfy all the
boundary conditions, reflecting how viscous sublayers arise near z = 0 and z = 1 − B
where we must reinstate Ψzzz. The solution is then Ψ ∼ ΨB, where

Ψ′′′

B = ikR(U − c)Ψ′

B + ik (5.34)

and U = 0 or U = Up = (1 −B)2/2, for z → 0 or 1 −B, respectively. The two solutions
are

ΨB ∼ ηz − 1 + e−ηz

ηcR , η = (1 − i)

√

kcR
2
, (5.35)

near z = 0, and

ΨB ∼ c− Up +
1 − ik(1 − z)

ikR(c− Up)
+

ieγ(1−B−z)

kR(c− Up)(1 − γB)
, γ = (1 − i)

√

k(c− Up)R
2

,

(5.36)
near z = 1 − B. Matching the solutions together determines K = 1/(ηc2) and provides
the dispersion relation,

F (c) − i

kR(c− Up)
+

(c− Up)

ηc2R ≈ 0 (5.37)

(to O(k−3/2R−3/2)), where

F (c) = c− Up − 1

2R

[

1 −B

c
+

√

2

c− Up
tan−1

(

1 −B
√

2(c− Up)

)]

+
B

R(c− Up)
. (5.38)
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The second and third terms on the left-hand side of (5.37) are order k−1/2, and so a
further reduction for short waves implies that

c = c∗ −
(c∗ − Up)(1 + i)

c2
∗
R
√

2c∗kR F ′(c∗)
, (5.39)

where F (c∗) = 0. This relation invariably predicts a negative growth rate, k Im(c), that
scales as k1/2 and is in agreement with numerical computations.

6. Vertically averaged models

6.1. Standard procedure

The system (5.9)-(5.11) provides the basis for constructing families of simpler, vertically
averaged models for the flow dynamics. We concentrate on the Bingham case with n = 1,
which allows us to take advantage of theory presented for Newtonian films, and avoid
dealing with velocity profiles without polynomial form. Following Liu & Mei (1994), we
derive a first model by prescribing the vertical profile of the flow field:

u =

{

(z/Y )(2 − z/Y )Up for z ≤ Y,
Up for z > Y,

(6.1)

where Up(x, t) is the plug velocity. This plausible velocity profile is motivated by both
the equilibrium flow and by the lubrication approximation. Integrals of the momentum
equation over the pseudo-plug and yielding region then provide:

R(Upt + UpUpx) = 1 − hx − B sgn(Up)

h− Y
(6.2)

and

Yt +
2

5
UpYx +

4

5
Y Upx =

6

RY − Y

RUp
(1 − hx) − 2BY

RUp(h− Y )
, (6.3)

given that τxz = 0 on the free surface and τxz → B sgn(Up) at z = Y . Finally, integrating
continuity and using the kinematic surface condition leads to

ht +
1

3
∂x [(3h− Y )Up] = 0. (6.4)

The equilibrium flow is h = 1, Y = 1−B and Up = (1−B)2/2. According to (6.2)-(6.4),
infinitesimal perturbations about this state, with

h = 1 + ĥeikx+λt, Y = 1 −B + Ŷ eikx+λt and Up =
1

2
(1 −B)2 + Ûpe

ikx+λt,

satisfy a cubic algebraic eigenvalue problem for λ which can be solved for arbitrary
k (see §7.1). A long-wave expansion of the cubic provides the power series solution,
λ = kλ1 + k2λ2 + ..., with λ1 = −i(1−B) and

λ2 =
1

36
(8B3 + 15B2 + 9B + 4)(1 −B)3R− 1

3
(1 −B)(1 +B +B2). (6.5)

The critical Reynolds number is then

Rc =
12(1 +B +B2)

(8B3 + 15B2 + 9B + 4)(1 −B)2
. (6.6)

By comparing with long-wave theory, we observe that the critical Reynolds number of
the vertically averaged model is in error by a factor of order unity, which mirrors known
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results for Newtonian films. The critical Reynolds number in (6.6) is also shown in figure
4.

6.2. An improved model

Following recent work on Newtonian films (Ruyer-Quil & Manneville 2000), we may
derive an improved vertically averaged model that provides the correct critical Reynolds
number, based on the method of weighted residuals. Essentially, we use a more refined
set of polynomial test functions to improve the solution over the yielding region:

u(x, z, t) =

4
∑

j=0

aj(x, t)fj

( z

Y

)

, fj(Z) = Zj+1 − j + 1

j + 2
Zj+2, (6.7)

where the series is truncated at j = 4 to ensure a result accurate to order k2 in any long-
wave expansion (giving a basis of polynomials of upto degree 6 that satisfy the lower
boundary conditions).

We insert the expansion into the momentum equation (5.9), and neglect all space and
time derivatives of aj , j > 0 (detailed justification of the construction is given by Ruyer-
Quil & Manneville 2000). Matching coefficients of zj , j = 0, 1, ..., 4, then provides the
relations,

0 = a0 − 2a1 − Y 2 + Y 2hx, (6.8)

0 = 4a1 − 6a2 + RY 2a0t −Ra0Y Yt, (6.9)

0 = 18a2 − 24a3 −RY 2a0t + 2Ra0Y Yt + RY 2a0a0x −Ra2
0Y Yx, (6.10)

0 = 48a3 − 60a4 −RY 2a0a0x + 2Ra2
0Y Yx, (6.11)

0 = 300a4 + RY 2a0a0x − 2Ra2
0Y Yx. (6.12)

By eliminating aj , j = 1 to 4, we arrive at:

a0 = Y 2(1 − hx) − 1

3
RY 2a0t +

1

6
Ra0Y Yt −

1

10
RY 2a0a0x +

1

30
Ra2

0Y Yx. (6.13)

From the definition of u(x, z, t), we also have the pseudo-plug velocity,

Up(x, t) =
1

2
a0 −

1

45
RY 2a0a0x +

1

360
Ra2

0Y Yx − 1

24
RY 2a0t, (6.14)

and partial flux,

q(x, t) =

∫ Y

0

udz =
1

3
a0Y − 3R

280
a0Y

3a0x +
1

504
Ra2

0Y
2Yx − 1

45
RY 3a0t +

1

360
Ra0Y

2Yt.

(6.15)
The system is completed with the integrated continuity and pseudo-plug momentum

equations, as given below. Before we quote the final formulae, we observe that there is still
some freedom in the equations that can be used to reduce them further. In particular,
a leading-order, long-wave approximation suggests that a0 ∼ Y 2 ∼ 2Up ∼ 3q/Y . We
can therefore replace a0 by one of these approximations in the higher-order terms of
(6.13)-(6.15), and thereby eliminate a0. This trick, and specifically a0 ∼ 3q/h, was used
by Ruyer-Quil & Manneville for a Newtonian film (with h = Y ) to replace a0 by the
flux variable q on the grounds that the former depended on the approximating functions
whereas the latter was a physical field variable.

For the non-Newtonian problem we have more latitude in the possible replacements
because there are currently three field variables, Y , Up and q. To furnish as simple system
as possible it is preferable to eliminate some of these field variables, in addition to a0.
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However, the optimal scheme is not completely evident. Worse still, it turns out that,
although the system correctly describes long waves in linear theory, the various trunca-
tions treat waves with moderate and short wavelengths very differently, and many predict
spurious instabilities (in comparison to numerical stability analysis of the boundary layer
model, presented in the next section). In fact, the system as stated, with a0 retained,
suffers exactly this problem, as does the simpler vertically averaged theory given by Liu
& Mei and others, cited above.

We elect for an elimination scheme that leaves only Y and Up as field variables (in
addition to h), and suffers from none of the spurious instabilities: We replace a0 in the
higher-order terms by the approximation, a0 = 2Up, save for the key replacement of a0

with Y 2 in two terms featuring in the equations for Y and q. The final equations are

Yt +
7

15
UpYx +

23

30
Y 2Yx =

6

RY − 5BY sgn(Up)

2RUp(h− Y )
− Y

2RUp
(1 − hx), (6.16)

q =
1

120
Y 3(1 − hx) − BY 3 sgn(Up)

40(h− Y )
+

7

10
Y Up, (6.17)

ht + ∂x[q + (h− Y )Up] = 0 and Upt +UpUpx =
1

R (1− hx) − B sgn(Up)

R(h− Y )
. (6.18)

This system appears to perform adequately, although the arbitrariness in the derivation
is a little unsatisfactory, and begs for a more coherent approach. Nevertheless, it can be
readily verified that the model predicts the correct long-wave critical Reynolds number.

7. Numerical results

7.1. Linear stability; a comparison of the models

We perform linear stability theory directly on the boundary-layer model to verify the
results of long-wave expansion and to extend them to larger wavenumbers. At high
wavenumber, this model may fail to reproduce accurately the stability properties of the
full governing equations. In fact, the whole notion of a background state with an almost
uniform pseudo-plug is only suitable for disturbances whose horizontal scale far exceeds
the fluid thickness. Nevertheless, the boundary-layer model provides a good test of the
long-wave expansion and vertical averaging since both are based on that model.

In figures 5 and 6, we compare numerical computations with the long-wave and vertical
averaging theories. The first picture illustrates how the vertically averaged models cap-
ture adequately the dynamics in some parameter regimes. The second figure illustrates
two other cases in which the simplest vertically averaged model is inadequate, failing to
predict the correct onset of instability at one parameter setting, and predicting a spuri-
ous short-wave instability at another (this is Liu & Mei’s short-wave instability, which
we conclude is unphysical)†. Overall, this theory inaccurately treats short waves. The
improved vertically averaged model correctly predicts the onset of instability, although
the band of unstable wavenumbers is smaller than it should be and the short waves are
too stable. The main features of the stability problems are brought out further in figure
7, which depicts neutral stability curves for the various models.

† Although the boundary-layer theory itself is not accurate at short wavelengths, the vertically
integrated models are approximations of it and should not introduce instabilities that are not
present in that theory.
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Figure 5. A comparison of growth rates from numerical computations of the boundary-layer
model, long-wave theory (LWT), and the two vertically averaged models (VAM, with the two
versions, sections 6.1 and 6.2, respectively, labelled VAM-1 and VAM-2).

0 0.5 1 1.5 2
−20

−10

0

x 10−4

k

G
ro

w
th

 ra
te

(a) R=6, B=0.5

0 10 20 30 40 50
−0.4

−0.2

0

k

(b) R=2, B=0.1

Numerics
LWT: λ

2
k2

Vam−1
Vam−2

Figure 6. Further comparisons of growth rates.

7.2. Nonlinear roll waves in the vertically averaged model

We complement the linear stability theory with a brief discussion of the nonlinear prob-
lem. We use the improved vertically averaged model, and solve the system of equations
using a pseudo-spectral scheme in a periodic setting. To assist the scheme in resolving
sharp gradients or discontinuities in the solution, we add small linear diffusion terms to
the equations with diffusitivities of less than 5 × 10−3 (the discretization retains upto
1024 gridpoints in space, or 512 Fourier modes, and a standard stiff time integrator is
used to advance the solution).

A sample solution is shown in figure 8 and displays the growth and saturation of the
instability. Beyond saturation, a sharp shock-like feature develops. Further computations
show that the shock thickness is finite and independent of the additional diffusion added
to the equations, indicating that the nonlinear solution is continuous. The peak-to-peak
amplitude of the steadily propagating roll-wave solution declines smoothly to zero as we
reduce the domain length or the Reynolds number, indicating that the onset of instability
is supercritical, at least for the parameter settings that we have explored. In smaller
domains at lower Reynolds number, the solutions do not form sharp gradients and the
extra diffusion is not necessary. A selection of steadily propagating roll waves is shown
in figure 9.

Figure 10 shows waves developing in a wider domain. Initially, several peaks form,
seeded largely by the initial condition. These waves interact, approaching one another and
colliding, to merge into larger waves. This coarsening process lengthens the spatial scale of
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Figure 8. Initial-value computation with the improved vertically averaged model. B = 0.1 and
R = 5, in a periodic domain of length 5. The initial conditions were Up = (1−B)2/2, Y = 1−B
and h = 1 + w(x), where w(x) is a low-amplitude irregular variation with maximum amplitude
10−2. Shown are successive snapshots of (a) h(x, t), (b) Up(x, t) and (c) Y (x, t), every 2 time
units, each offset for clarity, and in a frame moving downhill with speed 0.07.

the roll wavetrain until only a single wave survives. A controlled experiment showing this
dynamics further, and also illustrating how it corresponds to the subharmonic instabilities
of a multiple wavetrain, is shown in figure 11. This type of coarsening dynamics was
observed for roll waves in Newtonian films (Chang et al. 2000, Balmforth & Mandre
2003), and is familiar from a host of other problems. Although the inverse coarsening
cascade proceeds to its conclusion in figures 10 and 11, leaving a single roll wave, this
may only occur when the domain length is not too large. In very long domains, single
roll waves often become unstable to secondary disturbances that grow on their long flat
tails. These disturbances grow disruptively, and nucleate additional roll waves to form a
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Figure 11. Another coarsening solution. The initial condition in this case is specially chosen so
that a four-wave train appears initially, but then coarsens to two waves, and finally to a single
one. Domain size 20, B = 0.5 and R = 10.
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train with intermediate spacings (Balmforth & Mandre 2003). However, we have not yet
been able to verify that this is the fate of very wide wavetrains in the current model.

We have experimented with a selection of other vertically averaged models (avoiding
cases with spurious short-wave instability), and found similar dynamics in all cases.

8. Almost plastic flow

As B → 1, the pseudo-plug fills almost the entire layer and Y → 0, reflecting how the
fluid becomes dominated by its yield stress and “almost plastic”. The problem can then
be reduced more directly in a manner similar to Oldroyd’s (1949) “plastic boundary-layer
theory”.

In this limit, the linear stability results indicate that Rc ∼ (1 − B)−2/n and λ ∼
O(1−B). This motivates a different asymptotic reduction of the boundary-layer model:
We set B = 1 − δ, δ � 1, and then introduce

R =
R̂
δ

2
n

, Y = δy, t =
T

δ
1
n

, h = 1−δη, u = δ
n+1

n v, Up = δ
n+1

n V ζ = δz, (8.1)

where ζ is a new vertical coordinate that is needed to resolve the relatively thin yielding
region. To order δ, the momentum equation over that region now gives

[(vζ)
n]ζ = −1, or v =

n

n+ 1
[y1+1/n − (y − ζ)1+1/n]. (8.2)

Hence,

V =
n

n+ 1
y1+1/n. (8.3)

The integrated continuity and pseudo-plug momentum equations can then be reduced to
the system,

R̂VT + ηx = 1 + η − y and ηT + Vx = 0. (8.4)

Some progress in understanding this system can be made with the method of character-
istics, and there is also scope for constructing steadily propagating nonlinear roll wave
solutions. However, we do not proceed in these directions here. Instead, we briefly recap
linear theory: the equilibrium flow is given by V = n/(n+ 1). Small perturbations about
this flow evolve with exponential time dependence expΛT , where

Λ = − 1

2R̂
±
√

1

4R̂2
− k(i+ k). (8.5)

The critical value of R̂ is unity, in line with previous results.
Both vertically averaged models can also be reduced to (8.4) in this particular limit.

Thus, (8.4) appears to offer a compact description of almost plastic roll waves. Note
that the dependence on the rheological parameter n has completely disappeared from
the stability problem at this stage. This highlights how the main impact of shear thining
or thickening on stability is through the dependence of the equilibrium flow speed, which
was incorporated in our rescalings (8.1).

9. Discussion

Mudflows are observed to develop roll-wave-like surges, and previous modelling based
on vertical integrals of the fluid equations suggests that linear instability of the flow is re-
sponsible. By contrast, a more refined stability analysis of an equilibrium, uniform flowing
film suggests that the state is always linearly stable because small stress perturbations
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cannot break the rigid plug adjacent to the free surface. An extreme conclusion that one
may be tempted to draw is therefore that surges must originate for other reasons, and
that the vertically averaged models are simply wrong. In fact, a similar line of reasoning
led several authors to discount lubrication theory as a useful tool for viscoplastic films
(see the discussion given by Balmforth & Craster 1999).

In this article we have argued that the conclusion is flawed when long spatial variations
exist in the plane of the film. Such variations could be set up initially due to imperfect
preparation, by slight inflow fluctuations, by external agitation or if the inclined plane
is not perfectly flat, all of which are physically realistic. In this kind of situation, the
equilibrium, uniform flow is not the background state on which disturbances develop. In
fact, the “plug” atop the film is not completely rigid nor below the yield stress. Instead
it is held just above the yield value by slight horizontal straining motions, and should
be thought of as a “pseudo-plug”, a term invented in the context of lubrication flows,
but applying here at finite Reynolds number. Disturbances on such a state are now
able to deform the free surface, with the result that the flow becomes unstable to roll
waves. In this fashion, we can justify the vertically averaged flow models and rationalize
mud surges. Moreover, the stability theory then agrees with the predictions of related
rheological models in which there is no true yield (such as the bi-viscous model).

In effect, we have presented the viscoplastic version of the classical analysis of viscous
films by Benjamin and Yih. More specifically, we have provided a proper stability theory
of the pseudo-plug. This theory indicates that the simplest vertically averaged models fail
to predict the correct critical Reynolds number for instability, which is a known result for
Newtonian films. An alternative is long-wave theory, which provides the correct critical
value and can be extended into the nonlinear regime. However, it is also known that long-
wave theories fail at the nonlinear level at higher Reynolds number (Chang et al. 1993,
Ruyer-Quil & Manneville 2000). Instead, we attempted to improve the vertically averaged
models along the lines suggested by work on Newtonian films, with some success.

Finally, an interesting limit of the problem is provided by that of large yield stress,
which offers a compact description of roll waves. A curious feature to this limit is that
shear-thinning films are predicted to be quite stable, yet shear thickening layers can ap-
parently be made unstable at arbitrarily low Reynolds number (when that dimensionless
group is based on the actual, equilibrium surface velocity). We are currently working on
an experimental verification of this prediction.
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Appendix A. The expression for Ψ1 in long-wave theory

Ψ1 = − iRn2Y
1
n

(n+ 1)(2n+ 1)(2n+ 2)(3n+ 2)

[

(Y − z)3+
2
n +

3n+ 2

n
Y 2+ 2

n z − Y 3+ 2
n

]

− iRBn2Y
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n

(1 + n)(2 + n)(2n+ 2)

[
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2
n +
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n
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n z − Y 2+ 2
n

]
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(
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+
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(

1 − nY

n+ 1

)][
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. (A 1)
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