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B S T R A C T

he decade following the second world war heralded the publication of a collection of important papers on non-Newtonian fluid mechanics; Oldroyd’s work
eatured heavily in this collection. Not only did these articles establish important results, but Oldroyd’s style and methods set the scene for subsequent work
n the area, exploiting mathematical analysis to formulate problems, establish results and guide further research. While Oldroyd’s name will forever be linked
ith the study of elastic fluids, the purpose of the present paper is to offer a modern perspective on a number of Oldroyd’s papers on viscoplastic fluids from
947–1951 [1–8]. Along the way, we sprinkle in a brief review of some of the subsequent developments stemming from Oldroyd’s advances, together with a few
ew results guided by his work. Following the approach of most of Oldroyd’s original papers, we focus on unidirectional flow down conduits. In an Appendix,
e complement this discussion with a lubrication analysis, extending, clarifying and correcting the important original analysis of Walton and Bittleston (1991)

9]; although lubrication theory was not directly utilized by Oldroyd, the methodology aligns with his philosophy of using asymptotic and analytical approaches.
. Oldroyd’s eight viscoplastic papers

.1. ‘A rational formulation’ [1]

The first of Oldroyd’s forays into viscoplasticity resulted in his
eminal paper on a ‘rational formulation of the equations of plastic
low for a Bingham solid’ [1]. In this paper, following the tensorial
ormulation of continuum mechanics, Oldroyd takes Bingham’s concept
f a material that can ‘support finite stress elastically without flow and
hich flows ... when the stresses are sufficiently great’ and determines

he now well-known three-dimensional Bingham constitutive law. The
aper has been widely cited and provides a definitive formulation
f this tensorial law, which forms the basis of any modern study of
iscoplastic fluids in more than one dimension.

Oldroyd begins armed only with the assumptions that the yield
ondition depends on the deviatoric components of the stress alone, the
lastic viscosity 𝜇𝑝 above yield is constant, and the material is isotropic.
e thus writes down a general rheological law for the deviatoric stress
𝑖𝑗 above yield,

𝑖𝑗 = 𝜃𝑖𝑗 + 2𝜇𝑝�̇�𝑖𝑗 , (1)

n terms of a traceless yield-stress tensor 𝜃𝑖𝑗 and (deviatoric) strain rate
�̇�𝑖𝑗 . Yield occurs when �̇�𝑖𝑗 = 0. A series of geometrical arguments allow
im to argue that the principal directions of 𝜃𝑖𝑗 , 𝜏𝑖𝑗 and �̇�𝑖𝑗 all coincide,
nd therefore that these three tensors are in proportion to one another.

∗ Corresponding author.
E-mail address: d.hewitt@ucl.ac.uk (D.R. Hewitt).

Last, being the only permitted tensor-invariant form that is independent
of the pressure, Oldroyd applies the von Mises criterion for yield,
√

1
2
∑

𝑖,𝑗
𝜏𝑖𝑗𝜏𝑖𝑗 ≡ 𝜏 = 𝜏Y, (2)

for some positive constant ‘yield stress’ 𝜏Y. Hence

𝜃𝑖𝑗 =
𝜏Y
𝜏
𝜏𝑖𝑗 , (3)

and we arrive at the Bingham law,

𝜏𝑖𝑗 =
(

2𝜇𝑝 +
𝜏Y
�̇�

)

�̇�𝑖𝑗 if 𝜏 ⩾ 𝜏Y, (4)

where �̇�2 = 1
2
∑

𝑖,𝑗 �̇�𝑖𝑗 �̇�𝑖𝑗 . Below the yield stress, Oldroyd complemented
(4) with a linearly elastic rheological law, accounting for solid-like
deformation. Most modern statements of the Bingham law instead ne-
glect any elastic deformation below yield, and complete the constitutive
model by demanding �̇�𝑖𝑗 = 0 when 𝜏 < 𝜏Y.

Armed with the tensorial Bingham law, Oldroyd continues on to
discuss the energetics of a yield-stress material, establishing a minimum
dissipation theorem for the flow of Bingham fluids. Prager [10] also
derives this principle, whilst also establishing the maximum principal
for the stresses and connections with analogous results from plasticity
theory: together [1,10] lay key foundations for variational formulations
of viscoplastic fluid mechanics.
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Fig. 1. (a) A sketch of Oldroyd’s jet problem. In (b) and (c) we show numerical solutions for Bi ≫ 1 (here Bi = 2048) adapted from [11] with different jet widths (𝑦𝑖 = 1∕2, 1∕8
respectively) that illustrate the two possible scenarios. The density map shows log10 �̇� and blue contours show sample streamlines.
Oldroyd’s paper arrived during the period that plasticity theory was
being shaped into the form that we currently recognize, with the now-
classical texts by Hill [12] and Prager & Hodge [13] emerging roughly
contemporaneously. In fact, Prager and co-workers established the
three-dimensional formulation of the Bingham law somewhat earlier
than Oldroyd, taking a perspective much closer to solid mechanics and
plasticity theory [14,15]. None the less, the approach of Oldroyd [1],
and its rheological setting, marks the start of fluid viscoplasticity as we
know it today. It is clear though that Oldroyd still viewed viscoplastic
materials as ‘Bingham solids’ – that is, elastic solids that can undergo
plastic flow for large enough stress – rather than the more standard
modern view of ‘Bingham fluids’ that flow like a viscous fluid for large
enough stress and remain essentially undeformed otherwise. Oldroyd’s
explicit allowance of the material to deform elastically below yield il-
lustrated this viewpoint, which has resurfaced on a number of occasions
(e.g. [16]) but has only relatively recently regained traction in modern
viscoplastic modelling [17].

1.2. ‘A plastic boundary-layer theory’ [2]

Oldroyd’s second paper outlines a plastic boundary-layer theory for
a two-dimensional Bingham fluid motivated by the classical Blasius
analysis of a boundary layer for a viscous Newtonian fluid. The theory
predicts that the usual viscous shear stress across the boundary layer
can be combined with contributions from the yield stress to balance
pressure gradients down the layer. A characteristic thickness for the
boundary layer emerges that scales as Bi−

1
3 , where

Bi =
𝜏Y𝐿
𝜇𝑝𝑈

(5)

is the Bingham number. Here, 𝐿 and 𝑈 are typical length and velocity
scales in the flow direction. The theory is mapped out for Bi ≫
1, corresponding to the yield stress being much greater than typical
viscous stresses.

Oldroyd’s boundary-layer equation is rather more daunting than
that in Blasius theory, amounting to a nonlinear partial differential
equation for the streamfunction or velocity along the layer. However,
Oldroyd went on to show that the equation admitted a self-similar
solution corresponding to a thickening boundary layer that bridged
between either two plugs, two regions of almost perfectly plastic defor-
mation, or a combination of the two. That is, a free viscoplastic shear
layer.

Oldroyd’s analysis runs into difficulties when the boundary layer
buffers a wall, being unable to satisfy all the boundary conditions and
the continuity equation. Oldroyd felt that this indicated that elastic
stresses needed to be included to save the situation. However, the
analysis of exact unidirectional flow solutions, such as Oldroyd’s for
viscoplastic flow between coaxial cylinders [3] (his equations (7)-(8)),
2

Fig. 2. (a) A sketch of Oldroyd’s knife problem. In (b) and (c) we show a numerical
solution adapted from [11] with Bi = 512; (b) shows the flow speed in the boundary
layer against the knife, and (c) shows the logarithm of the strain rate over a wider
region around the knife. Sample (white) streamlines are included in both panels.

or down a circular pipe [6] (his equation (57)), suggest that, in such
cases, the boundary scalings may take a different form. Indeed, it
turns out that boundary layers in a Bingham fluid against a rigid wall
are typically characterized by a thickness of order Bi−

1
2 [11,18], and

involve a rather simpler balance between viscous stresses and pressure
gradients, with plastic terms playing no role.

Oldroyd suggested two canonical problems to explore in order to
illustrate his boundary-layer theory: plastic flow around a moving
knife and a plastic jet emerging from an orifice in a plane wall.
These examples have indeed been found by [11] to possess boundary
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layers with Oldroyd’s self-similar structure; see Figs. 1 and 2. The
first figure shows the boundary-layer structure developing at the edges
of a viscoplastic jet. Although Oldroyd’s prediction is borne out by
numerical simulations (as reproduced in Fig. 1), his construction is not
the complete story: if the width of the jet is too small, the boundary
layers interact and a more complicated pattern of nearly perfectly
plastic flow develops across the orifice; the jet thereby expands before
settling into Oldroyd’s pattern (see [11] for further details).

Oldroyd’s second example is the viscoplastic flow around a trans-
lating, two-dimensional plate, or ‘‘knife’’ (Fig. 2), a configuration that
has motivated a number of experiments [19–21]. However, Oldroyd’s
theory does not, in fact, apply to the boundary layers against the side
of the knife, as pointed out by Piau [18,22]; these layers instead have a
Bi−

1
2 scaling for Bingham fluid (or Bi−

1
𝑛+1 for Herschel–Bulkley fluid).

Nevertheless, the example provides a convenient illustration of this
latter type of boundary layer, as illustrated by the numerical example
also shown in Fig. 2. This computation uses a plate of finite length
instead of the half-plane introduced by Oldroyd. Again there are some
surprises: most notably, the boundary layers against the plate are not
the only regions of flow. Instead a complicated zone of nearly perfectly
plastic deformation also arises at the front and back of the plate as
well as an extensive rotating plug. Moreover, the free shear layers that
border the rotating plug are described by Oldroyd’s boundary-layer
heory. Oldroyd’s theory does therefore apply to the knife problem,
ut not as in Oldroyd’s original vision. Larger-scale deformation of this
orm away from the plate has also been observed experimentally [20]
nd found theoretically for flows around ellipses with high aspect ratio
23].

We revisit Oldroyd’s boundary layer theory and canonical examples
elow in a variation of the two-dimensional viscoplastic flow problem.
n particular, we consider steady unidirectional flow down a conduit of
rbitrary cross-section. This second type of viscoplastic flow problem is
he subject of the third and fourth series of Oldroyd’s papers, discussed
n the next subsections, and has received much wider attention in
iew of various industrial applications. In the limit of a strong yield
tress, or close to the onset of flow, the conduit flow also develops
he two types of viscoplastic boundary layers, and Oldroyd’s canonical
xamples again provide useful illustrations. One important difference
etween the 2D and conduit problems, however, is that the constraints
hat make Oldroyd’s theory problematic for a boundary layer against a
all do not feature in the latter. As a result, as we will find below, one

an find Bi−
1
3 layers against the wall of a conduit.

1.3. ‘Conduit flow’ [3–6]

In this series of papers, Oldroyd constructs solutions for the uni-
directional flow of Bingham fluid down a conduit with a variety of
geometries. In many ways, the papers set the stage for later work
on viscoplastic flow down conduits of arbitrary cross section (e.g.
[9,24–32]).

The first two papers discuss flow between two boundaries in relative
motion, taking eccentric circles or confocal ellipses as illustrative wall
shapes. For eccentric circular cylinders [3], Oldroyd’s strategy is to
build solutions perturbatively, using the yield stress as the expan-
sion parameter and exploiting complex-variable techniques (conformal
mapping) to ease the algebraic construction. Although this strategy
limits the solutions to being yielded throughout the domain, it did
furnish helpful solutions in an age before the widespread availability of
computing power. However, Oldroyd also makes the important general
point that once a boundary becomes fully plugged up, its precise shape
and location become irrelevant to the velocity solution. The ‘‘cloaked’’
wall impacts merely the stress distribution within the plug, thereby
influencing the conditions for which the plug breaks to ‘‘uncloak’’ that
boundary, but otherwise remains irrelevant. The flow in the yielded
region conforms only to the shape of an unplugged boundary, including
3

inheriting its symmetries (even when the other boundary has other
symmetries). Consequently, for an eccentric annulus, the inner yielded
region becomes axisymmetric about the centre of the inner circle once
the outer circle becomes hidden within a plug. Oldroyd was then able to
construct solutions with higher yield stress (where the outer boundary
is likely to plug up) without knowing precisely for what range of 𝜏𝑌
these might arise.

In [4], Oldroyd repeats the perturbation expansion for boundaries
with the form of confocal ellipses. Again, the solutions are limited to
the fully yielded regime, with a plugged outer ellipse expected at high
yield stress. This time, however, the elliptical geometry precludes a
straightforward solution for the latter states. Instead, Oldroyd invents
an iterative technique to converge to the correct solution: he uses the
solution for flow between two walls to approximate that between a
wall and a yield surface. Then, by a clever construction, he refines this
approximation to correct the yield surface position, in a manner that
could be applied repeatedly for successive improvements.

Oldroyd’s point about cloaking is widely exploited in viscoplastic
fluid mechanics nowadays (e.g. [33,34]). It applies in other conduit
flows when a plug intervenes between the two boundaries, isolating
separate yielded regions. In this case, each sheared zone is affected only
by the shape of adjacent boundary, and independent of the other one.
The asymmetries between the boundary shapes is therefore entirely ac-
counted for by the plug. This result underscores a construction by Szabo
& Hassager [25] that we return to in Section 4.2 for eccentric annuli,
and how solutions for flow in certain geometries lead to solutions in
other conduits (see Sections 3.1 and 3.2).

Oldroyd’s third paper in this series on conduit flow digresses further
into the differential geometry underlying the problem, considering
more general bounding surfaces, assuming only that the velocity con-
tours (and therefore walls and plugs) are coordinate lines of some
orthogonal coordinate system. Ultimately he chooses a plane wall and
a wall shaped like a catenary to arrive at an exact solution for the
flow of a Bingham fluid within a relatively complicated geometry (see
Section 3.2).

The fourth paper [6] takes a somewhat different tack, considering
unsteady problems. Oldroyd first establishes an equation of motion for
the yield surface, and draws an analogy with a certain kind of Stefan
problem. Eventually, he settles on flows within a uniform conduit
driven time-dependently either by the relative motion of the walls, a
pressure gradient, or both. This type of flow problem has been explored
further in [35–38], where methods developed for Stefan problems are
used to attack the problem, or analysis for early times establishes how
the yield surface is set into motion. By contrast, Oldroyd builds an
analytical similarity solution for a uniformly accelerating boundary.
Subsequent developments in this vein have considered oscillating flows
in which multiple plugs can appear [39–42].

1.4. ‘Beyond Bingham’ [7,8]

In the last two papers [7,8], Oldroyd advances beyond the Bingham
model, considering constitutive laws with general nonlinear plastic
viscosity functions. Paper [7] addresses the generalization of the dif-
ferential geometry in [5] to such fluids, offering a generalization of the
catenary solution for a particular viscosity function.

Finally, Oldroyd takes a different approach in [8] to tackle rectilin-
ear flows, without a driving pressure gradient, by using a hodograph
transform to convert the nonlinear partial differential equation for the
velocity into a linear one for a conjugate variable that depends on
the shear-rate components, now considered independent variables. This
permits Oldroyd to build some special exact solutions corresponding to
flow past a nearly elliptical obstruction for two specific model fluids.
Oldroyd’s analysis is closely related to similar approaches in nonlinear
filtration theory, as observed by Entov [43]. Entov further exploited the
correspondence to propose additional exact solutions for viscoplastic
flow. More exact solutions using the hodograph technique are given in

[44–48] for Bingham and Herschel–Bulkley fluids.
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Section 2.4 provides a brief summary of the hodograph approach.
Importantly, although they strictly apply to highly specific geome-
tries, certain solutions of the hodograph problem apply quite generally
whenever the yield stress becomes relatively small. More specifically,
the hodograph solutions provide the leading order form of a more
general solution within the small or remote regions where the strain
rates are low. Thus, the hodograph approach can be exploited to build
approximate yield surfaces. We exploit these features in Sections 2 and
4, to provide expressions for the shape of the yield surfaces around
Oldroyd’s knife and in the corners of square ducts.

In [7,8], Oldroyd’s main (analytical) results are established for
certain non-standard nonlinear viscosity functions, owing to the need
to solve the equation on the hodograph plane (which simplifies for
those viscosity functions). Nowadays, such an approach may well be
viewed with some caution in view of the familiar and simple appeal
of the mathematical form of the Bingham and Herschel–Bulkley laws.
However, Oldroyd’s point was that such analytically simple choices
may not be either suitable for a real fluid with a complicated rate-
dependent viscosity, or easy to work with to find exact solutions.
Oldroyd presents an alternative strategy wherein we adjust the consti-
tutive law to ease the analysis, with alternative choices perhaps being
just as straightforward to fit to a flow curve. Though unconventional
for viscoplastic flows, this perspective has been exploited with modified
Darcy laws in filtration theory and viscoplastic flows in Hele-Shaw cells
(e.g. [49–56]).

In retrospect, all but the first two of Oldroyd’s eight papers have
received little citation, other than as examples of approximate solutions
for flows in more complicated or specific geometries. Nevertheless, all
eight papers were clearly seminal, advocating the use of applied math-
ematical techniques to study complex fluid flows. Oldroyd’s particular
emphasis on locating and tracking yield surfaces foreshadowed many of
the concerns in later literature. It is not unreasonable to suppose that
the insights and tools set out by Oldroyd are undervalued and might
still provide traction in the future.

2. Steady conduit flow

We illustrate in more detail a number of Oldroyd’s advances by
considering the special example of uni-directional viscoplastic flow
down a conduit. More specifically, we consider a Herschel–Bulkley fluid
moving down a conduit with an arbitrarily shaped, but fixed cross-
section, driven either by a pressure gradient or the differential motion
of the walls. Our formulation of the problem mimics Oldroyd’s; some
of the developments either follow subsequent work or establish new
results, but in all cases, we are guided by Oldroyd’s hand.

2.1. Formulation and preliminary observations

If the conduit has a characteristic lengthscale 𝐿, and the flow a
typical speed 𝑉 , then we may cast the problem in a dimensionless
form by scaling lengths and speed by these measures. For a Herschel–
Bulkley fluid, the problem to be solved for the flow speed 𝑤(𝑥, 𝑦) over
the yielded regions is then

𝛁 ⋅ (�̇�𝑛−1𝛁𝑤) + Bi∇ ⋅
(

∇𝑤
�̇�

)

+ 𝛶 = 0, (6)

̇ ≡ |∇𝑤| ≡

√

( 𝜕𝑤
𝜕𝑥

)2
+
(

𝜕𝑤
𝜕𝑦

)2
, (7)

here

i =
𝜏Y
𝐾

(𝐿
𝑉

)𝑛
(8)

is the Bingham number. Here, 𝛶 is the magnitude of the dimensionless
pressure gradient, the dimensional gradient being scaled by 𝐾(𝑉 ∕𝐿)𝑛∕𝐿
and assumed either zero or negative to drive flow in the positive
𝑧−direction. In practice, if the motion of one of the walls drives fluid
4

flow, then we choose 𝑉 as the speed of that boundary; if the walls are
not in motion and a pressure gradient drives flow, then 𝑉 can be chosen
to set 𝛶 to unity.

In addition to yielded zones, the conduit may contain rigid plugs.
At the yield surfaces that separate the two regions, we must impose
�̇� ≡ |𝛁𝑤| = 0. A plug that is attached to one of the walls must move
at the speed of that boundary, but there may also be embedded plugs
with speed 𝑤 = 𝑤𝑝. As discussed by Oldroyd [6], the force balance on
an embedded plug demands that

𝛶𝐴 = ±𝓁Bi, (9)

where 𝐴 is the area of the plug, 𝓁 is the length of its perimeter
and we select the sign according to whether the plug advances past
either slower (+) or faster (−) fluid everywhere just beyond the yield
surface. A generalization of this condition to the situation that the plug
moves faster than the surrounding fluid over part of its periphery (of
length 𝓁+), and slower over the remainder (of length 𝓁−) is as follows.
Approaching the plug, the shear stress reduces to

Bi ∇𝑤
|∇𝑤|

≡ Bi �̂� (10)

as noted by Oldroyd [6]), where �̂� is the unit vector normal to the
urve of constant 𝑤 (in this case, the yield surface) in the direction of
ncreasing 𝑤. Integrating (6) over the area of the plug and using Gauss’s
heorem then furnishes

𝐴 = Bi(𝓁+ − 𝓁−). (11)

For the conduit problem, Oldroyd’s (and Prager’s) energy equation
ollows from multiplying (6) by 𝑤 and integrating over a domain 𝛺
ith boundary 𝜕𝛺. After some manipulations again involving Gauss’s

heorem, we find

𝛺

𝑤𝛶 d𝑥d𝑦 ≡ 𝛶𝑄 =
{

𝛺

𝜏�̇�d𝑥d𝑦 −
z
[

𝑤(𝜏xz, 𝜏yz)
]

𝜕𝛺 ⋅ �̂�
𝛺
d𝑠, (12)

here 𝑄 is the flux across 𝛺, and �̂�
𝛺

and 𝑠 are the outward normal and
rc length of 𝜕𝛺. The physical content of this mathematical statement
s that the power demanded of the pressure gradient to drive the fluid
hrough 𝛺 is equal to the dissipation rate by the viscous and plastic
tresses, less the power input by the forces acting on 𝜕𝛺.

As a final initial preparation, we note that, in curvilinear coordi-
ates (𝜍, 𝜂), in which 𝜍 denotes arc length along some curve and 𝜖𝜂 is
he transverse coordinate, the governing equation can be written as
1
ℎ

(𝜇
ℎ
𝑤𝜍

)

𝜍
+ 1
𝜖2

(

𝜇𝑤𝜂
)

𝜂 −
𝜅𝜇
𝜖ℎ
𝑤𝜂 = −𝛶 , (13)

here

(�̇�) = �̇�𝑛−1 + Bi
�̇�
, ℎ = 1 − 𝜖𝜂𝜅, �̇� =

√

𝑤2
𝜍

ℎ2
+
𝑤2
𝜂

𝜖2
(14)

and 𝜅 is the local curvature. Note that, in these relations, we have
introduced a shorthand, subscript notation for derivatives of 𝑤 with
respect to 𝜍 and 𝜂, and a scaling 𝜖 ≪ 1 for the transverse coordinate
that we will exploit in performing boundary-layer theory.

2.2. Perfectly plastic deformation and the yield surfaces

When the yield stress dominates the stress one expects that the
fluid must deform like a perfectly plastic fluid everywhere it is yielded,
except over thin boundary layers where viscosity remains important.
Here, we access this limit by taking Bi≫ 1, assuming that the velocity
scale 𝑉 can be prescribed. For pressure-driven flow, in which the
driving gradient is given and we scale 𝛶 to unity, typical speeds are
unknown and the plastic limit corresponds to the initiation of flow with

𝑤 ≪ 1.
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To expose the plastic limit more clearly, we follow Oldroyd [6] and
take the curve 𝜂 = 0 to be a contour of constant velocity with 𝑤𝜂 > 0
in (13)–(14). Then,

1
𝜖
𝜕𝜏𝜂𝑧
𝜕𝜂

− 𝜅
ℎ
𝜏𝜂𝑧 = −𝛶 , 𝜏𝜂𝑧 ≡

𝜇
𝜖
𝑤𝜂 =

(𝑤𝜂
𝜖

)𝑛
+ Bi. (15)

or a region of almost perfectly plastic deformation, we take Bi ≫ 1
and 𝜖 = 𝑂(1). We then set 𝜏𝜂𝑧 = Bi to arrive at

𝜅Bi = 𝛶 , (16)

for the constant speed contour 𝜂 = 0. Evidently, 𝛶 must be 𝑂(Bi) in
order to drive motion (cf. (9)). Since that pressure gradient is also
constant, (16) demands that the contours of constant 𝑤 must all be
circular arcs of the same radius. This is clearly impossible if the region
of perfectly plastic deformation has finite area. Thus, there cannot
be any such regions, in contrast to two-dimensional viscoplastic flow,
where they may appear, threaded by the sliplines of plasticity theory
(the characteristics of the stress field) [12,13].

For Bi → ∞, the conduit flow must therefore become confined to
viscoplastic boundary layers separating plugs from one another and the
walls. Over these boundary layers, we take 𝜖 to be sufficiently small
to promote the importance of the viscous stress. If 1 ≪ 𝜖−𝑛−1 ≪ Bi,
however, we still cannot escape the constraint in (16), which demands
that the boundary layer is a circular arc; only when 𝜖−𝑛−1 ∼ Bi can
the boundary layer follow a different curve. As we argue next, this
dichotomy leads to two types of boundary layers. In particular, when
the boundary layer is sandwiched between yield surfaces that lie away
from the walls, this ‘‘free shear layer’’ must be circular (as has been
established more formally [24,29]); in this case, Oldroyd’s boundary-
layer theory [2] applies, as discussed below in Section 2.3.2. First,
however, we discuss the other situation, where the boundary layer lies
against a wall and adopts the shape of that boundary.

2.3. Plastic boundary-layer theory

2.3.1. Viscoplastic boundary layers against a wall (a.k.a. between a plug
and a hard place)

For a boundary layer that lies against a wall moving with speed 𝑤𝑏,
we use that boundary to locate the curve 𝜂 = 0 in (13), and there let
𝑤 = 𝑤𝑏. At the other side of the boundary layer, the viscous influence
must disappear to leave either a region of perfectly plastic deformation
or a plug. But the arguments above indicate that there can be none of
the former regions. Thus, we set 𝑤 = 𝑤𝑝 and 𝑤𝜂 = 0 at the yield surface,
𝜂 = 𝑌 (𝜍), that borders the boundary layer at the other side.

In this setting, we now draw a parallel with the theory for Bi−
1
2

layers in the 2D flow problem. For this task, we first observe that the
pressure gradient, if responsible for flow, must be sufficient to drive the
fluid past the wall and counter the resisting viscous stress, leading us
to set 𝛶 = 𝜖−𝑛−1𝛶𝑛+1. If we further take 𝜖 = Bi−

1
𝑛+1 , then 𝛶 = 𝑂(Bi), as

emanded by force balance on the plug in (9) or (11). The leading-order
oundary-layer equation is then

|𝑤𝜂|
𝑛−1𝑤𝜂)𝜂 ∼ 𝜎𝜅 − 𝛶𝑛+1, (17)

here 𝜎 = sgn(𝑤𝜂) ≡ sgn(𝑤𝑝 −𝑤𝑏). Hence

= 𝑤𝑏 + (𝑤𝑝 −𝑤𝑏)

[

1 −
(

1 −
𝜂
𝑌

)1+ 1
𝑛

]

, (18)

nd

𝑝 = 𝑤𝑏 −
𝑛𝑌 1+ 1

𝑛

𝑛 + 1
|𝜎𝜅 − 𝛶𝑛+1|

1
𝑛 sgn(𝜎𝜅 − 𝛶𝑛+1). (19)

Evidently, this theory can only apply provided

𝛶 ≡ Bi𝛶𝑛+1 ≠ 𝜎𝜅Bi. (20)

In particular, the theory fails when there is no pressure gradient and
the wall is straight (𝛶 = 𝜅 = 0).
5

𝑛+1
2.3.2. Free viscoplastic shear layers
We may find the analogue of Oldroyd’s Bi−

1
3 layer for a free shear

layer centred at 𝜂 = 0, or when the theory of Section 2.3.1 fails for
a wall located at 𝜂 = 0: working with the left-hand side of (13), we
first observe that the leading order term, for Bi ≫ 1 and 𝜖 ≪ 1, is
𝜖−2Bi(�̇�−1𝑤𝜂)𝜂 . But since �̇� ∼ |𝑤𝜂|, this term vanishes identically. The
ext term to appear arises from the third term on the left of (13), and
s −𝜅Bi𝜎. This must be balanced by the leading-order of the right-hand
ide, and so 𝛶 ∼ 𝜅Bi𝜎. This condition reinforces the idea that the

centreline of a free shear layer must follow a circular arc, or that the
theory of Section 2.3.1 fails when (20) is violated.

The next corrections to the left-hand side of (13), constitute the two
combinations,

𝜖−𝑛−1(|𝑤𝜂|
𝑛−1𝑤𝜂)𝜂 (21)

nd

𝜎Bi
⎡

⎢

⎢

⎣

(𝑤𝜍
𝑤𝜂

)

𝜍
−

(

𝑤2
𝜍

2𝑤2
𝜂

)

𝜂

+ 𝜂𝜅
⎤

⎥

⎥

⎦

, (22)

where 𝜎 = sgn(𝑤𝜂). Assuming both are in balance, we find 𝜖 = Bi−
1
𝑛+2 .

With 𝛶 = 𝜅Bi𝜎+𝜖−𝑛−1𝛶𝑛+1, we then arrive at Oldroyd’s boundary-layer
equation,

(|𝑤𝜂|
𝑛−1𝑤𝜂)𝜂 + 𝜎

⎡

⎢

⎢

⎣

(𝑤𝜍
𝑤𝜂

)

𝜍
−

(

𝑤2
𝜍

2𝑤2
𝜂

)

𝜂

⎤

⎥

⎥

⎦

= −𝛶𝑛+1 − 𝜂𝜎𝜅, (23)

except for some differences in the numerical values of some of the coef-
ficients, and that the pressure gradient here is constant. For a free shear
layer, this equation must be solved subject to the edge conditions,

𝑤(𝜍, 𝑌±) = 𝑊± & 𝑤𝜂(𝜍, 𝑌±) = 0, (24)

here 𝜂 = 𝑌± are the bordering yield surfaces where the plug have
peeds 𝑊±. Alternatively, for a wall layer, we may apply 𝑤(𝜍, 0) = 𝑤𝑏,
𝜂(𝑌+) = 0 and 𝑤(𝜍, 𝑌+) = 𝑤𝑝.

For a free shear layer with 𝛶𝑛+1 = 𝜅 = 0, there is a self-similar
olution to (23) and (24) of the form

= 1
2
(𝑊− +𝑊+) + |𝑊+ −𝑊−| 𝑓 (𝜁 ), (25)

here

= −
𝜎𝜂
𝑌 (𝜍)

& 𝑌± = ±𝑌 (𝜍), (26)

as noticed by Oldroyd [2] in the Bingham case, and discussed more
thoroughly in [11]. The half-width of the shear layer 𝑌 (𝜁 ) and the
rofile function 𝑓 (𝜁 ) satisfy

d2𝑌
d𝜍2

= −
𝜆|𝑊+ −𝑊−|

𝑛

𝑌 𝑛+1
& (|𝑓𝜁 |

𝑛−1𝑓𝜁 )𝜁 = 𝜆𝜁, (27)

with a separation constant 𝜆 given by

𝜆 = 2

[

𝑛𝛤 ( 32 +
1
𝑛 )

√

𝜋𝛤 ( 1𝑛 )

]𝑛

, (28)

here 𝛤 (𝑥) is the Gamma function. For a Bingham fluid, the solution
s more explicit, with

(𝜁 ) = 1
4
𝜁 (𝜁2 − 3), 𝜆 = 3

2
(29)

and

tan−1
√

𝑌
𝑌
𝐸
− 𝑌

−

√

𝑌 (𝑌
𝐸
− 𝑌 )

𝑌
𝐸

=
𝜍
√

3|𝑊+ −𝑊−|

𝑌
3
2
𝐸

, (30)

if 𝑌 (0) = 0 and 𝑌 = 𝑌
𝐸

at the position where 𝑌 ′(𝑠) = 0 (cf. [11]).
The self-similar solution also applies to a wall layer with 𝛶𝑛+1 =

𝜅 = 0, provided we take 𝑊− = 2𝑤𝑏 − 𝑤𝑝, 𝑊+ = 𝑤𝑝, 𝑌− = −𝑌+ and
𝜂 > 0. For conduit flow, this solution is acceptable because there are
no further boundary conditions or constraints to impose. By contrast, in
the 2D flow problem, the satisfaction of the continuity equation and the
additional boundary conditions at the wall rule out Oldroyd’s theory.
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2.4. Hodograph transform

As noted earlier, Oldroyd [8] draws upon the hodograph approach,
popular in gas-dynamics as Chaplygin’s transformation, and which is a
Legendre transformation. This approach is powerful in generating exact
solutions to specific problems, but is less helpful in general settings.
However, one aspect of the hodograph method does remain generally
useful for conduit flows: when Bi ≪ 1, canonical plug shapes emerge
and these general shapes are ubiquitous. We briefly outline their origin
for the Bingham fluid, i.e. 𝑛 = 1.

The hodograph analysis [43–47,57] relies on a switch of the inde-
pendent variables. This is achieved by setting 𝑊 (𝑥, 𝑦) = 𝜓(𝜌, 𝛩) with
(𝑤𝑥, 𝑤𝑦) = Bi𝜌(sin𝛩,−cos𝛩), where 𝜌 = Bi−1�̇�. Neglecting the pressure
gradient 𝛶 , the governing equation (6) is then transformed into the
linear problem,

𝜌2

1 + 𝜌
𝜕
𝜕𝜌

[

(1 + 𝜌)2

𝜌
𝜕𝜙
𝜕𝜌

]

+
𝜕2𝜙
𝜕𝛩2

= 0. (31)

his is the crucial advantage of the hodograph approach: in (31) we
ow have a standard linear elliptic partial differential equation (PDE) to
eal with rather than the awkward nonlinear PDE in (6). In particular,
he limit as 𝜌→ 0 extracts the yield surface profile explicitly. Sadly the
ransformation back to the physical plane, which is accomplished by

𝑥 + 𝑖d𝑦 = 𝑒𝑖𝛩

𝜌Bi

[

𝜓𝛩d𝜌
𝜌

− (1 + 𝜌)𝜓𝜌d𝛩 − 𝑖d𝜓
]

, (32)

is non-trivial for realistic problems and the methodology is of no direct
advantage for pressure-gradient driven flows. Nevertheless, recognizing
that there exist simple solutions to the linear PDE that character-
ize common local flows means that this hodograph approach can be
usefully exploited.

Several simple solutions of (31) emerge by assuming separable
solutions of the form

𝜓(𝜌, 𝛩) = 𝑎𝑚(𝜌) sin𝛷 & 𝛷 = 𝑚𝛩 + 𝜙, (33)

where 𝜙 is an arbitrary phase that, along with 𝑚, must be selected
to enforce boundary conditions [57]. An analysis of the differential
equation satisfied by 𝑎𝑚(𝜌) indicates the limits, 𝑎𝑚 ∼ 𝛼𝑚𝐴𝜌2 for 𝜌 → 0
and 𝑎𝑚 ∼ 𝐴𝜌𝑚 for 𝜌 ≫ 1.

Four important cases are given by 𝑚 = 0, 1, 2 and 1
2 . The simplest

hodograph solution, with 𝑚 = 0, is

𝜓 = 𝐴
(

log(1 + 𝜌) −
𝜌

1 + 𝜌

)

→

{

1
2𝐴𝜌

2, 𝜌→ 0,
𝐴 log 𝜌, 𝜌→ ∞,

(34)

and so 𝛼0 =
1
2 . For 𝑚 = 1 and 2, we have the analytical solutions,

1(𝜌) = 𝐴𝜌2∕(1 + 𝜌) & 𝑎2(𝜌) = 𝐴𝜌2 (35)

(implying 𝛼1 = 𝛼2 = 1); 𝑎 1
2
(𝜌) is a special function [57] but can also be

effortlessly constructed numerically. We note 𝛼 1
2
≈ 0.5891.

At the yield surface, 𝜌→ 0 and d𝜌 = d𝜓 = 0, giving

+ 𝑖𝑦 = 𝑥∗ + 𝑖𝑦∗ +
𝛼𝑚𝐴
Bi

[

𝑒𝑖(𝛩+𝛷)

𝑚 + 1
+ 𝑒𝑖(𝛩−𝛷)

𝑚 − 1

]

, (36)

or 𝑚 ≠ 1, and

+ 𝑖𝑦 = 𝑥∗ + 𝑖𝑦∗ +
𝐴
Bi

[ 1
2
𝑒𝑖(𝛩+𝛷) + 𝑖𝛩𝑒𝑖𝜙

]

, (37)

if 𝑚 = 1, where 𝑥∗ and 𝑦∗ are integration constants. In the (Newtonian)
‘‘far-field’’, 𝜌 ≫ 1, we find

𝑥 + 𝑖𝑦 = 𝑋 + 𝑖𝑌 + 𝐴
Bi

×
{

𝑚(𝑚 − 1)−1𝜌𝑚−1𝑒𝑖(𝛩−𝛷), 𝑚 ≠ 1,
(log 𝜌 − 𝑖𝛩)𝑒−𝑖𝜙, 𝑚 = 1,

(38)

where 𝑋 and 𝑌 are two further constants of integration. Consequently,
the constant 𝐴 must be identified by matching up the far-field solu-
tion 𝐴𝜌𝑚 sin𝛷, with that solving the Newtonian problem in question,
exploiting (38). The yield surface is then prescribed by (36) or (37).
6

2.4.1. Circular yield surfaces; 𝑚 = 0
With 𝑚 = 0, we transform back to the physical plane using

d𝑥 + 𝑖d𝑦 = −𝐴𝑒
𝑖(𝛩+ 1

2 𝜋)

Bi(1 + 𝜌)2
d𝜌. (39)

The far-field (𝜌 ≫ 1) solution is therefore 𝜓 ∼ 𝐴 log(|𝐴|𝑟∕Bi), where 𝑟 is
he radial coordinate, and the yield surface is the circle 𝑟 = 𝑟𝑝 = Bi−1|𝐴|.

.4.2. Corner flow; 𝑚 = 2
For the 𝑚 = 2 solution, with 𝜙 = 0, 𝐴 = 𝑐Bi2 and 𝜓 = 𝑐Bi2𝜌2 sin 2𝛩,

he transformation back to physical space is given by

=𝑥∗ + 𝑐Bi(2𝜌 cos𝛩 + 4
3
cos3 𝛩), (40)

𝑦 =𝑦∗ − 𝑐Bi(2𝜌 sin𝛩 + 4
3
sin3 𝛩) (41)

The far-field solution therefore converges to the Newtonian stagnation-
point flow,

𝑤 ∼ −
(𝑥 − 𝑥∗)(𝑦 − 𝑦∗)

2𝑐
, (42)

entred at (𝑥∗, 𝑦∗). Conversely, for 𝜌 → 0, we may extract the yield
urface

𝑥 − 𝑥∗)2∕3 + (𝑦 − 𝑦∗)2∕3 = (4
3
𝑐Bi)2∕3. (43)

vidently, once 𝑐 is chosen from a match in the far field, (43) provides
convenient parameterization of the yield surface, which has a scale of
(Bi). In Section 4.1, we demonstrate how (43) approximates the yield

urfaces in the corners of a square duct for pressure-driven viscoplastic
low with a low yield stress (the pressure gradient being unimportant
n the small scale of this feature).

.4.3. Sinusoidal flow; 𝑚 = 1
For 𝑚 = 1, with 𝜙 = − 1

2𝜋, the solution is

𝑥 = 𝑋 + 𝐴
Bi

(

𝛩 + sin 2𝛩
2(1 + 𝜌)

)

, (44)

𝑦 = 𝑌 + 𝐴
Bi

[

log(1 + 𝜌) − cos2 𝛩
1 + 𝜌

]

, (45)

𝜓 =
𝐴𝜌2

1 + 𝜌
cos𝛩, (46)

which gives the far-field sinusoidal form,

𝑤(𝑥, 𝑦) ∼ 𝐴𝑒
Bi
𝐴 (𝑦−𝑌 ) cos Bi

𝐴
(𝑥 −𝑋), (47)

o be matched to the corresponding Newtonian solution for the prob-
em in question (such as the example below in Section 3.1). Having
etermined 𝐴, 𝑋 and 𝑌 thus, the corresponding yield surface follows
rom taking 𝜌→ 0,

= 1 − 𝜋−1(sin 2𝛩 + 2𝛩), (48)

𝑦 = 𝑌 + 2𝜋−1 cos2 𝛩. (49)

.4.4. The dipole solution; 𝑚 = 1
2

With 𝑚 = 1
2 and 𝜙 = − 1

4𝜋, we may find a fourth solution centred at
the origin of the physical plane with the far-field form,

𝜓 ∼ 𝐴𝜌
1
2 sin𝛷,

𝑥 ∼ 𝐴Bi−1𝜌−
1
2 sin𝛷,

𝑦 ∼ −𝐴Bi−1𝜌−
1
2 cos𝛷,

⎫

⎪

⎬

⎪

⎭

→ 𝑤 ∼ 𝐴2𝑥
Bi(𝑥2 + 𝑦2)

, (50)

where �̂� = 𝛩 + 1
4𝜋. The corresponding yield surface is given parame-

erically by (36). This solution was referred to as a dipole in the 1960s
ussian literature on nonlinear filtration [57], and describes the remote
lug surrounding a moving section of a wall, as we discuss below in
ection 3.1.

The yield surfaces implied by the three solutions outlined above for
> 0 are illustrated in Fig. 3. The solutions with other values for 𝑚

correspond to flow through wedges of varying angle [45].
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Fig. 3. The yield surfaces of the three hodograph solutions for (a) 𝑚 = 2, (b) 𝑚 = 1
and (c) 𝑚 = 1

2
.

3. Wall-driven conduit flows

Inspired by Oldroyd’s work and armed with the tools set out in
Section 2, we now explore viscoplastic flows down conduits driven
by the differential motion of the walls. In particular, we consider
the analogues of two of Oldroyd’s canonical problems [2], providing
numerical solutions and examining the limits of high (Bi≫ 1) and low
(Bi≪ 1) yield stress.

3.1. Sliding panels

The unidirectional analogue of Oldroyd’s jet (Fig. 1) is the motion
parallel to a wall driven by a sliding panel; i.e. a specific case of the
class of flow problems in the half space 𝑥 > 0 in which the velocity
𝑤(0, 𝑦) is imposed. In particular, the jet corresponds to the flow driven
by a panel of finite width that slides along the wall in the direction of
its length, with the remainder of the wall locked in place.

Before attacking such sliding panels, we address a slightly simpler
problem in which half the wall moves in one direction at speed 𝑉 whilst
the other half travels in the opposite direction with speed −𝑉 . The
dimensionless boundary condition is

𝑤(0, 𝑦) = sgn(𝑦). (51)

The 2D problem corresponding to this unidirectional flow problem
is the one-sided intrusion discussed in [11] as a simplification of
Oldroyd’s jet, which features a single viscoplastic shear layer stemming
from the velocity jump at 𝑦 = 0.

Practically, we solve this problem numerically in a domain of finite
size, 0 < 𝑥 < 𝐿𝑥 and −𝐿𝑦 < 𝑦 < 𝐿𝑦, using an augmented Lagrangian
scheme similar to that outlined in [48]. As long as 𝐿𝑦 is sufficiently
large, the precise positions of the upper and lower boundaries, and the
boundary condition imposed there, are irrelevant because the regions
further from the shear layer plug up (a first illustration of Oldroyd’s
cloaking effect). We use the free characteristic lengthscale  to set
𝐿𝑥 = 1, and impose 𝑤𝑥(1, 𝑦) = 0 and 𝑤𝑦(𝑥,±𝐿𝑦) = 0.

Numerical solutions for Bi = 10 and 100 are shown in Fig. 4, which
plots the shear rate �̇� as a density over the (𝑥, 𝑦)−plane with superposed
contours of constant 𝑤(𝑥, 𝑦). The shear-layer structure illustrated by
these numerical solutions is reproduced by Oldroyd’s boundary-layer
solution (Section 2.3.2), as also displayed in the figure.

For lower yield stress, we first note the Newtonian solution for 𝑦 > 0,

𝑤(𝑥, 𝑦) = 1 −
∞
∑

𝑛=1

sin[(𝑛 − 1
2 )𝜋𝑥]

𝜋(2𝑛 − 1)
𝑒−(𝑛−

1
2 )𝜋𝑦; (52)

the solution in 𝑦 < 0 can be obtained by symmetry, 𝑤(𝑥, 𝑦) being
an odd function of 𝑦. For large 𝑦, we neglect all but the first term
of the sum to find 𝑤 − 1 ∼ −𝑒−

𝜋
2 𝑦 sin 𝜋

2 𝑥; this can be matched with
the far-field hodograph solution with 𝑚 = 1 quoted in (47) by taking
𝐴 = − 2Bi, 𝑋 = 1 and 𝑌 = (2∕𝜋) log(2Bi−1), ignoring the unit wall
7

𝜋

Fig. 4. Numerical and asymptotic solutions for sliding half-planes with (a) Bi = 10
and (b) Bi = 100. The figure shows a density map of log10 �̇� for the numerical solution
(with the colorbar indicated) and blue lines show corresponding contours of constant
speed 𝑤(𝑥, 𝑦) spaced by increments of 0.25. The dashed lines show the yield surface
(green) and speed contours (black) of the self-similar asymptotic solution. The domain
has lengths 𝐿𝑥 = 1 and 𝐿𝑦 = 2 (not all the domain is shown).

Fig. 5. Numerical and asymptotic solutions for sliding half-planes (only showing the
upper half-plane) with (a) Bi = 1, (b) Bi = 0.25 and (c) Bi = 0.1. The figure shows log10 �̇�
and equally spaced speed contours (blue), together with the hodograph prediction of
the yield surface (dotted green) from (49).

speed, which can be added as an additional hodograph solution owing
to the linearity of (31). The yield surface in (49) with these values must
therefore characterize the remote plug when Bi ≪ 1, as illustrated in
Fig. 5, which shows numerical solutions for low Bi that converge to the
asymptotic result as Bi is reduced.

Moving on to a sliding panel of unit half-width (taking the dimen-
sional width to be 2), we impose the boundary condition,

𝑤(0, 𝑦) =

⎧

⎪

⎨

⎪

⎩

0, 𝑦 < −1,
1, −1 < 𝑦 < 1,
0, 𝑦 > 1.

(53)

Again we consider a finite domain in which the length along the wall
𝐿𝑦 is irrelevant if sufficiently wide, and the perpendicular length 𝐿𝑥 is
a parameter. Numerical solutions to this problem are shown in Fig. 6.
When 𝐿𝑥 is relatively small, the sliding panel drives a plug flow along
the wall that is attached to the panel. The two free shear layers at the
edges of the plug are identical to that for a certain sliding half-plane
solution, owing to the isolation by the moving plug, and their structure
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Fig. 6. Numerical solutions for sliding panels in domains of length (a) 𝐿𝑥 = 0.9,
(b) 𝐿𝑥 = 1 and (c) 𝐿𝑥 = 1.1, with 𝐿𝑦 = 2.5 and Bi = 100 (not all the domain is
plotted). Shown are density plots of log10 �̇� and contours of constant 𝑤, together with
the asymptotic predictions of Section 2.3.2 for the boundary-layer width in (a) and (c).

is described by Oldroyd’s boundary layer theory. With a larger domain
length 𝐿𝑥, the plug breaks free and travels at a slower speed than the
panel, creating a wall layer that also buffers the plug. In still longer
domains, the plug connects to the stagnant zones attached to the wall
on either side of the panel, eliminating the free shear layers and leaving
only the wall layer. That wall layer is again described by Oldroyd’s
theory, as it must since the condition in (20) for a Bi−

1
2 layer is not

valid.
To establish when the moving plug breaks free of the sliding panel,

we revert to Oldroyd’s minimum dissipation argument: when the plug
is attached to the moving panel, the dissipation rate occurring over
the two free shear layers converges to 2𝐿𝑥Bi for Bi → ∞. Conversely,
when the bulk of the fluid is stationary and there is only a wall layer,
the dissipation rate has the limit, 2Bi. Thus, one expects the former
configuration to be preferred when 𝐿𝑥 < 1, and the latter for 𝐿𝑥 > 1.
With 𝐿𝑥 = 1, and there is a moving plug with speed 𝑤𝑝 bordered by
both free shear layers and a wall layer, the dissipation rate amounts
to 2Bi, given that the velocity jumps by 1 − 𝑤𝑝 over the wall layer
and by 𝑤𝑝 over the free shear layers; any plug speed 𝑤𝑝 then appears
admissible. The configuration is also permitted by the modified force
balance on the moving plug in (11) because 𝓁− = 𝓁+ = 2. Numerically,
we find that the plug speed depends on the value of Bi.

We illustrate a solution with much lower Bi in Fig. 7. When 𝐿𝑥 ≫ 1,
the corresponding Newtonian solution is

𝑤 = 1
𝜋

(

tan−1
1 − 𝑦
𝑥

+ tan−1
1 + 𝑦
𝑥

)

∼ 2𝑥
𝜋(𝑥2 + 𝑦2)

(54)

for 𝑥 ≫ 1 and 𝑦 = 𝑂(𝑥). Hence, the yield surface in (36) is relevant
provided we take 𝑚 = 1

2 and 𝐴 =
√

2Bi∕𝜋, which indicates that the
plug lies at a distance of 𝑂(Bi−

1
2 ) from the panel. Again, the numerical

solution agrees with this prediction. For smaller domain lengths 𝐿𝑥, the
Newtonian solution in (54) must be replaced by another Fourier series
8

Fig. 7. Numerical solutions for a sliding panel with 𝐿𝑥 = 𝐿𝑦 = 9 and (a) Bi = 0.5 and
(b) Bi = 0.1, showing a density plot of log10 �̇� and contours of constant 𝑤 together with
the low-Bi hodograph predictions of the yield surface (dotted green) with 𝑚 = 1

2
.

Fig. 8. Solutions for Bi≫ 1 in flow down an elliptical conduit. The inner cylinder has
a speed and semi-major axis of unity and a semi-minor axis of 0.2; the outer cylinder
has a semi-major (semi-minor) axis of 2 ( 7

4
). Shown are (a) the yielded region expected

from the wall-layer solution of Section 2.3.1 and (b) a numerical solution with Bi = 500
and 𝑛 = 1. In (b), the (blue) lines are contours of constant speed and the shading shows
log10 �̇� over the yielded regions around the inner ellipse. The green dashed line show
the Bi−

1
2 boundary-layer theory of (55).

like that in (52), and the hodograph solution in Section 2.4.3 with 𝑚 = 1
would then be relevant, rather than (36).

3.2. Oldroyd’s knife

For uni-directional flow, Oldroyd’s knife problem amounts simply to
a change in the direction of motion: instead of the 2D flow driven by
the knife moving parallel to its width, we consider the unidirectional
motion arising when the knife is pulled along its (infinite) length (a
third possibility, two-dimensional viscoplastic flow due to the trans-
verse motion of the knife is considered by [58,59], and the flow around
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Fig. 9. Oldroyd’s solution for flow of a Bingham fluid driven by a catenary moving past a plane wall for the three values of Bi indicated. Shown are contours of constant 𝑤, with
the plug shaded grey and the catenary in black.
inclined plates is studied by [60,61]). Taking the knife to have speed
𝑉 and width 2𝐿, we now impose the boundary conditions: 𝑤(𝑥, 0) = 1
for |𝑥| < 1 and 𝑤𝑦(𝑥, 0) = 0 for |𝑥| > 1. The latter condition ensures that
the problem is slightly different from the sliding panel in Section 3.1
(other than a rotation of 90◦).

Oldroyd’s cartoon in Fig. 2 suggests that a wall layer should form
around the knife at high Bingham number. However, one wonders
whether the sharp ends of the knife are problematic and drive other
flow as in the 2D problem [11]. Indeed, applying the wall theory
of Section 2.3.1 is problematic as there is no pressure gradient and
curvature. Thus, if there is a boundary layer, it cannot have the Bi−

1
2

scaling as in the 2D problem, but must follow Oldroyd’s scaling.
To explore this situation further, we refer back to some of Oldroyd’s

other solutions for conduit flow. First, for flow between confocal el-
lipses driven by motion of one of the ellipses (as opposed to a pressure
gradient) Oldroyd [3,4] points out that the flow must become localized
to the inner wall at higher yield stresses, independent of the outer
ellipse (Section 1.3), anticipating a boundary-layer-like structure to
the flow. Indeed, as the aspect ratio of the inner ellipse becomes
extreme, one envisions that the problem should converge to the conduit
analogue of Oldroyd’s knife; see Fig. 8(a). Awkwardly, however, the
inner boundary has finite curvature, and so the boundary-layer analysis
of Section 2.3.1 predicts that

𝑤 =
(

1 −
𝜂
𝑌

)1+ 1
𝑛 , 0 ≤ 𝜂 ≤ 𝑌 =

[

(𝑛 + 1)𝑛

𝑛𝑛𝜅

]
1
𝑛+1

, (55)

where 𝜂 is directed along the outward normal to the inner wall, which
has local curvature 𝜅. Here, we have taken the inner ellipse to have
speed 𝑉 and the outer ellipse to be stationary, and used the semi-major
axis of the inner wall for 𝐿, so that 𝑤𝑏 = 1 and 𝛶 = 𝑤𝑝 = 0. Evidently,
the boundary layer is thinnest at the ends where the curvature is
highest; the layer becomes broad where curvature declines.

The boundary-layer structure in Fig. 8(a) can be confirmed by
numerical computations, as shown in Fig. 8(b). We can provide further
confirmation by reference to Oldroyd’s solution for Bingham fluid
between a moving catenary (with boundary 𝑥 = 1

2𝜋 + cosh 𝑦, after a
suitable choice of 𝐿) and a plane wall at 𝑥 = 0. This solution makes use
of special curvilinear coordinates (𝛼, 𝛽) such that

(𝑥, 𝑦) = (𝛼 + sin 𝛼 cosh 𝛽, 𝛽 + cos 𝛼 sinh 𝛽) (56)

with −∞ < 𝛽 <∞ and 𝛼 < 1
2𝜋. For Bi less than about 1.7519, the fluid

yields everywhere. For larger Bi, a plug appears against the plane wall,
and the associated cloaking effect renders that boundary irrelevant and
the problem similar to that of the flow around the tip of a knife. For
the latter situation, the yield section is given by 𝛼0 < 𝛼 <

1
2𝜋, where

Bi =
[

( 1
2
𝜋 − 𝛼0) cos 𝛼0 − 1 + sin 𝛼0

]−1
, (57)

and the velocity field is given by

𝑤 = Bi
[

(𝛼 − 𝛼0) cos 𝛼0 − sin 𝛼 + sin 𝛼0
]

(58)

as shown in Fig. 9.
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Fig. 10. Solutions for flow of a Bingham fluid (𝑛 = 1) past a knife along −1 ≤ 𝑥 ≤ 1
and 𝑦 = 0 at (a) Bi = 500, (b) Bi = 10, (c) Bi = 1 and (d) Bi = 0.1, showing contours of
constant speed (blue lines) superposed on a density plot of log10 �̇�. The dashed line in
(a) indicates the asymptotic solution for Bi≫ 1 from Section 2.3.2. (e) The prediction
Bi 𝑟𝑝 log 𝑟𝑝 = 1 for the yield surface 𝑟 = 𝑟𝑝 for Bi≪ 1 (red dashed line), compared with
numerical data of the vertical (stars) and horizontal (circles) distance from the origin
to the yield surface. The dashed line in (d) also indicates this predicted yield surface.

For Bi≫ 1, the flow becomes restricted to a boundary layer against
the catenary. Indeed, the solution for Bi = 200 gives a convenient
illustration of Oldroyd’s expected knife flow. In this limit, the analytical
solution reduces to

𝑤 =
(

1 −
𝜂
𝑌

)2
, 0 ≤ 𝜂 ≤ 𝑌 =

√

2 cosh 𝛽 (59)

and

(𝑥, 𝑦) = ( 1
2
𝜋 + cosh 𝛽, 𝛽) + 𝜖𝜂

(−1, sinh 𝛽)
cosh 𝛽

, (60)

where 𝛽 parameterizes a position along the catenary, 𝜂 is the stretched
normal coordinate, and 𝜖 = Bi−

1
2 . This solution recovers that of the

boundary-layer theory in Section 2.3.1, given that the curvature of the
catenary is 𝜅 = sech2𝛽 (cf. (55) with 𝑛 = 1).

At this stage, it is also clear how the wall-layer theory of Sec-
tion 2.3.1 must break down for the knife: if we consider the catenary as
a local approximation of the tip of the knife, then the local boundary-
layer structure is now known. However, the solution also indicates
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that the boundary layer continues to broaden further from the tip.
Simultaneously, one expects (55) to fail when the curvature becomes
sufficiently small to break the asymptotic scalings that led to it (Sec-
tion 2.3.1). For the region away from the knife tips, we may instead
turn to Oldroyd’s boundary layer theory in Section 2.3.2 and the self-
similar solution (25)–(26). In particular, we take 𝜍 ≡ 𝑥, 𝜂 ≡ 𝜖−1𝑦,

+ = 0, 𝑊− = 2 and 𝜎 = −1, and apply the boundary conditions
(±1) = 𝑌 ′(0) = 0 on the first equation in (27). This gives the solution
bove the plate shown in Fig. 10(a) (with the solution below the plate
iven by symmetry), where it is compared with a numerical solution.

At lower Bi, the flow around the knife adopts the form illustrated
n Fig. 10(b–d). For Bi ≪ 1, the flow contours converge to circles
t large distances from the knife, leading to a remote axisymmetric
ield surface. The limiting solution near the plug therefore corresponds
o the 𝑚 = 0 hodograph solution, unlike that for the sliding panel
Fig. 7) which converges to the 𝑚 = 1 dipole. Thus, even though the
wo boundary-layer solutions are the same (Figs. 6(c) and 10(a)), the
ifferent conditions along the wall or symmetry line ensure that the
olution for lower yield stress are rather different.

In more detail, we observe that the Newtonian solution for the knife
s, in fact,

(𝑥, 𝑦) = 1 − 𝑎 log 𝑟, (61)

ith 𝑎 = (log𝑅)−1 if 𝑅 ≫ 1 denotes the radius of a distant outer circular
all where 𝑤 = 0 (cf. [4]). This dependence on the wall position (and

he logarithmic form of (61)) arises due to the Stokes paradox for two-
imensional viscous flow. With weakly viscoplastic fluid, however, the
ield stress becomes key further from the knife, arresting the flow and
emoving that paradox (cf. [62]). Thus, we cannot impose the outer
oundary condition on (61), leaving 𝑎 to be found from the match with

the 𝑚 = 0 hodograph solution in Section 2.4.1. In particular, we find
𝑎 = 𝐴 = Bi 𝑟𝑝 and 1 = Bi 𝑟𝑝 log 𝑟𝑝, as also shown in Fig. 10(d,e).

. Pressure-driven flows down ducts

The insights provided by the previous examples suggest how one
an construct the flow pattern in the plastic limit for a duct of arbi-
rary shape. First, that pattern must consist of a patchwork of plugs,
all layers and free shear layers that form circular arcs with a fixed

urvature given by 𝛶 ∕Bi. Because the thickness of the free shear layers
lways changes along their length, they must begin at a wall layer,
iden up to a point of symmetry, and then thin back down to end at
nother wall layer. At the termini, the shear layer must meet the wall
ayers tangentially, as otherwise unmatched velocity gradients would
rise at the junction between the two boundary layers. The curvature
f the free shear layers is also connected to the shape of any embedded
lugs: 𝜅 = 𝛶 ∕Bi = 𝓁∕𝐴, where 𝓁 and 𝐴 are the length of the perimeter

and area of the plug. Further constraints arise from the cloaking effect:
when a plug fully separates one boundary from the other, the local
flow geometry must become independent of the veiled boundary and
conform only to the shape of the adjacent one. Finally, the flow pattern
that is achieved must minimize the dissipation rate in (12). But in the
plastic limit, where all the dissipation takes place within the boundary
layers and is due to the yield stress the net dissipation rate is given
by

v
𝛺
𝜏�̇�d𝑥d𝑦 ∼ Bi𝓁

𝐵
, where 𝓁

𝐵
is the total length of all the boundary

layers. Thus, the realized flow pattern is that for which the boundary
layers have shortest combined length, once all the other constraints
are satisfied. Armed with these observations, we now consider some
specific duct geometries that have proved popular in the past. The main
notational difference from Section 2 is that the plastic limit corresponds
to 𝑤 ≪ 1, rather than Bi≫ 1. Instead, Bi remains 𝑂(1) and the pressure
gradient 𝛶 must exceed a Bi−dependent threshold to initiate motion.
Alternatively, if we exploit the prescribed pressure gradient to scale
such that 𝛶 = 1, the plastic limit corresponds to Bi → Bi𝑐 for some
10

critical Bingham number Bi𝑐 .
4.1. Convex polygonal ducts

For a duct with walls that form a convex polygon of 𝑁 sides, the
preceding observations imply that the flow pattern will not consist
of a single wall layer bordering a moving plug that occupies most of
the conduit: the length of that wall layer will inevitably exceed the
combined length of the boundary layers in a pattern in which free shear
layers peel away from the wall to isolated stagnant zones in the vicinity
of the vertices of the polygon. As long as these shear layers have the
correct curvature, the flow must therefore adopt the corresponding flow
pattern.

In more detail, if we assume that each circular arc can be made to
isolate only a single vertex, then the moving plug is bordered by wall
layers along the straight faces of the polygon and circular free shear
layers with curvature 𝜅 that cut off the corners. Let 𝓁

𝐷
and 𝐴

𝐷
denote

he length of the perimeter and area of the duct, and 𝜃𝑗 denote the angle
ubtended by the 𝑗th vertex (in which case the arc of the corresponding
lug has angle 𝜋 − 𝜃𝑗). Then,

= 𝐴
𝐷
− 𝜅−2(𝛼𝑁 − 𝜋) (62)

nd

= 𝓁
𝐷
− 2𝜅−1(𝛼𝑁 − 𝜋), (63)

here

𝑁 =
𝑁
∑

𝑗=1
cot 1

2
𝜃𝑗 (64)

(the sum of the polygon’s angles is ∑𝑗 𝜃𝑗 = (𝑁−2)𝜋). The force balance
on the plug now demands

𝜅 =
2(𝛼𝑁 − 𝜋)

𝓁
𝐷
−
√

𝓁2
𝐷
− 2𝐴

𝐷
(𝛼𝑁 − 𝜋)

& 𝛶 = 𝜅Bi. (65)

For a square duct, with sides of dimensional length 𝐿 (dimensionless
unit length), we insert four free shear layers along quarter circles of
radius 𝜅−1 that block off the corners, to find

𝜅 = 2 +
√

𝜋 & 𝛶 = (2 +
√

𝜋)Bi (66)

This result was stated previously in [24,29], although it was arrived at
by a different, variational argument which states the correct choice for
𝜅−1 is obtained as that which maximizes 𝐴∕𝓁.

The correspondence of the variational argument with our asymp-
totic construction can be established by noting that the maximum value
of 𝐴∕𝓁 arises for
d𝐴
d𝜅

= 𝐴
𝓁
d𝓁
d𝜅
. (67)

ut, because the circular arc of the free shear layer meets the straight
all layer tangentially, d𝐴 = 𝜅−1d𝓁. Hence, 𝜅 = 𝓁∕𝐴, as in the
symptotic construction.

Viscoplastic flow down a square duct was advanced as a computa-
ional benchmark by Saramito & Rocquet [26]. In Fig. 11, we report
ore numerical solutions for Bingham fluid with 𝑛 = 1, showing the

onvergence to the solution predicted above. Here, with the dimension-
ess pressure gradient 𝛶 scaled to unity, the critical yield stress at which
low commences is Bi𝑐 = (2 +

√

𝜋)−1 ≈ 0.2651. The example with the
largest yield stress (Bi = 0.26) is close to this threshold, and displays
the free shear layer cutting off the corner and the much thinner wall
layers.

More quantitative details of the convergence to the plastic limit are
shown in Fig. 11(b), which plots the width of the boundary layer along
the wall 𝜖 and central plug speed 𝑤𝑝 against Bi𝑐 − Bi. In particular,
we observe the scalings 𝜖 = 𝑂(Bi𝑐 − Bi) and 𝑤𝑝 = 𝑂(Bi𝑐 − Bi)2.
The arguments above that determine the critical Bingham number do
not establish these details. Moreover, the boundary-layer theory of
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Fig. 11. (a) Numerical solutions for flow down a square conduit, showing a different
solution in each quadrant corresponding to the Bingham number indicated. The density
maps show the logarithm of the strain rate scaled by its maximum value in each case
(with that value quoted in parentheses). The dotted line (upper left quadrant) shows
the hodograph prediction with 𝑚 = 2 and the dashed line (lower right quadrant) shows
the asymptotic prediction for the location of the free shear layer when Bi → Bi𝑐 . (b)
Numerical results for the thickness of the boundary layer against the wall 𝜖 and the
speed 𝑤𝑝 of the central plug against Bi → Bi𝑐 = 1∕(2+

√

𝜋) (stars). The red circles show
the prediction 𝑤𝑝 =

1
2
𝜖2, The dashed lines shows linear and quadratic scalings.

Section 2.3.1 indicates only that 𝑤𝑝 ∼ 1
2 𝜖

2 for a Bingham fluid1. We
must therefore advance beyond both analyses to establish the scalings.
In particular, we may examine the force balance on the plug in (9). For
Bi < Bi𝑐 , the area and perimeter of the plug are both reduced by the
boundary layers. But over the free shear layers, the radius of curvature
is precisely Bi∕𝛶 ≈ Bi𝑐 , and so the change of area exactly matches the
change in the length of the circular borders of the plug to leading order.
The wall layers, however, contribute an area change of 𝑂(𝜖), correcting
the Bingham number by a corresponding amount. Thus, Bi𝑐−Bi = 𝑂(𝜖),
and we arrive at the observed scalings.

Fig. 11 also shows an example with lower Bi. In this case, the flow
features a circular central plug and four small yield surfaces in each
corner. These correspond to the hodograph solutions of Section 2.4
with 𝑚 = 0 and 𝑚 = 2. The shape of the latter matches well with
the numerical solution, as indicated in the figure (and even though

1 To adapt the results of Section 2.3.1 for Bi ≫ 1 to the current situation,
with Bi → Bi𝑐 = 𝑂(1), we take 𝑤 = 𝜖1+

1
𝑛 �̂� and 𝛶 = 1, or 𝛶𝑛+1 = 𝜖𝑛+1, where 𝜖

is the boundary thickness. Then (17)–(19) still hold (with 𝜅 = 𝑤𝑏 = 0), but for
�̂�, and with 𝑌 = 1.
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the lowest value of Bi presented is not that small), where we have
employed the intersection of the yield surface with the wall to estimate
the constant 𝐴 (thereby avoiding the need for an explicit match, which
is obscured by our neglect of the pressure gradient in Section 2.4).

4.2. Eccentric annulus

A second, even more popular geometry to use as a numerical bench-
mark is the flow through an eccentric annulus (e.g. [25,27,30,63,64]),
as sketched in Fig. 12. If the outer radius is scaled to unity, then
we have the parameters 𝑅 and 𝛥 describing the radius and sideways
shift of the inner circular boundary. The configuration has important
applications to oil extraction [65], and is also amenable to an insightful
asymptotic analysis based on Reynolds lubrication theory in the limit
of a thin gap [9] (see Appendix).

For the eccentric annulus, Szabo & Hassager [25,30] mapped out
three possible flow patterns, illustrated in Fig. 13 for some of our own
numerical solutions and characterized by

(i) a moving plug extending around the annulus (figure (13a,
lower),

(ii) two moving plugs centred at the widest and narrowest sections
(figure (13(a,b), upper), or

(iii) a plug moving down the widest part and a static plug blocking
the narrow part of the conduit figure (13b, lower).

Only the first and the last of these patterns consist purely of plugs
and boundary layers in the plastic limit, and therefore are the only
options at the onset of flow; see Fig. 12(a,b),

For the pattern shown in Fig. 12(a), there are two wall layers around
each boundary and we have

𝓁 = 2𝜋(1 + 𝑅) & 𝐴 = 𝜋(1 − 𝑅2), (68)

giving

𝛶 = 2Bi
1 − 𝑅

(69)

and a dissipation rate of 2𝜋(1 + 𝑅)Bi. As pointed out by Szabo & Has-
sager, this flow pattern persists well away from the plastic limit, with
the sheared regions merely growing in size. The pattern is admissible
because the plug isolates the two circular walls, demanding that the
yielded zones adopt the circular symmetry of the two walls, in a further
example of Oldroyd’s cloaking principle.

The pattern in Fig. 12(b) is more complicated, but the geometry
can be parameterized in terms of the angle 𝜃𝑝 at which the shear
layer reaches the outer wall layer. The radius of curvature of the free
shear layer and the plug perimeter length 𝓁 and area 𝐴 can then
be calculated. Applying the force balance on the moving plug then
selects a particular value for 𝜃𝑝 for each pair (𝛥,𝑅). Simultaneously,
we establish the scaled pressure gradient 𝛶 ∕Bi. The results are shown
in Fig. 12(c,d), which plots 𝛥 and 𝜃𝑝 against 𝛶 ∕Bi for four values of
𝑅, in the manner of Szabo & Hassager. Note that Szabo & Hassager
approximate the free shear layer as a straight line, rather than a circular
arc meeting the walls layers tangentially, although their predictions are
very similar to those shown in Fig. 12 (see the dashed lines in Fig. 12c).

The two possible configurations in Fig. 12(a,b) lead to competing
values for 𝛶 = 𝜅Bi for the same pairs of (𝛥,𝑅), as shown in Fig. 12(c).
Assuming that the state with lower pressure gradient (larger Bi∕𝛶 )
is the one that becomes realized first, we emerge with the selection
indicated. Note that the angular position of the shear layer does not
smoothly increase from 𝜃𝑝 = 0, when the configuration in Fig. 12(b)
first becomes selected on raising the sideways shift 𝛥 of the inner
cylinder. That is, when the annular moving plug breaks for 𝛥 ≈ 𝛥𝑏(𝑅),
it does so to leave a blocked section of the conduit with finite angular
extent. The critical sideways shift 𝛥 ≈ 𝛥𝑏(𝑅) is plotted in the inset to
Fig. 12(b).

For 𝑅 → 1, the construction of the solution in Fig. 12(b) becomes
more explicit: the angle 𝜃𝑝 satisfies

4𝛶 (𝜋 − 𝜃 + tan 𝜃 )[ 1𝛶 (1 − 𝑅) − Bi] ∼ 𝜋Bi2, (70)
𝑝 𝑝 2
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Fig. 12. Configuration for flow down an eccentric annulus in the plastic limit, showing the geometrical parameters in an inset at the top. Panels (a) and (b) show the two possible
flow patterns at the initiation of flow suggested by Szabo & Hassager. The offset 𝛥 and angular position of the shear layer 𝜃𝑝 (where it meets the outer wall layer) are plotted
against the inverse pressure gradient Bi∕𝛶 in (c,d). The circle and square indicate the configurations shown in (a,b); the dashed lines in (c) show results taken from Szabo &
Hassager. The inset in (c) shows the critical sideways shift 𝛥𝑏(𝑅) for which the annular plug breaks (stars), and the limit 𝛥 ∼ 1

8
𝜋(1 − 𝑅)2 (solid line).
Fig. 13. Numerical solutions for viscoplastic flow down eccentric annuli with 𝑅 = 0.4 and (a) 𝛥 = 0.1 and (b) 𝛥 = 0.3. Each panels shows solutions with the two values of Bi
indicated. The blue lines show contours of constant 𝑤 superposed on density maps of log10 �̇�.
with

𝛥 =
𝛶 (1 − 𝑅) − 2Bi

𝛶 cos 𝜃𝑝
. (71)

The plug of the solution in Fig. 12(a) therefore breaks when
Bi
𝛶

= 1
2
(1 − 𝑅), 𝛥 = 1

8
𝜋(1 − 𝑅)2 & 𝜃𝑝 →

1
2
𝜋, (72)

5. Conclusion

In this paper, we have enjoyed reviewing a series of papers by
Oldroyd on viscoplastic flow. We also took the opportunity to mention
some of the subsequent work motivated by Oldroyd (either knowingly
or subliminally!) and establish some new results guided by his meth-
ods. In addition to formulating the now standard, three-dimensional
formulation of the Bingham model [1], Oldroyd presented asymptotic
analyses for nearly plastic boundary layers [2] and weakly viscoplastic
conduit flows [3,4], together with exact solutions for certain con-
duit geometries [5–8]. These papers were based on the first half
of Oldroyd’s impressive Ph.D. Thesis at Trinity College, Cambridge.
Commentary on the content of the second half of the thesis can be
found elsewhere in this volume.

In retrospect, despite the immense impact of Oldroyd’s work on
viscoplasticity, Oldroyd was perhaps somewhat hamstrung by the un-
availability of the computer at the time: his analytical methods are
12
well complemented by numerical solution strategies, as we have ex-
ploited here. Had he been able to parallel, guide and extend his
results with numerical computations, it is hard to see what could have
limited his advances and how many decades of research may have been
abbreviated.
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Appendix. Lubrication theory for slender conduit

In this appendix we consider pressure-driven flow down a slender
conduit with stationary walls, generalizing Walton & Bittleston’s [9]
analysis for an eccentric annulus to arbitrary shape. In such geometry,
the flow adopts a distinctive pattern in which strongly sheared regions
buffer a plug-like central flow from the walls; see the sample numerical
solutions for narrow eccentric annuli in Fig. 14. The central region was
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Fig. 14. Solutions for an eccentric annuli with 𝑅 = 0.85, Bi = 0.05, 𝛶 = 1 and the two values of 𝛥 indicated (as drawn in the upper or lower halves of the panels). The numerical
solutions (density maps of log10 �̇�) are shown in (a) and the flow configurations predicted by lubrication theory in (b). The speed along the centreline for both numerics (dashed)
and asymptotics (solid) is shown in (c), scaled by 𝜖2 (𝜖 = 1

2
(1 − 𝑅)).
incorrectly identified as a true plug in some earlier papers, which it can-
not be because the speed still varies along the centreline. This has led to
an unfortunate and incorrect impression that the lubrication theory on
which Walton & Bittleston’s analysis is founded is inconsistent. Walton
& Bittleston, however, simply observed that the asymptotic analysis had
not been properly conducted for the central regions, and provided the
correct construction of this ‘‘pseudo-plug’’.

Walton & Bittleston also pointed out that the moving plugs of
patterns (ii) and (iii) from Section 4.2 (as illustrated in Fig. 13) persist
in the thin-gap limit, becoming smaller features surrounding the mid-
points of the gap at 𝜃 = 0 and 𝜋 (cf. Fig. 14). Here, we take the further
opportunity to give a clearer and more general discussion of these types
of plugs. Walton & Bittleston built such true plugs by encapsulating
them within pseudo-plugs in a non-asymptotic fashion; instead, we pro-
vide an asymptotic construction that more closely matches numerical
solutions.

We also consider the true plugs that can extend along the centre-
line of a narrow conduit, as illustrated by the plug of pattern (i) in
Section 4.2 and Fig. 12(b)). In the geometry of a narrow conduit, such
plugs can exist when the gap has almost uniform thickness, but must
break when the walls become less parallel. This leads us to a thin-gap
version of the condition derived at the end of Section 4.2.

A.1. Thin-gap formulation

To begin, we return to (13), written in the more basic form,

𝜕
𝜕𝜂

(ℎ𝑇𝜂𝑧) + 𝜖
𝜕𝑇𝜍𝑧
𝜕𝜍

= −ℎ𝛶𝑛+1, (A.1)

where
(

𝑇𝜍𝑧
𝑇𝜂𝑧

)

=
(

�̇� 𝑛−1 +
Bi𝑛
�̇�

)(

𝜖ℎ−1𝑤𝜍
𝑤𝜂

)

(A.2)

if
√

𝑇 2
𝜂𝑧 + 𝑇 2

𝜍𝑧 > Bi𝑛, and 𝑤𝜂 = 𝑤𝜍 = 0 otherwise. Here, we have also
rescaled to prepare the path for a lubrication analysis by setting

(𝑇𝜍𝑧, 𝑇𝜂𝑧) = 𝜖𝑛(𝜏𝜍𝑧, 𝜏𝜂𝑧), �̇� = 𝜖�̇� =
√

𝑤2
𝜂 + 𝜖2ℎ−2𝑤2

𝜍 (A.3)

𝛶 = 𝜖−𝑛−1𝛶𝑛+1 & Bi = 𝜖−𝑛Bi𝑛. (A.4)

We have 𝑤 = 0 at the walls, 𝜂 = ±(𝜍), once we select 𝜂 = 0 to represent
the centreline of the conduit.

To 𝑂(𝜖), (A.1) implies that

𝑇 = −𝜂𝛶 , (A.5)
13

𝜂𝑧 𝑛+1
given that the leading-order equations are symmetrical about 𝜂 = 0.
Note that one cannot avoid this leading-order solution by inserting
a rigid plug in the middle of the channel over which the scaling
of the stress components is different: 𝑇𝜂𝑧 must remain 𝑂(1) there in
order to achieve continuity with the sheared regions across any yield
surfaces, and breaking the main balance in (A.1) by promoting the
other stress component implies that 𝑇𝜍𝑧 = 𝑂(𝜖−1), which violates the
yield condition. Unavoidably, the flow must therefore break down into
a central section of the conduit where |𝑇𝜂𝑧| < Bi𝑛, bordered by two
regions against the walls with |𝑇𝜂𝑧| > Bi𝑛, focussing on the situation in
which the shear stress at the walls does breach the yield stress; i.e. that
𝛶𝑛+1 > Bi𝑛. If the shear stress at the wall is any lower, the pressure
gradient is insufficient to drive flow down that part of the conduit. In
other words, the conduit becomes blocked (i.e. spanned by a stagnant
rigid plug) when 𝑌 ≥  . Such a blocked region appears the lower of
the solutions in Fig. 14.

A.2. Main sheared regions; |𝑇𝜂𝑧| > Bi𝑛 (𝛶𝑛+1 > Bi𝑛)

Over the regions against the walls (shown in yellow in Fig. 14(b)),
the yield stress is clearly breached, and the constitutive law demands
that

𝑇𝜂𝑧 = |𝑤𝜂|
𝑛−1𝑤𝜂 + Bi𝑛sgn(𝑤𝜂). (A.6)

Thence, sgn(𝑤𝜂) = −sgn(𝜂) and

𝑤 = 𝑊𝑝

⎡

⎢

⎢

⎣

1 −
(

|𝜂| − 𝑌
 − 𝑌

)1+ 1
𝑛 ⎤
⎥

⎥

⎦

, (A.7)

where 𝜂 = ±𝑌 , with

𝑌 =
Bi𝑛
𝛶𝑛+1

, 𝑔 (A.8)

are the locations where |𝑇𝜂𝑧| decreases to Bi𝑛 and

𝑤 → 𝑊𝑝 ≡
𝑛𝛶

1
𝑛
𝑛+1

𝑛 + 1
( − 𝑌 )1+

1
𝑛 . (A.9)

At first sight, and in view of the apparent dominance of the stress
component 𝑇𝜂𝑧, the levels 𝜂 =  appear to be genuine yield surfaces
with the central core, |𝜂| < 𝑌 (where |𝑇𝜂𝑧| < Bi𝑛), being a rigid
plug. However, the ‘‘plug’’ speed 𝑊𝑝 depends on (𝜍) and therefore
cannot be constant, except when the conduit has constant width. This
confusion suggests that there is an inconsistency in lubrication theory
for viscoplastic fluids. However, this is not case: the true issue is that
the constitutive law has been incorrectly dealt with in the analysis over
the regions that 𝑤 becomes small [9].
𝜂
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A.3. The pseudo-plug; |𝑇𝜂𝑧| < Bi𝑛 (𝛶𝑛+1 > Bi𝑛)

When |𝜂| → 𝑌 , the preceding analysis indicates that 𝑤𝜂 → 0. This
mplies that the approximation �̇� ≈ |𝑤𝜂| is inconsistent in (A.2). If 𝑤𝜂
ecomes 𝑂(𝜖), and

= 𝑊𝑝(𝜍) + 𝜖𝑤1(𝜍, 𝜂) +⋯ (A.10)

he correct approximation is

̇ ∼ 𝜖
√

𝑊 2
𝑝𝜍 +𝑤

2
1𝜂 . (A.11)

In turn, this implies that
(

𝑇𝜍𝑧
𝑇𝜂𝑧

)

∼
Bi𝑛
�̇�

(

𝑊𝑝𝜍
𝑤1𝜂

)

. (A.12)

In other words, 𝑇 2
𝜍𝑧 + 𝑇 2

𝜂𝑧 ∼ Bi2𝑛, and so, in view of (A.5), we may
omplete a solution for the region |𝜂| < 𝑌 in which the stress is
eld at the yield stress to leading order. This is Walton & Bittleston’s

‘pseudo-plug’’ (and shown in Fig. 14(b) by the orange region).
The correct lubrication solution therefore consists of relatively

trongly sheared zones against the walls, where the velocity profile is
A.7), bordering a central pseudo-plug with 𝑤 ≈ 𝑊𝑝. Different asymp-

totic solutions apply over the two regions and a formal asymptotic
solution demands that the two be matched across the ‘‘fake’’ yield sur-
faces 𝜂 = ±𝑌 . As noted by Walton & Bittleston, this can be accomplished
by finding a third solution over a narrow layer surrounding 𝜂 = ±𝑌
with a thickness of 𝑂(𝜖

2
3 ) (see [66]). Thus, the analysis boils down to

n exercise in matched asymptotic expansions. The finer details of this
atching calculation are not, however, needed once we require that 𝑤

nd the stress remain continuous at 𝜂 = ±𝑌 .
We further note that

1𝜂 = −
𝜂𝛶𝑛+1|𝑊𝑝𝜍 |
√

𝑌 2 − 𝜂2
(A.13)

over the pseudo-plug (the divergence of 𝑤1𝜂 for 𝜂 → ±𝑌 is demanded
by the need to match with the more highly sheared regions beyond).
The steps leading to (A.13) break down, however, if 𝑊𝑝𝜍 is not 𝑂(1).
Indeed, Walton & Bittleston argue that a true plug must inevitably
appear around the points of symmetry where 𝑊𝑝𝜍 = 0. This observation
led them to refine the theory at the widest and narrowest sections of
the eccentric annulus, and embed a true plug there (see Fig. 14). For
the arbitrarily shaped conduit considered here, and given that 𝑊𝑝(𝜍)
s dictated by (𝜍), the symmetry points correspond to the maxima
r minima in the thickness. The more general point, however, is that
he pseudo-plug analysis requires revision where 𝑊𝑝𝜍 , or 𝜍 , becomes
mall.

.4. Embedded plugs

If the thickness of the conduit is nearly constant, we set  = 0 +
1(𝜍), where the scale of the wall variation 𝛿 is small, but could be
(𝜖): 𝜖 < 𝛿 ≪ 1. We then pursue a different asymptotic expansion that
an permit the central core of the conduit to become truly plugged up.
or the task, we focus on the sheared region against the wall at 𝜂 = +
nd open the expansion with the sequences,

𝜂𝑧 = −𝜂𝛶𝑛+1 + 𝛿𝑇1 +⋯ , 𝑤 = 𝑤0 + 𝛿𝑤1 +⋯ , (A.14)

ince 𝑇𝜍𝑧 remains small over this region, equation (A.1) now furnishes
t, 𝑂(𝛿),

1𝜂 +
𝜖
𝛿
𝜅𝜂𝛶𝑛+1 = 0, (A.15)

and so

𝑇1 = 𝑇∗ +
𝜖
2𝛿
𝜅𝛶𝑛+1(𝑌 2 − 𝜂2) (A.16)

for some integration ‘‘constant’’, 𝑇 (𝜍).
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∗ 𝑇
To 𝑂(𝜖2), the constitutive law remains (A.6), and so we again find
the leading-order velocity profile in (A.7) and (A.9) for 𝑤0, but now
with the replacement  → 0. At 𝑂(𝛿),

𝑇1 = 𝑛[𝛶𝑛+1(|𝜂| − 𝑌 )]
1− 1

𝑛𝑤1𝜂 . (A.17)

t the yield surface, 𝜂 = 𝑌 + 𝛿𝑌1, we must have

𝜂𝑧 = −(𝑌 + 𝛿𝑌1)𝛶𝑛+1 + 𝛿𝑇1(𝜍, 𝑌 ) +⋯ = −Bi𝑛, (A.18)

hich implies an 𝑂(𝛿) shift in position given by

1 =
𝑇∗
𝛶𝑛+1

. (A.19)

In view of the boundary condition on the wall,

= 𝑤0(𝜍,0) + 𝛿[𝑤1(𝜍,0) + 1𝑤0𝜂(𝜍,0)] +⋯ , (A.20)

e may further calculate 𝑤1(𝜍, 𝜂). We record the result,

1(𝜍, 𝑌 ) = −(0 − 𝑌 )
1
𝑛 𝛶

1
𝑛
𝑛+1𝑌1∗, (A.21)

here

1∗ = 𝑌1 − 1 −
𝜖
𝛿
𝜅(0 − 𝑌 )

(𝑛 + 1)0 + (2𝑛 + 1)𝑌
2(𝑛 + 1)(2𝑛 + 1)

. (A.22)

For the central core to be a true plug, the corresponding speed,

𝑤𝑝 =𝑤0(𝜍, 𝑌 ) + 𝛿[𝑤1(𝜍, 𝑌 ) + 𝑌1𝑤0𝜂(𝜍, 𝑌 )] +⋯ (A.23)

=
𝑛𝛶

1
𝑛
𝑛+1

𝑛 + 1
(0 − 𝑌 )

1+ 1
𝑛 + 𝛿𝑤1(𝜍, 𝑌 ) +⋯ , (A.24)

must be constant; hence, 𝑌1∗ must also be constant.

A.4.1. Force balance
To 𝑂(𝜖2, 𝜖𝛿), the signed perimeter of the plug in (11) is

𝓁+ − 𝓁− = 2𝑆𝑝 + 2𝜎𝜋𝜖𝑌 . (A.25)

f the plug has finite arc length 𝑆𝑝 = 𝜍+∗ − 𝜍−𝑝 and ends at 𝜍 = 𝜍±∗ where
it is rounded off by circular arcs of radius 𝜖𝑌 , following the guidelines
established in the main text, and as illustrated by the (black) plugs in
Fig. 14. We have also included a sign 𝜎 = ±1 to account for the fact
that the fluid in 𝜍 > 𝜍+ and 𝜍 < 𝜍− may be flowing slower or faster
(respectively), but the yielded sections for |𝜂| > 𝑌 are always slower.
The corresponding plug area is

𝐴 = 2𝜖

(

𝑌 𝑆𝑝 + 𝛿 ∫

𝑠+𝑝

𝑠−∗
𝑌1d𝜍

)

+ 𝜋𝜎𝜖2𝑌 2, (A.26)

if the plug is convex (concave) when the adjacent fluid is slower
(faster); cf. the ends of two plugs in Fig. 14. Force balance (𝛶𝐴 =
(𝓁+ − 𝓁−)Bi) therefore recovers 𝛶𝑛+1𝑌 = Bi𝑛 at leading order, and
demands

𝛿 ∫

𝑠+𝑝

𝑠−∗
𝑌1d𝜍 =

1
2
𝜎𝜖𝜋𝑌 2 (A.27)

at 𝑂(𝜖, 𝛿).
For an uninterrupted plug that spans a conduit of arc length 𝑆, there

is no need to include any circular end-caps or consider the choice of
sign (the plug is always faster). Instead, the corresponding results are

𝓁 = 2𝑆, 𝐴 = 2𝜖
(

𝑌 𝑆 + 𝛿 ∫

𝑆

0
𝑌1d𝜍

)

, ∫

𝑆

0
𝑌1d𝜍 = 0. (A.28)

.4.2. The lateral stress on the plug
Finally, we consider the lateral stress 𝑇𝜍𝑧 that acts on the plug: over

he sheared layer, the constitutive law in (A.2) demands that this stress
omponent is 𝑂(𝜖𝛿𝑤1𝜍 ). But no such constraint applies over the plug,
here the stress state is indeterminate and must only satisfy the yield

ondition
2 + 𝑇 2 < Bi2, or 𝑇 2 < 𝛶 2 (𝑌 2 − 𝜂2), (A.29)
𝜍𝑧 𝜂𝑧 𝑛 𝜍𝑧 𝑛+1
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in view of the leading-order form of 𝑇𝜂𝑧 which does apply across the
plug. Thus, 𝑇𝜍𝑧 could be 𝑂(1) here, although it must become small at
the yield surfaces in order to remain continuous with the solution in
|𝜂| > 𝑌 . Given this, we integrate (A.1) over the plug, to find, at 𝑂(𝛿),

𝑇1(𝜍, 𝑌 ) +
𝜖
𝛿
𝜕
𝜕𝜍 ∫

𝑌

−𝑌
𝑇𝜍𝑧d𝜂 = 0. (A.30)

In the problems we consider, there are positions along the conduit
where symmetry demands that 𝑇𝜍𝑧 = 0. Necessarily, these positions
correspond to extrema in the conduit half thickness  . Thus, denoting
𝜍 = 𝜍0 by one such position, (A.30) may be integrated to give

𝜖
𝛿 ∫

𝑌

−𝑌
𝑇𝜍𝑧d𝜂 = −2𝛶𝑛+1 ∫

𝜍

𝜍0
𝑌1(�̂�)d�̂�. (A.31)

Although we do not know 𝑇𝜍𝑧 within the plug, we do know this
stress component if the plug terminates at 𝜍 = 𝜍+𝑝 , as there it must
given by the pseudo-plug solution,

𝑇𝜍𝑧 = 𝛶𝑛+1
√

𝑌 2 − 𝜂2 sgn(𝑊𝑝𝜍 ). (A.32)

At this position, we may therefore evaluate the integral on the left of
(A.31) to find

𝜎 𝜖𝜋
4𝛿
𝑌 2 = ∫

𝜍+𝑝

𝜍0
𝑌1(𝜍)d𝜍, (A.33)

since sgn(𝑊𝑝𝜍 ) ≡ −𝜎 at the edge of the plug. This condition is in agree-
ment with (A.27), reinforcing the notion that an isolated plug must
be terminated by certain circular arcs. Nevertheless, (A.33) provides
a further constraint on a plug that spans the conduit, since if the net
lateral stress on the right reaches the limit given by the left-hand side
anywhere along the conduit, the plug must break at that position.

A.4.3. Walton & Bittleston’s embedded plugs
When there is a localized plug embedded around a point of sym-

metry, we follow Walton & Bittleston and argue that the span of that
structure is relatively small, but not as narrow as the conduit. An
expansion of the conduit half-thickness about its extremum gives

 ∼ 0 +
1
2
 ′′(0)(𝜍 − 𝜍0)2 +⋯ , (A.34)

indicating that 𝛿1 ≡
1
2

′′(0)(𝜍 − 𝜍0)2, or 𝜍 − 𝜍0 = 𝑂(𝛿
1
2 ). To account for

this narrower scale, we therefore set 𝜍 = 𝜍0 + 𝛿
1
2 𝜉, in which case (A.33)

becomes

1
4
𝜎𝜖𝜋𝑌 2 = 𝛿

3
2
∫

𝜉∗

0
𝑌1(𝜉)d𝜉, (A.35)

where the plug ends at 𝜍 = 𝜍±𝑝 = 𝜍0 ± 𝛿
1
2 𝜉∗. Thus, 𝛿 = 𝜖

2
3 , implying

hat the arclength of the plug is 𝑂(𝜖
1
3 ) as found by Walton & Bittleston.

Note that we should take 𝜎 = +1 if the plug sits in the widest part of
the conduit (and is convex), and 𝜎 = −1 if it occupies the narrowest
part (the plug then being concave).

We may also neglect the terms of order 𝜖𝛿−1 = 𝜖
1
3 in (A.22) to arrive

t 𝑌1 = 𝑌1∗ + 1 = 𝑌1∗ +
1
2

′′
0 (0)𝜉

2. We further fix 𝑌1∗ so that the true
plug joins the pseudo-plug at 𝜉 = 𝜉∗ without a jump in thickness and
speed. For this task, we note 𝜂 = 𝑌 at the upper fake yield surface and

𝑊𝑝 = 𝑊𝑝(𝜍0) +
1
2
𝛿𝛶

1
𝑛
𝑛+1(0 − 𝑌 )

1
𝑛 ′′

0 𝜉
2, (A.36)

whereas the plug width and speed are given by 𝑌 + 𝛿𝑌1(𝜉) and (A.21)
nd (A.24). Hence, 𝑌1(𝜉∗) = 0, or 𝑌1∗ = −1(𝜉∗) = − 1

2
′′
0 (0)𝜉

2
∗ , leading

to

𝑌1 = −1
2
 ′′
0 (0)(𝜉

2
∗ − 𝜉

2). (A.37)

The condition (A.35) now implies
1𝜋𝑌 2 = 1

| ′′(0)|𝜉3, (A.38)
15

4 3 0 ∗
since 𝜎 ≡ −sgn( ′′(0)). That is,

∗ =
[

3𝜋𝑌 2

4| ′′(0)|

]
1
3
. (A.39)

Although we arrive at Walton & Bittleston’s scale for the embedded
lug here, the detailed derivation is different, leading to a slightly
ifferent prediction for the extent of the plug. In particular, we do not
ssume that the plug is nested within a pseudoplug. Indeed, the plug
tructure in their Fig. 4 is not seen in the numerical solution of Fig. 14,
here the embedded plugs directly adjoin the main sheared regions and

ake a different, distinctive shape. We further account for the abrupt
nd of the plug at 𝜍−𝜍0 = 𝛿

1
2 𝜉∗ differently. There, we introduce circular

nd-caps with a finer scale in arc length, a construction that conforms
o the guidelines established in the main text and the observed plug
tructure of the numerical solutions, whilst guaranteeing that the force
alance calculation of Appendix A.4.1 matches the extensional stress
ondition in Appendix A.4.2.

.4.4. Nearly uniform conduits
As pointed out in slightly different contexts by Frigaard & Ryan [67]

nd Liu et al. [68], one can also consider the genuine plugs that
rise in flows that are nearly uniform along their centrelines. For
uch a scenario, we prescribe the perturbation to the wall and (A.33)
hen constrains when the central plug will break as the amplitude 𝛿
s increased. Denoting an average across the conduit by ⟨...⟩, (A.28)
emands ⟨𝑌1⟩ = 0 up to the moment that breakage occurs. Hence, from
A.28),

1 = 1 − ⟨1⟩. (A.40)

s pointed out above, the plug remains intact unless the net stress
omponent ∫ 𝑌−𝑌 𝑇𝜍𝑧d𝜂 reaches the limit in (A.33) somewhere along the
hannel. That is, unless

𝜖𝜋
4𝛿
𝑌 2 > ∫

𝜍

𝜍0
1d𝜍. (A.41)

A.5. The eccentric annulus

For the eccentric annulus, the geometry is conveniently expressed
in terms of the polar angle 𝜗 from the centre of the circular midline
(which lies at (𝑥, 𝑦) = ( 12𝛥, 0)): 𝜍 =

1
2 (1 + 𝑅)𝜗 ≈ 𝜗,

(

𝑥 − 1
2𝛥
𝑦

)

= [1
2
(1 + 𝑅) − 𝜖𝜂]

(

cos 𝜗
sin 𝜗

)

, (A.42)

(𝜍) = 1 − 𝜒 cos 𝜗, 𝜖 = 1
2
(1 − 𝑅), 𝜒 = 𝛥

1 − 𝑅
. (A.43)

he predictions of the asymptotic analysis are well matched by the
wo narrow-gap numerical solutions shown in Fig. 14, which clearly
llustrate the main sheared regions, pseudo-plugs and true plugs, even
hough the parameter 𝜖 = 0.075 is not particularly small.

Walton & Bittleston’s embedded, moving plugs are centred at the
oints of symmetry given by (𝜂, 𝜗) = (0, 𝜋) and (provided the narrow
ide is not plugged up) (𝜂, 𝜗) = (0, 0). At both locations,

0(0) ≡ 1 ∓ 𝜒 & | ′′
0 (0)| ≡ 𝜒. (A.44)

rom (A.39), we therefore observe that these plugs span similar angular
ntervals of half-width,

1
2 𝜉∗ =

(

3𝜋𝜖𝑌 2

4𝜒

)
1
3
. (A.45)

he corresponding result from Walton & Bittleston is (in the current
otation),

1
2 𝜉∗ =

(

3𝜖𝑌 2

𝜒

)
1
3
, (A.46)

which differs by about 8%. On the other hand, if the narrow side
of annulus is blocked up by a stagnant plug, flow only recommences
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Fig. 15. Numerical data (stars and circles) and asymptotic predictions (solid lines) for
a) plug speeds and (b) plug angles (measured along the centreline for the numerical
olution), with Bi = 0.05 and 𝑅 = 0.85. Walton & Bittleston’s predictions are shown by
he dashed lines.

here 𝑌 <  , or |𝜗| > cos−1[(1 − 𝑌 )∕𝜒]. The two examples in Fig. 14
straddle the division 𝜒 = 1 − 𝑌 at which the plug is predicted to break
free of the walls. Numerical results for the speeds and angular borders
of the plugs are collected together in Fig. 15 and compared with the
prediction of asymptotic theory (and that of Walton & Bittleston). The
asymptotic analysis applies strictly only when the moving plugs are
small (justifying the introduction of (A.34)). However, as 𝛥 becomes
smaller, these plugs grow in size and eventually merge into the single
plug that extends all around the annulus.

For the uninterrupted plug, we take 𝜒 ≡ 𝛿 ≪ 1, 0 = 1 and
1 ≡ −cos 𝜗 = 𝑌1. The condition (A.41) then demands that the plug
ill break when

= 1
4
𝜋𝜖𝑌 2 or 𝛥 = 1

8
𝜋𝑌 2(1 − 𝑅)2, (A.47)

at the positions, 𝜗 = ± 1
2𝜋. In the plastic limit, the sheared regions in 1 ≥

|𝜂| > 𝑌 shrink to 𝑂(Bi−
1
2 ) boundary layers for 𝑌 ≡ Bi𝑛∕𝛶𝑛+1 → 1. This

mplies that the plug breaks for the conditions in (72), reproducing the
esults in Section 4.2. Note that, because the analysis for the localized
oving plugs assumes that these features are relatively small, the

riterion for their merger that one can extract from (A.45) is unlikely to
oincide with (A.47). Indeed there is a disagreement, as can be seen in
ig. 15 where the 𝛥-axis ends on the left at the value given by (A.47),
≈ 3.9 × 10−3, but here (A.45) still predicts separate plugs. Note that

he numerical computations reported in this figure suggest that the
ninterrupted plug breaks at a value closer to 𝛥 = 4.2 × 10−3, but this
iscrepancy is of the order of the small parameter 𝜖 = 1

2 (1 − 𝑅).
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