
Viscoplastic asymptotics and other analytical methods

Neil J. Balmforth

1 Introduction

The goal of these lectures is to outline some of the ideas behind the use of asymptotic analy-
sis and other analytical methods in viscoplastic fluid mechanics (other than variational and
bounding techniques, which are covered in lectures by I. Frigaard). General texts on the
relevant mathematical methodologies include [9, 25, 47, 43]. Asymptotic analysis surrounds
the identification and use of a small parameter to simplify and then solve mathematical
problems to build useful approximate solutions. Often, the requirement that a particular
parameter is small limits the settings for asymptotic analysis, but the asymptotic devel-
opments usually provide key insight by identifying and distilling down the critical physical
details and processes. Important phenomenological properties and the scaling with the
dimensionless parameters of the problem can then emerge. At the same time, the asymp-
totic solutions furnish useful limiting test cases for numerical schemes and compact physical
predictions.

2 Viscoplastic lubrication theory

2.1 Mathematical formulation

Consider a two-dimensional incompressible viscoplastic fluid slowly flowing down a relatively
narrow conduit; flow is driven either by a pressure gradient, the motion of the bounding
surfaces, or both. The conduit is described by an arc-length-based curvilinear coordinated
system (s, n) following a fixed curve threaded along the length; s is arc-length and n is the
normal coordinate. We define u = (u, v) as the velocity in these coordinates (i.e. with
respect to the (s, n) axes). Similarly, the deviatoric stress tensor τij is also referred to this
system. Inertia is neglected.
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Figure 1: Sketch showing the
geometry of a narrow conduit
sandwiched between two mov-
ing surfaces and filled by a
lubricating viscoplastic fluid,
together with the arc-length-
based coordinates.
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Conservation of mass and force balance can be expressed in the form [24]

∂u

∂s
+ (1− κn)

∂v

∂n
− κv = 0, (1)

∂τss
∂s

+ (1− κn)
∂τsn
∂n

− 2κτsn =
∂p

∂s
, (2)

∂τsn
∂s

+ (1− κn)
∂τnn
∂n

+ κ(τss − τnn) =
∂p

∂n
, (3)

where κ denotes the curvature.
The strain rate tensor has components,

γ̇ss =
2

1− κn

(

∂u

∂s
− κv

)

, γ̇nn = 2
∂v

∂n
, γ̇sn =

1

1− κn

(

∂v

∂s
+ κu

)

+
∂u

∂n
, (4)

which can be fed into the constitutive law:

τij = µ(γ̇)γ̇ij + τY
γ̇ij
γ̇
, if

√

τ2ss + τ2sn > τY , (5)

and γ̇ij = 0 otherwise, where γ̇ ≡
√

γ̇2ss + γ̇2sn.
The upper and lower surfaces are located at n = η±. Here, the kinematic conditions

demand that

v = V± =
∂η±
∂t

+
U±

1− κη±

∂η±
∂s

with u = U±. (6)

To identify the principal balance of terms in the limit of a slender gap, one can intro-
duce a characteristic thickness, H, length, L, speed, U , and pressure, P, and then non-
dimensionalize the variables:

ŝ =
s

L , (n̂, η̂±) =
1

H (n, η±), û =
u

U , v̂ =
vL
UH (7)

and

t̂ =
Ut
L , p̂ =

p

P , (τ̂ , σ̂) =
L
HP (τsn, τss), (8)

The aspect ratio, ǫ = H/L, is small when the gap is slender, and this parameter can be used
to establish the leading-order relations from the governing equations, and design expansions
to proceed to higher order if needed.

The disparate scalings of the two velocity components is guided by the requirement that
the gap remains thin and the main balance (to O(ǫ)) in the conservation of mass equation,

∂û

∂ŝ
+
∂v̂

∂n̂
= 0. (9)

The scaling of the pressure and stress components leads to the main force balances,

∂p̂

∂ŝ
=
∂τ̂

∂n̂
,

∂p̂

∂n̂
= 0. (10)

That is, the pressure is largely constant across the slot, but its gradient down that conduit
is balanced by the resistance due to the shear stress.
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The usual strategy at this stage is to drop the hat decoration that clutters our dimension-
less notation and streamline the formulae by exploiting (s, n, t) subscripts to denote partial
derivatives (except in the case of the components of the stress and strain-rate tensors, for
which we use different font in any case). Following this suit, we write

p = p(s, t) & τ = τ−(s, t) + (n− η−)ps, (11)

using the shear stress on the lower surface τ− = τ(s, η−, t). Moreover,

τ+ − τ− = hps (12)

where h = η+ − η− is the local gap thickness.
The strain rates, scaled by U/H, become

[γ̇ss, γ̇sn] = [2ǫus, un + ǫκu] +O(ǫ2). (13)

At first sight, the disparity in scaling here suggests that the shear rate γ̇sn and therefore
the shear stress τ dominate the state of the material to furnish

γ̇ ∼ |γ̇sn| ∼ |un| & τ ∼ µ(γ̇)un +B sgn(un), (14)

where µ(γ̇) is the plastic viscosity scaled by U/HP and we (somewhat loosely) refer to the
yield-stress parameter B = τY /(ǫP) as a Bingham number.

However, there is another type of solution for the stress state in which un = O(ǫ). In
this case, we must have that

u ∼ up(s, t) + ǫu1(s, n, t) + ... & (γ̇ss, γ̇sn) = ǫ(2ups, u1n + κup) +O(ǫ2). (15)

The viscous part of the shear stress is then small, but the yield stress contribution demands
the stress state is dictated by

(τ, σ) =
(γ̇ns, γ̇ss)

γ̇
& τ2 + σ2 = B2. (16)

The existence of these two types of stress solutions has in the past caused undue con-
fusion: the so-called “lubrication paradox” [27] surrounds how the use of the first type of
solution leads to an apparent inconsistency in the lubrication theory. More specifically, the
blind use of this approximation leads to a solution of the problem in which τ appears to
fall below B suggesting that the fluid is not yielded and one should then take un = 0 over
a moving “plug” region. But the full solution of the problem (and, in particular, the impo-
sition of the boundary conditions) subsequently indicates that these plugs often cannot be
rigid and u still depends on s. i.e. the plugs are in extension or compression in the direction
of the slot. The resolution of this “paradox” is not that the theory is internally inconsistent,
but that one has simply chosen the wrong solution to the stress state, and the second one
in (15)(-16) is needed with un = O(ǫ) rather than zero. The plugs are not therefore truly
rigid but held close to the yield stress in the fashion of a perfectly plastic material. Walton
& Bittleston [46] introduced the terminology “pseudo-plugs” to emphasize this feature of
the lubrication problem. The only inconsistency is to implement the first solution in (14)
over regions where un is not order one.
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Figure 2: Sketch of a Bingham squeeze flow.

Despite Walton & Bittleston’s paper, and several others since (e.g. [2, 41, 37]), an
unfortunate failing of the literature on viscoplastic flows is to refer to the “lubrication
paradox” as though there really were one. This has led to some recent attempts to revise
the pseudo-plug solution in an ad hoc and superfluous fashion to try to make that region
into a genuinely rigid zone (e.g. [21]). Worse, there is even a vein of literature in which it
is argued that there are problems with the constitutive law itself and one must regularize
to surmount the paradox (e.g. [48]). No such deviants are necessary.

The main consequence of all this in the lubrication theory is that one may supplement
the fully yielded part of the flow where un = O(1) with a region over which un is plug-like
to complete the asymptotic solution. In most situations un is O(ǫ) and there is a pseudo-
plug. In others, one can consistently take un = 0 and connect the fully yielded region to
a true plug. In both cases, this procedure renders no change to the leading-order results
and the asymptotic solution is completed in what is effectively the naive manner without
worry. We next illustrate all this using a specific model problem, squeeze flow of Bingham
fluid between two plates, to make the analysis more transparent and avoid the clutter and
opacity of the general formulation. At the same time, this leads us to iron out some finer
details of how the fully yielded region fits together (matches) with the pseudo-plug.

2.2 Squeeze flow of Bingham fluid

For the planar problem of squeeze flow of Bingham fluid between two symmetrically ap-
proaching surfaces, our curvilinear coordinate system reduces to a Cartesian one: (s, n) →
(x, y). We then have

p = p(x, t) & τ = ypx, (17)

and
u(x, η± = ±1

2h, t) = 0 & v(x, η± = ±1
2h, t) = ∓1

2 , (18)

in view of the symmetry of the problem about y = 0, and on fixing the velocity scale
U = V/ǫ in terms of the closure speed V of the separation of the plates.

If we set P = µV/ǫ2H, with H the initial plate separation, then the constitutive law
implies

[τ, σ] = (1 +Bγ̇−1)[uy, 2ǫux] +O(ǫ2), (19)
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Figure 3: The velocity
profile and pseudoplug
(shaded) in Bingham
squeeze flow. The dashed
line shows the approxima-
tion, Y ∼ 1

2h −
√

x/B, for
B ≫ 1.

provided τ2+σ2 < B2. Over the fully yield part of the flow, where τ = uy+B sgn(uy) ≫ σ,
we now find

uy = (|y| − Y )px sgn(y), Y =
B

|px|
, (20)

or
u = −1

2px
(

1
2h− |y|

) (

1
2h− 2Y + |y|

)

(21)

(cf. figure 3). Moreover, this region occupies Y < |y| < 1
2h. It is inconsistent to continue

this solution into |y| < Y where, instead, uy = O(ǫ). In fact, here we must have

u = up(x, t) + ǫu1(x, y, t), with up = −1
2px

(

1
2h− Y

)2
, (22)

in order that the fully yielded solution in (21) be continuous with the pseudo-plug solution
u ∼ up.

The y−integral of the continuity equation, ux+vy = 0, in conjunction with the boundary
conditions (18), now implies

∂

∂x

∫

1
2h

−
1
2h
udy = 1. (23)

Given the fact that u(x = 0, y, t) = 0 and

∫

1
2h

−
1
2h
udy ≡ −

∫

1
2h

−
1
2h
yuydy ≡ −1

3
px(h+ Y )

(

1
2h− Y

)2
, (24)

we therefore arrive at an algebraic problem for px (recalling that Y = B/|px|):

−1

3
px[h(x) + Y ]

[

1
2h(x)− Y

]2
= x. (25)

From (23), it is clear that the right-hand side corresponds to the net flux down the gap,
Q. Hence, equation (25) is the flux-pressure-gradient relation of the lubrication flow: Q =
1
3S(h + Y )(12h − Y )2, if S = |px| denotes the magnitude of the pressure gradient (cf. §2.7
below).

Evidently, px and therefore Y and up depend on position x, highlighting how the flow
in |y| < Y is only a pseudo-plug and the curves |y| = Y (x) are fake yield surfaces (in
the terminology of Walton & Bittleston). Introducing the variables Z = Y/h and X =
12x/(Bh2), we may write (25) as a simple cubic for Z = Z(X); the relevant solution for
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flat surfaces (h = constant) is shown in figure 3, and reproduces one derived by Covey &
Stanmore [17].

One application of squeeze flow theory is to compute the lubrication pressure arising
between two colliding spheres in a suspension. For the two-dimensional version of this
problem, the colliding objects are disks and we may write h ∼ 1+ 1

2x
2 as an approximation

of the geometry of the gap when the approach is close. For Newtonian fluid, Y → 0 and we
find the classical solution,

px = −12x

h3
, or p = pa +

6

h2
, (26)

where pa is the ambient fluid pressure. One can then compute the force on the disks, which
is to leading order,

∫∞
−∞(p−pa) dx. For a viscoplastic fluid, the situation is rather different:

h→ 1
2x

2 as one moves out of the narrowest part of the gap and the relevant solution of the
cubic is

Y → 1
2h & |px| →

2B

h
, or p ∼ pa + 2

√
2B

[

1
2π − tan−1 |x|√

2

]

. (27)

The physical significance of this solution is that the yield stress dominates as one moves
out of the gap where the shear rates are in decline. The fake yield surfaces then approach
the disk surfaces. Critically, the lubrication pressure, p− pa, is not integrable over the gap,
which indicates that the force between the colliding objects is no longer dominated by the
lubrication forces over the narrowest parts of the gap. Instead, the force is dictated by the
yield stress elsewhere, which complicates the macroscopic description of particle interaction
forces in viscoplastic suspensions.

2.3 The pseudo-plug solution and finer matching details

To look at the pseudo-plug more carefully and study how it joins on to the fully yielded flow,
we focus on the case of a squeeze flow between flat plates and consider only the first quadrant
(x, y) > 0 to avoid having to keep track of various sign changes. Given σ2 + τ2 = B2 and
σ > 0 because ux > 0, we find that

τ = ypx ≡ Bu1y
√

4u2px + u21y

& σ = −px
√

Y 2 − y2 ≡ 2Bupx
√

4u2px + u21y

(28)

over the pseudo-plug. Hence

u1y = − 2yupx
√

Y 2 − y2
. (29)

Evidently, u → up from below y = Y and u1y diverges as one approaches that level from
the pseudoplug, thus allowing for a larger velocity gradient. These observations do not,
however, yet constitute an exercise in matched asymptotics as we appear to be patching
two solutions together at a particular point in y.

It turns out that the join is effected over a narrower region surrounding the fake yield
surface. To resolve this layer we put

y = Y + δζ & u = up + δaU(s, ζ, t), (30)
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where δ ≪ 1, but its relation with ǫ, and the exponent a both remain to be found. Now,

for the fully yielded region we have γ̇ ∼ |uy|, whereas we know that γ̇ ∼ ǫ
√

4u2px + u21y over

the pseudo-plug. To connect these two limits, we therefore introduce the approximation

γ̇ ≈
√

δ2a−2U2
ζ + 4ǫu2px into the constitutive law:

τ ≡ −B + δζpx ≈ δa−1Uζ +
Bδa−1Uζ

√

δ2a−2U2
ζ + ǫ2u2px

. (31)

Given Uζ < 0, the main balance of terms in this relation is just −B ≈ −B; demanding that
the next-order corrections all have the same size implies a = 2 and δ = ǫ2/3. Thence, we
arrive at

U3
ζ − ζpxU

2
ζ + 2Bu2px ≈ 0. (32)

This cubic has a real solution that converges to the limit Uζ ∼ ζpx for ζ → ∞, and to the
limit Uζ ∼ −upx

√

2B/ζpx for ζ → −∞; i.e. the limits of the fully yielded and pseudo-plug
solutions for y → Y . In other words, the pseudo-plug can be matched to the fully yielded
flow over a thin layer of thickness ǫ2/3.1

2.4 Strategy for more general solutions

Returning to more general situations, we express the shear rate un in terms of the shear
stress using the inverse of the constitutive law,

un = Γ(τ) (33)

(see figure 4). Unlike the original law, which is multi-valued for τ < τY , this inverse is
unambiguous with un = 0 for that range of stress (although the interpretation is not that
the fluid is rigid, but that it may be a pseudo-plug). We may integrate this equation over
the gap and change the integration variable from

n ≡ τ − τ−
ps

+ η− ≡ h
τ − τ−
τ+ − τ−

+ η− (34)

to τ :

U+ − U− =

∫ η+

η−

undn = h
I0(τ+)− I0(τ−)

τ+ − τ−
, (35)

where, as illustrated in figure 4,

Ij(τ) =

∫ τ

zjΓ(z)dz. (36)

We may also integrate our continuity relation, us + vn = 0, in n and use the kinetic
conditions on the bounding surfaces to arrive at

ht +
∂

∂s

∫ η+

η−

u dn = 0. (37)

1The corresponding analysis presented in Balmforth & Craster [2] contains erroneous powers; Putz,
Frigaard & Martinez [37] previously provide corrected formulae.
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Figure 4: Illustration of the inverse of the Herschel-Bulkley law (τ = Kγ̇n + τY , where
K is the consistency and n the power-law index) and the Ij(τ) functions it generates, for
power-law index n = 1

3 .

Hence,

Q(t) =

∫ s

0
ht(s

′, t)ds′ + U+η+ − U−η− − h2
I1(τ+)− I1(τ−)

(τ+ − τ−)2
+ h2τ−

I0(τ+)− I0(τ−)

τ+ − τ−
, (38)

where Q is an integration constant. Equations (35) and (38) constitute an algebraic problem
to solve for the surface shear stresses τ±(s, t) given the constitutive functions Ij(τ), the
instantaneous geometry of the gap and the motion of the bounding surfaces. A further
relation is needed to determine Q(t). In some problems (like in the squeeze flow problem)
a spatial symmetry can be used to fix this quantity; in others, the pressure drop ∆p across
the slot is known and so we have an additional relation,

∆p =

∫

psds =

∫

(τ+ − τ−)
ds

h
. (39)

Note that the problem here is parameterized in terms of the surface shear stresses τ±,
which hides and avoids an otherwise complicating feature of the problem: at no stage is
there a need to recognise the detailed flow configuration. Instead, one constructs after
τ± are determined. The issue that one would otherwise face is that with general motions
allowed for the boundaries and an initially unkown pressure gradient along the gap, there
are many possibilities for the form of the flow within the conduit: there may be moving
pseudo-plugs, genuinely rigid zones attached to the walls or neither. If one were to work
with the velocity field directly, the solution strategy would necessarily require a first effort
to find the relevant flow configuration. However, by working with τ±, and because the shear
stress itself varies only linearly across the gap, this task is avoided. After determining the
surface stresses, one can identify the flow configuration based on how they compare to B
(see figure 5):
• A: Fully yielded zone; |τ−|, |τ+| > B and sgn(τ−) = sgn(τ+).
• B: Lower plug; |τ−| < B.
• C: Central pseudo-plug; |τ−|, |τ+| > B and sgn(τ−) = −sgn(τ+).
• D: Upper plug; |τ+| < B.

The preceding formulation is a slight generalization of that presented by Hewitt &
Balmforth [24]. They provide a number of examples for illustration, including viscoplastic
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Figure 5: Examples of the four possible flow configurations.

journal and slider bearings [35], and indicate further how the construction can be made
computationally efficient and be used to dynamically evolve the gap or film (if one the
surfaces is free). Figure 6 shows one of their journal bearing solutions in which the two
cylinders of the bearing have prescribed rotation rates and translation speeds with respect
to one another. Here, the arc-length coordinate here simply corresponds to angle, and
the solution contains all of the flow configurations indicated above over different angular
locations of the gap. Also shown is the pressure distribution (here ∆p = 0 in view of
the periodic geometry) and the plug speed up(s), which varies in the pseudo-plugs, but is
constant in configurations B and D when the plug is truly rigid and attached to one of the
cylinders. Figure 7 shows a slider bearing solution (with no net pressure drop underneath,
∆p = 0). Again, the full flow solution contains all four possible configurations.

2.5 Plastic limit

Returning to the Bingham squeeze flow problem, an interesting limit arises for B ≫ 1. For
such a parameter setting, the fake yield surfaces, y = ±Y , must approach the bounding
plates, y = ±1

2h (the solution of the cubic in (25) lies near X = 0 in figure 3). Thus
px → −2B/h (or p→ −2Bx/h) and we arrive at

Y ∼ 1
2h−

√
B−1x. (40)

The fully yielded flow therefore becomes restricted to boundary layers of thickness B−1/2.
The pseudo-plug, on the other hand, has the stress solution,

(τ, σ) ∼ B

(

−2y

h
,

√

1− 4y2

h2

)

, (41)

and plug speed up ∼ x/h.
It is informative to compare the solution (41) with a classical solution of Prandtl in ideal

plasticity theory [36]. This solution pertains to the squeeze flow of an ideal plastic material
without any immediate assumption regarding the slenderness of the configuration. Indeed,
one can check that (41), together with the pressure solution

p = −2Bx

h
−B

√

1− 4y2

h2
, (42)
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Figure 6: A viscoplastic journal bearing solution, showing (a) τ±(s), (b) p(s), (c) up(s)
and (d) the fully yielded regions, true plugs and pseudo-plugs. The dotted lines show the
borders of the regions with different flow configurations (as indicated in (d)). In (a), the
dashed lines show ±B. The origin of s (which corresponds to angle) is the location of the
minimum gap. The outer cylinder (of radius 1.1) is fixed in place whilst the inner cylinder
(of radius 0.8) rotates with angular speed 2 and its centre moves in the direction of the line
of centres so as to close the minimum gap at speed 1. The fluid has a Bingham number of
B = 5 and a power-law index of n = 1

2 .

satisfies the full force-balance equations,

∂

∂x
(σ − p) +

∂τ

∂y
= 0 &

∂τ

∂x
− ∂

∂y
(σ + p) = 0, (43)

along with the yield condition σ2 + τ2 = B2. In other words, our pseudo-plug solution is
nothing more than the shallow limit of Prandtl’s solution. Importantly, the presence of the
fully yielded boundary layer adjacent to the plates is equivalent to Prandlt’s assumption
that those surfaces are “fully rough.” That is, u must vanish on the plates whatever the
stress exerted there, implying ux = 0 and therefore σ = 0.

2.6 Sliplines

In ideal plasticity, an elegant way of solving (43) is using the method of characteristics [36].
This method constructs two families of special curves along which certain quantities are
conserved, all of which can be recognized by defining

(σ, τ) = B(− sin 2ϑ, cos 2ϑ), (44)
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and then rewriting (43) in the two forms,
(

cosϑ
∂

∂x
+ sinϑ

∂

∂y

)

(p+ 2Bϑ) =

(

sinϑ
∂

∂x
− cosϑ

∂

∂y

)

(p− 2Bϑ) = 0. (45)

In plasticity theory, the two families of characteristic curves are called sliplines and have
parametric equations,

dy

dx
= tanϑ &

dy

dx
= − cotϑ. (46)

Evidently the two sets of sliplines are orthogonal to one another, and along these curves the
(Riemann) invariants are p ± 2Bϑ (respectively). The sliplines for Prandtl’s squeeze flow
solution, given in x > 0 by

x− x0
h

= ± tan−1

√

1
2h+ y
1
2h− y

−
√

1− 4y2

h2
, (47)

where x = x0 is the starting point of the curve on the bottom plate, are illustrated in figure
8. (The slipline pattern has reflection symmetry about both coordinate axes.)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

y 
/ h

x / h

Figure 8: Prandtl’s slipline solution with the central plugs shaded.

Although it is not a slender approximation, Prandtl’s solution requires correction at
the edges and core of the squeeze flow [41, 42]: at the edges, the flow must be terminated
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somehow, perhaps by allowing the fluid to extrude into free space beyond the ends of the
plate. At the centre, the slipline pattern must be adjusted to allow for the symmetry
condition along x = 0. One way to do this is to assume that the sliplines that intersect the
origin are yield surfaces and enclose a plug, as indicated in figure 8. Such a construction is
allowed because further theory of the slipline field establishes that any of the sliplines can
play the role of a yield surface provided the resulting stress field is consistent.

In more general geometries, the construction of the slipline network is more challenging.
Practically, the most straghtforward situation is when p and ϑ are both known along a given
curve. The sliplines can then be constructed by integrating (46) out from the known curve
into the region of plastic deformation, exploiting the known invariants p±2Bϑ and perhaps
a simple finite-difference approximation [36]. Unfortunately, only in a limited number of
problems does one have the necessary known curve. More often, one must a boundary-value
type problem because one only has incomplete information on more than one curve. Worse,
problems in which boundary conditions on the velocity are required demand a simultaneous
calculation of the velocity field. Despite this, slipline theory has proved useful in some
specific plasticity problems that can be viewed as the plastic limits of viscoplastic flow
problems [31, 38, 14]) Alternatively, a useful test of the fidelity of a numerical scheme in
the plastic limit can be provided by examining the slipline field predicted by a computed
solution.

Note that the length of the adopted plugs in figure 8 is of the same order as the slot
thickness and are therefore inaccessible in the lubrication theory even if the slot is narrow.
Indeed, as discussed in [46, 37], one expects that true plugs could be hidden within the
pseudo-plugs of slender flows around points of symmetry or stagnation; their detection and
characterization requires a less controlled approximation strategy in view of their lack of
scale separation. When the geometry of the conduit itself is more complicated, plugs can
also clog wells and corners if their lengths are too short [39].

2.7 Extension to three dimensions

The lubrication analysis can be readily extended to three dimensions. We summarize the
generalization for Herschel-Bulkley fluid flowing down a largely planar slot that is symmet-
rical about its midplane. The flow is pressure-driven and the walls are fixed in time. We
align the midplane with the (x, z)−coordinate plane (y = 0; see figure 9). The dominant
balance of forces is then

∂p

∂x
=
∂τxy
∂y

,
∂p

∂y
= 0,

∂p

∂z
=
∂τzy
∂y

, (48)

→→
→→

→

→

zy

h/2

−h/2

−Y

Y

x
Plug−like flow

Figure 9: Sketch of the ge-
ometry for a viscoplastic
fluid in a Hele-Shaw cell.
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leading to
p = p(x, z), (τxy, τzy) = z (px, pz) . (49)

The shear rates (uy, wy) across the slot again dominate the strain-rate tensor. Hence,
the consitutive law, suitably non-dimensionalized using the characteristic viscosity µ∗ =
K(U/H)n−1 where K is the consistency and n is the power-law index, indicates that

(

τxy
τzy

)

≈
(

γ̇n−1 +
B

γ̇

)(

uy
wy

)

if τ ≈
√

τ2xy + τ2zy > B, (50)

where
γ̇ ≈

√

u2y + w2
y. (51)

The (u,w) velocity field now follows (see figure 9):

(

u
w

)

= − n

n+ 1
S(1−n)/n

[

max(12h− Y, 0)(n+1)/n −max (|y| − Y, 0)(n+1)/n
]

(

px
pz

)

, (52)

where the “yield surface” and pressure gradient are

Y =
B

S
& S =

√

p2x + p2z. (53)

Note that, in the squeeze flow problem of §2.2, flow was immediately forced by the motion
of the walls. For the current, pressure-driven flow, the pressure gradient may not always be
sufficient to drive fluid down the slot, in which case the conduit must clog up and a true
plug bridge the gap. Mathematically, this translates to Y exceeding 1

2h in the formulae
above; the switch, max(12h− Y, 0), takes care of the implied (genuine) yield condition.

We now define a streamfunction based on the flux down the slot:

(

−ψz

ψx

)

=

∫

1
2h

−
1
2h

(

u
w

)

dy. (54)

After a little algebra one then finds

(

ψz

−ψx

)

=
Q

S

(

px
pz

)

, (55)

involving the flux-pressure-gradient relation,

Q ≡
√

ψ2
x + ψ2

z =
2n

(n+ 1)(2n+ 1)

[

max
(

1
2h− Y ), 0

)]1+1/n
[12(n+ 1)h+ nY ]S1/n, (56)

which is plotted in figure 10 (for n = 1). Finally, pzx = pxz implies

(Q−1Sψx)x + (Q−1Sψz)z = 0, (57)

a nonlinear elliptic equation that is similar to models proposed for viscoplastic displacement
flows and nonlinear filtration (e.g. [11, 33]).

For a Newtonian fluid, Q → (h3/12)S, (57) reduces to Laplace’s equation and (56)
is equivalent to Darcy’s law, thus connecting flow in a Hele-Shaw cell with that through
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(b) Figure 10: (a) Flux-
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tion for Bingham flow
down a Hele-Shalw cell.
(b) shows the corre-
sponding fake yield sur-
face. (n = 1)

a porous medium. By analogy with this connection, and with a more general relation
between Q and S than in (56), the nonlinear elliptic problem in (57) has been posed as a
model for viscoplastic flow through a porous medium (e.g. [19]). Recent computations and
experiments have even attempted to calibrate the Q − S relation for particular idealized
porous media [15, 44, 12], following on from earlier Russian literature focussed on oil recovery
problems (e.g. [10]). Importantly, as for the original viscoplastic constitutive law, the
Q− S relation features a threshold for flow to begin (figure 10), corresponding to the yield
condition encoded in the switch, max(12h− Y, 0).

The connection between Newtonian flow through a slot and in a porous medium origi-
nally motivated Henry Selby Hele-Shaw to visualize potential flow around obstacles. Along
this vein, some numerical solutions to the model in (56)-(57) are shown in figure 11 for
viscoplastic flow around a disk and an ellipse (obtained using an Augmented Lagrangian
algorithm, see lectures by A. Wachs). These solutions contain genuine plug regions fore and
aft of the obstacles, where Y reaches 1

2h, Q→ 0 and flow grinds to a halt.

0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 11: Viscoplastic flow around a
disk and an ellipse in a uniform Hele-
Shaw cell with B = 32 and 20, re-
spectively. Shown are a selection of
streamlines. Lengths and velocities are
scaled such that the mean flux in the
x−direction is 2 well upstream or down-
stream of the obstacles, which have unit
radius or semi-major axis, and the half-
thickness of the cell is unity. Obstacles
are shaded black; plugs are grey.

A clever way to deal with (57) (and some other viscoplastic flow problems [19]) is to
use the Hodograph transformation, which can be applied when the slot is uniform (h is
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constant): this technique introduces the polar coordinate representations,

(

px
pz

)

= S

(

cosΘ
sinΘ

)

and

(

ψx

ψz

)

= Q

(

sinΘ
− cosΘ

)

, (58)

and then makes the transformation, (x, y) → (Q,Θ). The result is a linear elliptic problem
for the streamfunction [19]:

Q2

S

(

S2

QS′
ψQ

)

Q

+ ψΘΘ = 0, (59)

along with

pΘ = − S2

QS′
ψQ, pQ =

S

Q2
ψΘ, , (60)

where S′ = dS/dQ. Although the original elliptic equation is thereby linearized, the prac-
tical use of the Hodograph transformation is limited because one can only impose the
boundary conditions after mapping the problem back to real space, which can prohibitively
complicate those conditions.

Despite this, one can manufacture exact solutions for some special problems. For exam-
ple, an interesting separable solution of (59) is given by ψ = a(Q) sin 2Θ (cf. [1]), where

Q2

S

(

S2

QS′
aQ

)

Q

− 4a = 0, (61)

subject to the limits a ∝ Qα as Q→ ∞ and a ∝ Q(2n+1)/(n+1) as Q→ 0 (which correspond
to matching the solution to a far-field flow of power-law fluid and demanding that the
pressure remains finite when flow halts), where

α = 1
2

√

(n− 1)2 + 16n− 1
2(n− 1). (62)

The corresponding streamline pattern of the solution can be found by integrating

(

dx

dΘ
,
dy

dΘ

)

= S−1 dp

dΘ
(cosΘ, sinΘ) (63)

along curves of constant ψ, as illustrated in figure 12 for n = 1. Evidently, this solution
corresponds to a stagnation-point flow with an embedded plug. The yield surfaces bordering
this region can be constructed analytically (exploiting the fact that this curve is the limiting
streamline for Q→ 0, along which p ∝ cos 2Θ); in the first quadrant,

(x, y) = c(n)B(α−1)/n(cos 3Θ + 3 cosΘ, 3 sinΘ− sin 3Θ), (64)

where c(n) is an n−dependent constant that is determined from integrating the ODE in
(61). Further details, as well as a discussion of other types of solutions can be found in
[1, 19, 10, 23].
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3 Viscoplastic boundary layers

The fully yield boundary layer arising in lubrication theory for B ≫ 1 is an example of a
viscoplastic boundary layer, in the sense that over this relatively thin region both viscous
stresses and the yield stress complete the balance of forces. However, this is not the only
situation in which viscoplastic boundary layers can arise. Indeed, Oldroyd [32] in a classical
paper suggested how such layers might arise in a variety of contexts and presented an anal-
ysis of the possible boundary-layer structure for Bingham fluid. A drawback of Oldroyd’s
theory is that it requires the solution of a rather challenging-looking PDE, and likely as a
consequence, there have no attempts since to solve the problem in general settings. Oldroyd
did, however, show that the equation had solutions with similarity form. Nevertheless, the
relevance of these solutions has never been confirmed in any particular flow configuration.
Moreover, the boundary layer structure (an in particular its scaling with Bingham number)
appears to be different than in Oldroyd’s theory in a number of other contexts [45, 13].

3.1 Oldroyd’s viscoplastic shear layer

Oldroyd’s shear layer is the border between two plug flows which becomes thin in the limit
that the Bingham number, B = HτY /(µU), is large, where H is a characteristic thickness
of the layer and U is the velocity jump across it. For a straight boundary layer orientated
along the horizontal line y = y0 and with a characteristic aspect ratio of thickness to
length of ε ≪ 1, we resolve the boundary layer with a stretched coordinate and rescale for
B = ε−3 ≫ 1:

y = y0 + εζ, u = um + U(x, ζ), v = εV (x, ζ), (65)

where um is the mean horizontal velocity of the boundary layer, and

p =
P (x, ζ)

ε2
, τ = − 1

ε3
+
τ̌(x, ζ)

ε
, σ =

σ̌(x, ζ)

ε2
, (66)

assuming uy < 0, so that the leading-order shear stress is τ = −B. These rescalings are
designed so that, although τ dominates the stress state, the extensional stresses and pressure
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gradient still enter the force balance along with that dominant component. The consequence
of this design is that the thickness of the boundary layer has the scaling ε = B−1/3.

The rescaled conservation equations are, to leading order,

Ux + Vζ = 0, Px =
∂τ̌

∂ζ
+
∂σ̌

∂x
& Pζ = −∂σ̌

∂ζ
+O(ε2). (67)

The expansion of the constitutive law for yielded fluid gives

τ̌ = Uζ +
2U2

x

U2
ζ

& σ̌ = −2Ux

Uζ
(68)

Eliminating the pressure furnishes Oldroyd’s boundary-layer equation,

[

Uζ +
2U2

x

U2
ζ

]

ζζ

− 4

(

Ux

Uζ

)

xζ

= 0. (69)

3.2 Self-similar solutions

As indicated by Oldroyd, the boundary-layer equations have a solution with the self-similar
form,

U = f(χ) & χ =
ζ

Y (x)
. (70)

Assuming anti-symmetry about the centreline of the boundary-layer, and plugging (70) into
(69), we find

fχχ = λχ & Yxx = − λ

4Y 2
, (71)

where λ is a separation constant. Imposing f = ∓1
2 and fχ = 0 at χ = ±1 now gives

f = 1
4χ(χ

2 − 3) & λ =
3

2
. (72)

One then has to solve (71a) for Y . There are solutions with Y = Ye and Yx = 0 at the
right-hand end of the boundary layer (giving Ux = 0) with

Y 3/2
e

[

tan−1

√

s

1− s
−
√

s(1− s)

]Y/Ye

s=Y0/Ye

=

√
3

2
(x− x0), (73)

where (x, Y ) = (x0, Y0) denotes the start of the boundary layer. For Ye → ∞, we recover
Oldroyd’s power-law solution, Y ∝ x2/3.2

2The determination of solutions of similarity form is a mathematical subject of itself. One option for
the task is to introduce the rescalings, (x̂, ζ̂) = (kx, ℓζ), and then to establish what combinations (if any)
of the parameters k and ℓ lead to the same equation as (69). One finds this to be so if k2 = ℓ3. The
combination χ = x/ζ3/2 = x̂/ζ̂3/2 is therefore invariant under the transformation and implies the existence
of a self-similar solution with U = U(η).
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Figure 13: Oldroyd’s two canoni-
cal boundary layer problems: (a) A
jet or finger of unyielded viscoplas-
tic fluid is pushed out of a vent
in a wall into a semi-infinite re-
gion filled with stagnant fluid; two
thin shear layers buffer the plugged
core of the jet from the rigid ambi-
ent. (b) The flow around a knife
or plate pushed through an infi-
nite viscoplastic fluid; a viscoplas-
tic boundary layer coats the mov-
ing object.

3.3 Sample flow solutions with boundary layers

Oldroyd suggested two canonical problems in which viscoplastic boundary layers might
appear. The first consists of a finger or jet of Bingham fluid pushed out of a vent in a
wall into semi-infinite region filled with stagnant fluid (see figure 13(a)). Oldroyd proposed
that the borders between the finger and ambient would yield to form two thin viscoplastic
shear layers with structure given by (72)-(73). Figure 14 shows a numerical solution of this
problem, but set in a finite domain (with symmetry conditions imposed to the right and on
the top and bottom) and computed using an augmented Lagrangian scheme. As predicted
by Oldroyd, the sides of the finger form widening shear layer whose thickness scales with
B−1/3. The velocity profile and shape of the shear layer both agree with the self-similar
solution.

Note that if one considers a narrower jet entering the same domain the solution is
qualitatively different: the fluid yields almost immediately as it leaves the vent to form a
wide plastically deforming region (figure 15); the plastic zones begin at the edges of the vent
and merge together, leaving a small triangular tip to the incoming rigid jet. The plastic
zone subsequently splits apart again further down the extrusion at a yield surface that
eventually closes off the plastic region. Two horizontal viscoplastic boundary layers then
remain that divide the surrounding rigid ambient from a moving plugged jet, and whose
structure is again predicted by Oldroyd’s self-similar solution. Thus, the extrusion adjusts
to provide a minimum jet thickness if the vent is too narrow, and Oldroyd’s expected flow
configuration is recovered downstream.

As illustrated in figure 15(c,d), the solution over the plastic region is described by a
slipline field that begins with two expansion fans centred at the vent’s edges and meets the
symmetry line along the axis of the jet (y = 0) at ±45◦ (a consequence of τ = 0 there). The
sliplines that border the triangular tip of the rigid jet form straight lines inclined at 45◦. In
turn, this implies that all the other sliplines of the same family in the fan form (straight)
radial spokes of equal length and that the other family forms a set of concentric circular
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Figure 14: Oldroyd’s jet with its two shear layers. (a) shows yield surfaces for B = 32, 128,
512 and 2048. (b) shows log10 γ̇ and u as densities on the (x, y)−plane (half of the jet is
shown), with the yield surfaces indicated, for B = 20148. (c) and (d) compare the yield
surfaces and horizontal velocity profile of the upper shear layer with the prediction of the
self-similar boundary layer solution (dotted red line and blue line with circles).

Figure 15: A narrower jet. Again (a) shows the yield surfaces for B = 32, 128, 512 and
2048. (b) shows u, the yield surfaces and sample streamlines for B = 2048. (c) shows
log10 γ̇ along with a selection of sliplines, as reconstructed from p and ϑ = −1

2 tan
−1(σ/τ).

(d) shows a slipline construction directly from the characteristic equations, beginning from
two expansion fans and demanding that the sliplines meet at fortyfive degrees along the
symmetry line.

arcs (this follows from Hencky’s rules, that dictate the geometry of the slipline field [36]).
Further from the centre of the fans, the outgoing sliplines begin to curve so that the other
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slipline family meets the symmetry line at the required angle. The slipline field must now
be constructed by integrating the slipline equations. In principle, this direct construction
of the slipline field offers a means to predict the emergent jet thickness.

Oldroyd’s second problem studied the boundary layer around a knife or plate pushed
through an infinite Bingham fluid (see figure 13(b)). This configuration has recently been
the focus of an experimental study [13], which claims that one needs to supplement the
viscoplastic boundary-layer solution with elastic-type deformation within the plug zones to
generate a complete solution for the flow field. A computation of the steady flow around
a finite plate is shown in figure 16. In this purely Bingham computation, the flow takes a
boundary-layer form against the plate, as found experimentally and suggested by Oldroyd.
The scaling of this boundary layer is not B−1/3, however, but B−1/2. In addition, fluid also
circulates around to either side of the plate in two rigidly rotating vortices with diameter
comparable to the length of the plate. The rigid rotation is bordered by a circular shear
layer whose structure is actually of the Oldroyd B−1/3−type. Besides the vortices and
boundary layers, there are also regions of nearly plastic flow at the leading and trailing
edges of the plate. The sliplines over those regions contain expansion fans centred at the
plate’s end and a network emerging from the viscoplastic boundary layer along the plate
somewhat like Prandtl’s construction (figure 8). The two are stitched together by a stress
discontinuity, which is permissible in ideal plasticity if the tangential stress is discontinuous
but the normal stress is continuous. Overall, the flow structure is quite different from
Oldroyd’s expectations, but matches solutions found for flow around elongated ellipses and
rectangles (E. Chaparian, in preparation). Having said that, it is not so clear how one could
extrapolate this solution to Oldroyd’s semi-infinite knife.

Figure 16: Oldroyd’s moving
plate, showing the solution in the
first quadrant; the plate occu-
pies −1

2 < x < 1
2 and y = 0.

(a) and (b) show u and log10 γ̇
as densities on the (x, y)−plane.
(a) includes the yield surfaces
and a selection of streamlines.
(c) compares the boundary-layer
velocity profile u(0, y) with the
asymptotic prediction in (75),
taking Y from the numerical so-
lution. (d) shows a magnifica-
tion of the plastic region, with
a reconstruction of the slipline
field overlaid on a density map
of log10 γ̇. B = 2048.

Difficulties with the boundary-layer theory of §3.1–3.2 for the plate problem were already
pointed out by Oldroyd: instead of imposing a symmetry condition at ζ = 0, as for the shear
layer, one must impose no-slip: U(x, 0) = V (x, 0) = 0. One must also match the boundary-
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layer solution to a plug or plastic flow outside the boundary layer, which corresponds to
demanding that U , Uζ and V should all become small at ζ = Y . But the two conditions on
V (x, ζ) cannot both be satisfied in Oldroyd’s theory because V follows from integrating the
continuity equation, Vζ = −Ux, which is only first order in ζ. Instead, Oldroyd proposed
that one should impose V (x, 0) = 0 and omit the other boundary condition, suggesting that
the nonvanishing transverse velocity at the edge of the boundary layer could be accounted
for by allowing a modest elastic deformation over the region outside the boundary layer.
Evidently, however, the core of the problem is that the boundary-layer scaling is not B−1/3.

The narrower B−1/2 boundary layer is analogous to the large B limit of the fully yielded
regions in lubrication theory (cf. (40)). For the flow around the plate, the appropriate
scalings and main balances are

p =
P (x, η)

ε2
, τ = −B +

1

ε
uζ + ..., Px = uζζ & Pζ = 0. (74)

The link between the boundary layer thickness ε and B does not follow from the force
balance equations here. Instead, one must argue that ε = B−1/2 is demanded by matching
the boundary-layer solution with the other regions in the flow. In particular, over the plastic
region at the front and back of the plate, we must have p = O(B) for a non-trivial slipline
solution (see §2.6). Given u(x, 0) = 1 (the velocity of the plate), equations (74) predict the
parabolic velocity profile,

u =

[

1− ζ

Y (x)

]2

, (75)

where ζ = Y =
√
2Px now denotes where the boundary layer meets either the rigid rotation

or the plastic flow (where u and uζ become small; cf. figure 16).
Piau [34] has also considered B−1/2 boundary layers around the plate in a revision

of Oldroyd’s original analysis. Despite the different balances that this alternative scaling
implicitly implies, Piau (somewhat obscurely) analyses the problem in a non-asymptotic
fashion, keeping both the leading order and some of the correction terms. Instead of the
simple equations outlined above (and their equally straightforward solution), he then arrives
at Oldroyd’s boundary-layer equations and writes down another self-similar solution. None
of this elabouration appears necessary, although in some situations, retaining additional
correction terms along with the leading order can improve an asymptotic solution (cf. §4.4).

For a third example, we consider channel flow through an expansion, as considered
experimentally by Chevalier et al. [16], and who argued this to be a canonical viscoplastic
analogue of the shear-banding of plastic materials in “frustrated flows” (Chevalier et al.
considered pipe flow; we continue with the two-dimensional problem here). In the limit
of large yield stress, the flow down the uniform part of the channel is largely plug-like,
lubricated by thin boundary layers. When the plug meets the expansion, slightly less narrow
shear layers develop to isolate the moving plug from rigid fluid in the clogged-up expansion.
Figure 17 shows a computation of the configuration (assumed periodic, and again using the
Augmented Lagrangian algorithm). The free shear layers have the B−1/3−scaling and are
well described by Oldroyd’s boundary-layer analysis and similarity solution; the boundary
layers against the channel walls, on the other hand, follow the B−1/2 scaling.
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Figure 17: Channel flow past a rectangular expansion at B = 2048, showing density maps
of log10 γ̇ and u. The upper half of the solution is displayed. Plugs are shaded black; grey
shows the bounding wall.
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Figure 18: Sketch of the
geometry for a sticky vis-
coplastic film flow.

4 Free-surface flow

We now consider a different range of problems, introducing gravity and endowing our thin
layers of viscoplastic fluid with a free surface.

4.1 Sticky viscoplastic films

Returning to the lubrication model of §2, we consider the gravity-driven flow of a film of
Bingham fluid over an inclined planar surface. We align an (x, z)−Cartesian coordinate
system with the inclined plane, with x pointing down slope. The free surface lies at z =
η(x, t). See figure 18. The dimensional thin-film equations are

ux + wz = 0, px = τz + ρg sin θ, & pz = −ρg cos θ, (76)

where g is gravity, ρ the fluid density and θ the angle of inclination with respect to the
horizontal. With the scalings

x = Lx̂, (z, η) = H(ẑ, η̂), (u,w) = U(û, ǫŵ), (p, τ, σ) =
µUL
H2

(p̂, ǫτ̂ , ǫσ̂), (77)

and after dropping the hat decoration, we convert the force balance equations into the
dimensionless form,

px = τz +Gx, & pz = −Gz, (78)
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where the gravity parameters Gx = ρgH3 cos θ/(µUL) and Gz = ρgH3 cos θ/(ǫµUL), both
of which are assumed to be order one, which requires that the slope is relatively shallow.
The Bingham law implies

τ = uz +B sgn (uz) if |τ | > B, (79)

and uz = 0 otherwise, where B = τY L/(ρgH2). At the free surface of the film, the thin-film
scalings implies the stress conditions,

p(z, η, t) = Π(x, t)− Γηxx & τ(x, η, t) = 0, (80)

where Γ = γH3/(µUL3) is an inverse Capillary number and the normal surface force Π
accounts for the ambient pressure of an overlying (inviscid) fluid such as air or water (cf.
I. Wilson’s lectures on cleaing and fouling). The kinematic condition demands

ηt + u(x, η, t)ηx = w(x, η, t). (81)

It now follows that the pressure distribution is hydrostatic,

p = P −Gxz ≡ Π− Γηxx +Gx(η − z) (82)

(P being the base pressure), and related to the shear stress by

τ = (Gx − Px)(η − z) = (Gx −Gzηx −Πx + Γηxxx)(η − z). (83)

The velocity profile is

u = 1
2(Gx − Px)×

{

z(2Y − z), 0 < z < Y,
Y 2, Y < z < η,

Y = Max

(

0, η − B

|Gx − Px|

)

, (84)

if there is no slip on the inclined plane (u = w = 0 on z = 0). The region Y < z < η is
occupied by a pseudo-plug (figure 18).

Finally, given the z−integrated mass conservation equation,

∂η

∂t
+

∂

∂x

∫ η

0
u dz = 0, (85)

we find the evolution equation for the fluid depth,

∂η

∂t
=

∂

∂x

[

1

6
(3η − Y )Y 2(Px −Gx)

]

. (86)

Without surface pressure variations and tension (Γ = Πx = 0) this equation and some of
its generalizations are reviewed in [4] (a first derivation being given by [28]).

The main feature of the model that we point out here is that fluid yields and spreads
provided Y > 0. Hence, when Y → 0, flow must come to a halt, furnishing an equation for
a slumped deposit:

|Gx − Px|η = B. (87)
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Figure 19: Spreading viscoplastic current with B = 0.5, Gz = 1, Gx = 0, Γ = 0 and
Π = 0, starting from a smoothed dambreak configuration that includes a pre-wetted film
of thickness 10−3 to ease the computation and avoid a true contact line (η(x, 0) = 1

2 [1 −
tanh 20(x2 − 1)] + 10−3; dashed line). Shown are snapshots of η(x, t) and Y (x, t) at the
times indicated; the dots show the final shape from (88). The solution is symmetrical about
x = 0 and only the half in x > 0 is plotted. The inset shows the evolution of the front of
the current X(t).

On a flat surface and omitting surface tension and pressure variations (Gx = Γ = Π = 0),
we then find (cf. [30]).

η =

√

1− 2Gz
−1B|x|, (88)

if we choose H as the maximum depth, and after shifting the position of the maximum
to x = 0. The progress to this state is illustrated in figure 19, which shows a numerical
solution to (86), starting from a dambreak-type configuration (an initial-value problem that
is relevant to the “Bostwick consistometer,” a practical rheometer used in food science [3]).

A numerical solution that includes surface tension (Γ 6= 0) is shown in figure 20. In
this case, once the fluid is released, the high curvature of the initial state generates a rapid
adjustment in which a prominent ridge and capillary wave train propagate towards the
centre of the fluid, yielding the fluid layer en route. Flow eventually subsides, as in figure
19, but with the entire initial reservoir having collapsed. Again the final state is predicted
by (87), which for the current parameter settings becomes

Γηxxx −Gxηx =
B

η
, (89)

assuming Px < 0 and the boundary conditions η(X) = η′(X) = 0 at the fluid edge x = X
(some care needs to be taken in arriving at this boundary condition; Jalaal, Balmforth &
Stoeber, in preparation).

The model in (86) is analogous to that used for viscous gravity currents [18]. As in
that Newtonian problem, rather elabourate machinations are required to add inertia to the
theory [20]. This arises because the z−dependence of the velocity field forbids a simple
approximation of the inertial terms and also changes with their introduction. Perhaps the
most significant extension of the viscoplastic film theory for the future is to explore the
inertial generalization of the model.
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Figure 20: Dambreak with B = 0.5 and Γ = 0.1 (Gz = 1, Gx = Π = 0; η(x, 0) =
1
2 [1 − tanh 20(x2 − 1)] + 10−3). Shown are snapshots of η(x, t) at the times indicated; the
dots show the final shape expected from (89). The insets show the evolution of the front of
the current X(t) and its maximum depth ηmax(t), and the two earliest snapshots including
Y (x, t).

4.2 Sliding films

What happens when the condition on the base of the film is not no-slip? In some geophysical
problems, like glacier flow, this is a very real consideration in view of the physical condition
of the interface between ice and the underlying terrain and the lubricating action of any
water [40]. For many non-Newtonian fluids in engineering this is also important because
of the tendency for these materials to suffer apparent slip (e.g. [8]; lectures by I. Wilson).
Indeed, slip has been observed directly in drops of viscoplastic fluid spreading over glass
surfaces [26]. Nevertheless, despite the widespread its occurence, physical models of slip are
rare and slip laws are mostly based on empiricism.

To consider the effect of slip on the film model above, we abandon the no slip condition
in favour of a relation between the basal shear stress, τb ≡ η(Gx − ηx), and slip velocity us.
In particular, we take

us = k Max(0, |τb| −Bw)
m sgn(τb), (90)

with (suitably scaled) dimensionless parameters k, Bw and m. A simple power-law of the
form, us = k|τb|m sgn(τb), for the slip law has the unappealing feature that material would
slide over the bounding surface however small the basal stress, in contrast to the everyday
observation that drops of viscoplastic fluid do adhere to shallowly inclined surfaces without
flowing or sliding. The inclusion of Bw accounts for a sliding threshold.

With the sliding law in (90), spreading will either not occur at all if |τb| < (Bw, B), via
sliding alone if Bw < |τb| < B, through internal shear flow with no slip if B < |τb| < Bw, or
both shear and slip if |τb| > (B,Bw). In most situations one expects that Bw < B. Motion
will then halt only after sliding ceases for τb = |Gx − Px|η → Bw, which predicts the same
final shapes as above save that B is replaced by Bw. Hence in spreading tests, there is a
danger that one might incorrectly diagnose the yield stress from the sliding threshold.

The final phase of spreading (with Bw < |τb| < B) is controlled purely by the basal
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friction from the slip layer; the overlying flow is plug-like with u = us and the analogue of
(86) is

∂η

∂t
= − ∂

∂x
(ηus) = −k ∂

∂x

[

ηY m
w |Px −Gx|m−1(Px −Gx)

]

, Yw = η − Bw

|Gx − Px|
. (91)

Evidently, the dynamics appears to be independent of the bulk rheology, although the
spreading fluid cannot be rigid (us will in general depend on x). In fact, the whole layer is
a pseudo-plug due to its yield stress.

4.3 Viscoplastic membrane models

A curious feature of the sliding film model is that the basal friction controls spreading and
the only role of the bulk fluid rheology is to suppress shear and establish the pseudo-plug.
If the underlying surface is very slippy, however, this is unrealistic as one expects that
extensional stresses in the plane of the film ought to limit the spreading of the fluid. Above,
such stresses have been omitted from the main balance of forces; to restore them, a different
set of scalings is needed. The point is that the relatively free sliding of the fluid layer relieves
the shear stress sufficiently to enhance the extensional stresses. We therefore introduce

(p, τ, σ) =
µU
L (p̂, ǫτ̂ , σ̂), (92)

to furnish the force balance equations

px = σx + τz +Gx, & pz + σz = −Gz, (93)

where we redefine the gravity parameterz as (Gx,Gz) = ρgL3(ǫ−1 sin θ, cos θ)/(µU). The
stress conditions at the surface must also be revised:

p(z, η, t) + σ(x, η, t) = Π(x, t)− Γηxx & τ(x, η, t)− 2ηxσ(x, η, t) = 0, (94)

with Γ = γH/(µUL). Thus, integrating both relations in (93) in z,

p+ σ = Π+ η − z & 0 = η(Gx −Gzηx −Πx + Γηxxx)− τb + 2
∂

∂x

∫ η

0
σdz, (95)

in which we see the emergence in importance of the extensional stress σ.
Despite the satisfying balances in (95), there is an apparent inconsistency with the

constitutive law which indicates that (σ, ǫτ) ∝ (2ux, ǫ
−1uz) in view of (92). However, we

now operate in the limit that sliding is relatively free, and so we cannot expect that much
shear builds up in u. We therefore set

γ̇ = 2

∣

∣

∣

∣

∂us
∂x

∣

∣

∣

∣

+O(ǫ2), u = us(x, t) + ǫ2u2(x, z, t), w = −z ∂us
∂x

+O(ǫ2), (96)

and

(σ, τ) =

(

1 +
B

γ̇

)(

2
∂us
∂x

,
∂u2
∂z

)

, if |σ| > B, (97)
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and ∂us/∂x = 0 otherwise, where B = τY L/(µU).
At this stage, computing the correction u2 is not needed and we arrive the paired

evolution equations,

ηt + (ηu)x = 0 & Re (ut + uux) = Gx −Gzηx −Πx +Γηxxx −
1

η
τb +

2

η

∂

∂x
(ησ), (98)

given u ≈ us and where we have also restored the leading-order inertial terms with Reynolds
number Re = ρUL/µ, which is acceptable in our asymptotic scheme in view of the plug-like
character of the flow (unlike in §4.1). We may also immediately generalize to the Herschel-
Bulkley version of the model by writing

σ = 2ux

(

|2ux|n−1 +
B

2|ux|

)

for |σ| > 0 & ux = 0 otherwise (99)

(though we consider only the Bingham case, n = 1, in all examples).
The model in (98)–(99) is what one might call a membrane model in solid mechanics

[29]. In fluid dynamics, the model is equivalent to that for free viscous films and jets [18],
Savage-Hutter-like models for granular flows [7], fast-moving ice streams and floating ice
shelves (with Re → 0) [40], and viscoplastic threads [5]. Indeed, by dropping the basal drag
τb, the model becomes identical to that for the evolution of a viscoplastic jet under varicose
disturbances (perturbations symmetric about the midline), with η(x, t) re-interpreted as
the half-thickness.

To reconsider the gravitational spreading problem of §4.1-4.2, we set Re = Γ = Πx = 0
and take (90) for τb. Assuming that the fluid approaches rest with (u, ux) → 0 and sgn(ux) =
s = ±1, the final shape is dictated by balancing the remaining terms the momentum
equation in (98): given that σ → sB and |τb| → Bw these terms combine into the relation,

|(2sB − ηGz)ηx − ηGx| = Bw. (100)

To examine the shape this predicts in more detail, we consider a flat plane (Gx = 0). If the
centre of the drop, with η = ηmax, is at x = 0, ηx < 0 and η − sB > 0 just to the right.
Thence

η =

√

(ηmax − 2sGz
−1B)2 − 2Gz

−1Bwx+ 2sGz
−1B. (101)

For a flow in compression (s < 0), this profile can decrease to zero, with finite slope at the
edge. On the other hand, when the flow comes to rest in expansion (s > 0), the solution
must terminate at a finite height to avoid becoming multi-valued. This suggests either that
the edge is vertical (in violation of the slender asymptotics) or that a rim of unyielded fluid
borders the main body of the slumped current.

Sample numerical solutions to (98) are shown in figure 21, and again correspond to
dam-break-like initial-value problems (with neither surface pressure variation nor tension,
Π = Γ = 0). The first example includes both an extensional yield stress and bottom drag
with a finite threshold; no drag is included for the second case. Both slide to a halt with a
shape given by (101). The flows are in extension, and the final shapes terminate in abrupt
cliffs of unyielded fluid that were pushed ahead of the extending current.

The second example of figure 21 spreads out with a distinctive flat-topped profile, reveal-
ing how an analytical solution of the problem is feasible in this case: although the Reynolds
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number used for the computation is Re = 1, the velocity u remains small throughout. In
this situation, the inertial terms are small and over the bulk of the current one may take
the solution,

η = N(t) & u = xΥ(t), (102)

with (from the first relation in (98))

dN

dt
+ΥN = 0. (103)

This spatial profile must be terminated by a jump or shock at the flow front, x = X(t).
Two further relations then follow from imposing the jump conditions,3

dX

dt
= −ΥX & 1

2GzN = 2σ ≡ 4Υ + 2B. (104)

Thus, NX = 1 if N(0) = X(0) = 1 (an obvious demand of mass conservation) and

dN

dt
= −1

8
N(N − 4B), or N = 4B

[

1− (1− 4B)e−Bt/2
]−1

, (105)

if Gz = 1. This solution, which is compared to the numerical computation in figure 21,
exposes the final state, η → 4B, and yield condition, 4B < 1. The latter is characteristic of
the initial condition and arises because the jump in the net hydrostatic pressure at the edge
of the fluid can be balanced by the extensional stress 2σ without failure provided σ does
not exceed the yield stress. When the initial extensional stress exceeds B, sliding ensues,
until the extension of the layer reduces the net hydrostatic pressure on the side face to the
equilibrium level 4B. Much that same happens when Bs 6= 0 although that threshold affects
both the failure condition and final rest state.

4.4 Jet instability

To explore the (varicose) instability of a high-speed viscoplastic jet in air, we need a pre-
scription for the dynamic pressure due to the irrotational flow of ambient air. For this,
we need to solve Laplace’s equation for the velocity potential UHφ(x, y, t) (with y scaled

3The first shock condition (Rankine-Hugoniot relation [47]) follows from first writing the mass-
conservation equation in (98) as a integral conservation law,

0 =
d

dt

∫ x2

x1

η(x, t)dx+ [J(x, t)]x=x2

x=x1
=

∫ X

x1

ηt(x, t)dx+

∫ x2

X

ηt(x, t)dx+
[

J(x, t)− Ẋη(x, t)
]x=x2

x=x1

,

where J = hu is the mass flux, x1 and x2 are arbitrary locations straddling the shock, and X± implies
the limit from either the left or right. By taking x1 → X− and x2 → X+ and arguing that the remaining
integrals then become negligible, we then find

Ẋ [η(x, t)]x=X+

x=X−
= [J(x, t)]x=X+

x=X−
.

The second relation follows from applying the same argument to the momentum equation in (98) (Γ = 0):

ẊRe [ηu]x=X+

x=X−
=

[

Re ηu2
− 2ησ + 1

2
Gzη

2
]x=X+

x=X−

.
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Figure 21: Dambreak of a sliding viscoplastic current with (a) B = 0.1, Bs = 0.1, m = 1
and k = 1, and (b) B = 0.2 and Bs = k = 0. Both have Re = Gz = 1, Gx = Γ = Π = 0,
u(x, 0) = 0 and η(x, 0) = 1

2 [1− tanh 20(x2 − 1)] + 10−3 (dashed line). Shown are snapshots
of η(x, t) and u(x, t) at t = j2/5, j = 1, 2, ..., 12. The dots show the final shape from (101)
given the final maximum depth ηmax. The insets show the evolution of the front of the
current X(t) and ηmax(t); in (b), the dots show the prediction in (105), with the starting
value ofX adjusted to account for the finite thickness of the front (i.e. X = 1/N+X(0)−1).

with L rather than the film thickness) subject to the boundary conditions on the fluid-air
interface. Those conditions are

φy(x, 0, t) = ηt +O(ǫ) &
∂

∂x
[ǫ̺Reφt(x, 0, t) + pa] = O(ǫ2), (106)

where ̺ is the ratio of air to fluid density, pa is the interfacial air pressure (scaled by µU/L2),
which follow from the leading order kinematic condition and Bernoulli’s law. The last of
these relations indicates that the air pressure contribution to Π if O(ǫ) if ̺Re = O(1); we
keep this correction term along with the leading order in view of the fact that it is the
source of instability. Further justification can be given from the observation that all the
corrections to (98) are O(ǫ2). It is therefore consistent to include an O(ǫ) approximation to
pa.

Laplace’s equation can be solved using the Fourier transform [43]: if we denote the
transform of f(x) and its inverse by

f̌(k) = F{f(x)} =

∫ ∞

−∞
f(x)e−ikxdx & f(x) = F−1{f̌(k)} =

∫ ∞

−∞
f̌(k)eikx

dk

2π
,

(107)
then one can verify that φ̌(k, y, t) = e−|k|yφ̌(k, 0, t). The conditions in (106) now imply

−|k|φ̌(k, 0, t) = F{ηt} & ikǫ̺Reφ̌t(k, 0, t) + F{∂pa/∂x} = 0. (108)
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Hence
∂

∂x
pa = ǫ̺Re yF−1 {i sgn(k)F{ηtt}} ≡ −ǫ̺Re H{ηtt}, (109)

where

H{f(x)} =
1

π
−
∫

f(z) dz

x− z
(110)

is the Hilbert transform [43] (and the extra decoration on the integral symbol indicates that
the principal value must be taken to render the integral non-singular).

Now consider the stability of a viscoplastic jet, ignoring gravity Gx = Gz = 0 and basal
drag τb = 0. The evolution equations become

ηt + (ηu)x = 0 & Re (ut + uux) = ǫ̺Re H{ηtt}+ Γηxxx +
2

η

∂

∂x
(ησ). (111)

For a Newtonian jet, it is straightforward to consider the stability of small perturbations
about the uniform equilibrium u = η = 1 with dependence exp ik(x − ct), where k is the
wavenumber and c the (complex) wavespeed. One can thereby establish that perturbations
are unstable for k < ǫ̺Re/Γ, and one expects these modes to grow to break up the jet.4

For a Bingham fluid, on the other hand, the equilibrium is unconditionally stable because
the stress of the basic state, σ = 0, is finitely below the yield stress B. Thus, the jet can
only break up given a finite-amplitude initial perturbation. The situation is closely related
to the removal of the Rayleigh instability in viscoplastic threads with surface tension [5]
and mirrors many other viscoplastic problems of hydrodynamic stability (see lectures by I.
Frigaard and S. Hormozi).
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4.5 Viscoplastic beams

When the fluid is not stuck down to an underlying surface, it can become easier for the
viscoplastic film to buckle out of plane rather than deform symmetrically with respect to
the midline (figure 22). This calls for a different development of the thin-layer equations
[6]. We begin with the scaling of the stress components:

(p, τ, σ) =
µUH
L2

(p̂, ǫτ̂ , σ̂), (112)

4The restriction to varicose perturbations ignores the (very real) possibility that sinuous perturbations
may be more unstable and dominate the break-up dynamics. Sinuous perturbations require a consideration
of the bending of the midline of the fluid layer, along the lines considered in §4.5.
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but add the further constraint −p− σ = ǫ2szz. That is, p = −σ+O(ǫ2), which reduces the
normal stress in the z−direction to O(ǫ2), thereby achieving the force balances,

px = σx + τz +Gx, & 0 = τx +
∂

∂z
szz −Gz, (113)

with the gravity parameters, (Gx,Gz) = ρgL2(sin θ, ǫ−1 cos θ)/(µUH), so the film is now
either nearly vertical (θ ≈ 1

2π; ǫ
−1 cos θ) = O(1)) or horizontal (Gz = O(1) and Gx → 0).

We place the surfaces at z = η±(x, t) = Z(x, t) ± 1
2h(x, t), where z = Z(x, t) is the

midline of the sheet, and ignore surface pressure variations and tension. The surface stress
conditions are then

szz − ηxτ = 0 & τ + ηx(p− σ) = 0, (114)

at z = η(x, t) = Z ± 1
2h.

We now formulate integral expressions of force and torque balance by integrating over
z the equations in (113) and then the first of these expressions multiplied by z − Z(x, t).
Given (114) we then arrive at5

Σx = hGx, Qx = hGz, & Mx +ΣZx −Q = 0, (115)

where the “stress resultants” and effective moment are

[Σ, Q,M ] =

∫ Z+
1
2h

Z−
1
2h

[σ−p, τ, (z−Z)(σ−p)] dz =
∫ Z+

1
2h

Z−
1
2h

[2σ, τ, 2(z−Z)σ] dz+O(ǫ2). (116)

The specific ordering of the stress components in (112) demands a particular form for
the velocity field in order to achieve the same ordering of the strain rates (with (u,w) scaled
by U):

u = ǫ[U − (z − Z)Wx] +O(ǫ2), w =W +O(ǫ2), (117)

where [U(x, t),W (x, t)] is the leading-order velocity of the centreline. Thence (with units
of U/L for strain rate), γ̇xz = O(ǫ) and

γ̇xx = 2∆− 2(z − Z)Wxx, where ∆ = Ux + ZxWx. (118)

Given that γ̇ ∼ |γ̇xx|, for the fluid to be rigid over a section of the film at a given position
in x (i.e. for a finite range of z), we must have that ∆ = Wzz = 0. But if both these
conditions hold, then ux = 0 across this entire cross-section. In other words, the fluid is
either fully yielded or rigid across its thickness. Where yielded, we may now integrate

2σ = 2γ̇xx +B sgn(γ̇xx) (119)

and 2(z − Z)σ in z to determine constitutive relations for Σ and M (the resultant Q
is related to higher order corrections to the velocity field and is determined regardless
by the second force balance in (115)). Before quoting the result, we note an additional

5Note that there are typographical errors in the corresponding formulae for order-one curvature presented
by [6]. Specifically, the moment terms in (95) and (116) should be −ǫκMs, and that in (98) should be −κMs.
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simplification implied by the velocity field in (117): the kinematic conditions at the two
surfaces, z = Z ± 1

2h, reduce to W = (Z ± 1
2h)t. Hence

W ≡ Zt & h = 1 (120)

(in view of our scaling of the thickness). The constitutive relations are then

Σ = 4∆+ 2BΞ sgn(∆), Ξ = Min

(

1,

∣

∣

∣

∣

2∆

Wxx

∣

∣

∣

∣

)

, (121)

and
M = −1

3Wxx − 1
2B(1− Ξ2) sgn(Wxx). (122)

If the fluid is rigid, on the other hand, we must have that

|Σ| < 2BΞ & |M | < 1
2B(1− Ξ2), (123)

or

|M | < 1
2B Max

(

0, 1− Σ2

4B2

)

, (124)

Equations (115) and (120)-(122) provide a theory for viscoplastic beams or columns suf-
fering relatively small deflections (analogous to the classical Euler beam theory of elasticity
[29]). With more effort, this theory can be generalized to accommodate O(1) deflections
(curvature) using the arc-length based coordinate system for the centreline of the beam (cf.
§2.1 and figure 22; [6]).

4.6 Bending viscoplastic beams; toppling viscoplastic columns

Assuming that the end of the column at x = 0 is free (so that Σ(0, t) = Q(0, t) = 0) but
that at x = 1 is clamped (U(1, t) =W (1, t) =Wx(1, t) = 0), we may write

(Σ, Q) = x(Gx,Gz) & Mx = 1
2Gzx

2 − ΣZ. (125)

If the column is initially straight, then Z(x, 0) = 0 and

M(x, 0) = 1
2Gzx

2. (126)

The yield condition is therefore

Gzx
2 ≥ B Max

(

0, 1− Gx
2x2

4B2

)

. (127)

Hence, the fixed end x = 1 is the most dangerous position for failure (yielding). The
criterion (127) combines two effects: the viscoplastic beam can fail by bending under an
imposed torque M → 1

2Gz, or under the action of a compressive load Σ → Gx. The two
evidently conspire, with the compressive load lowering the threshold for bending on the
right of (127).

The horizontal beam, with Gx = 0 and therefore Σ(x, t) = 0, fails purely by bending
under the gravitational torque if Gz < B. This is the viscoplastic version of Galileo’s
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problem for the bending of a cantilever [6]. When failure occurs, the beam bends near
its fixed end over the section

√

B/Gz < x < 1, rotating the free end down to reduce the
gravitational torque. In the small deflection theory, Z(x, t) increases linearly with time
because M(x, t) = 1

2x
2, which prescribes a time-independent vertical speed W (x) through

(122) (with ∆ = Ξ = 0). Despite this, the reduction of the gravitational torque as the beam
bends down eventually allows the yield stress to terminate the beam’s fall; this is illustrated
in figure 23, which shows a solution of the corresponding theory for O(1) deflections [6].
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Figure 23: Sagging viscoplastic beam
with B = 0.5 and Gz = 1 at the times
indicated. The dots show the position of
the end of the beam at equally spaced
times. The darker region is yielded; grey
shading indicates the plug. The solution
at t = 1000 is close to the final resting
state. Note that the x−axis is drawn
right to left in this plot, the convention
in [6] (from which the solution is taken)
being opposite to that used here.

The vertical column with Gz = 0 cannot fail by bending as there is no imposed torque
at t = 0. Instead, it collapses when Gx > 2B, which is the criterion for a slender vertical
filament to yield symmetrically at its base [5]. Once the column fails in that fashion, any
deviation of its orientation from the vertical will allow it to topple over sideways. The
situation is rather different to the Euler buckling problem of elasticity theory, which is
classically posed as a linear instability problem. For the viscoplastic problem, as one moves
beyond the threshold for failure Gx = 2B, a narrow region yields at the base of the column.
This region expands linearly with time as deflections grow explosively, corresponding to
sudden toppling of the column; see the illustrative solution for O(1) curvature in figure
24 and [6] for further details. An interesting possible application of this problem is in 3D
printing [22].

5 Concluding remarks

These notes have presented an array of asymptotic analyses of viscoplastic flow problems,
together with a sprinkling of other mathematical techniques. In almost all the problems
in question, and as illustrated in several instances, the more analytical methodologies work
hand-in-hand with numerical approaches (discussed by A. Wachs) to acquire a detailed
understanding of the viscoplastic flow dynamics. We enjoyed slot flows, boundary layers,
sticky and slippy films, and bending columns, highlighting the important effects introduced
by the yield stress in each case. The emphasis has been on asymptotics and therefore on
building approximate solutions, and complements approaches seeking to constrain solutions
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Figure 24: A viscoplastic column buckling un-
der gravity with B = Gx = 1 at the times
t = 0, 0.41, 0.4125, 0.415, 0.4175, 0.42 and 1.
To initiate collapse, the column is extruded
almost upwards at fixed speed such that it
reaches the critical length for collapse at t = 0;
the direction of extrusion is offset from the
vertical by an angle 10−6 to allow sideways
toppling. The dotted curve shows the posi-
tion of the free end of the column. The darker
region is yielded; grey shading indicates the
plug. At later times, the column is hanging
vertically and begins to stretch and thin under
gravity (i.e. h(x, t) 6= 1; another ingredient of
the generalized theory)

with variational and bounding techniques, as reviewed by I. Frigaard.
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