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Viscous flow beneath a viscous or plastic skin
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When a viscous fluid spreads underneath a deformable surface skin or crust, the peeling
dynamics at the fluid front can control the rate of advance rather than bulk self-similar
flow. For an elastic skin, this control results in a quasi-static interior blister held at
constant pressure that is matched to a narrow peeling region behind the fluid front. In
this paper, the analogous problem is considered for a skin that deforms either viscously
or plastically, or both. In particular, the deformable surface is assumed to be a thin plate
of material governed by the Herschel–Bulkley constitutive law. We examine how such
a skin controls viscous flow underneath, fed at constant flux and spreading as either
a planar or axisymmetric current. As for an elastic skin, the peeling dynamics at the
viscous fluid front again controls the rate of spreading. However, contrary to that situation,
the mathematical matching problem for viscoplastic peeling is simplified considerably
as a result of an integral constraint. Despite this, the structure of the peeling region is
complicated significantly by any plasticity in the skin, which can create a convoluted
peeling wave ahead of the main blister that features interwoven yielded and plugged
sections of the plate.

Key words: lubrication theory, plastic materials

1. Introduction

A number of problems in geophysics, engineering and biology involve the spreading of a
viscous fluid beneath a surface skin or crust. In some settings, the surface layer is distinct
from the fluid, such as for geological intrusions (Bunger & Cruden 2011; Michaut 2011;
Michaut & Manga 2014; Michaut, Thiriet & Thorey 2016), the production of silicon wafers
(Huang & Suo 2002a,b), deformable channels in microfluidics (Hosoi & Mahadevan
2004; Kodio, Griffiths & Vella 2017), micro-scale lithography (Box et al. 2019), airway

† Email address for correspondence: thomasina.ball@warwick.ac.uk

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 957 A9-1

mailto:thomasina.ball@warwick.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


T.V. Ball and N.J. Balmforth

reopening (Gaver et al. 1996; Jensen et al. 2002; Grotberg & Jensen 2004) or in models
of plant cell walls (Dyson & Jensen 2010; Ali et al. 2014). In others, the skin forms atop
the flow as the fluid cools, solidifies, evaporates or reacts (Griffiths & Fink 1993; Griffiths
2000; Brož et al. 2020).

A number of theoretical and experimental models of these flows have considered the
skin layer to be a solid, thin, elastically deforming crust (e.g. Flitton & King 2004; Hosoi &
Mahadevan 2004; Lister, Peng & Neufeld 2013; Hewitt, Balmforth & De Bruyn 2015; Peng
et al. 2015; Pihler-Puzović et al. 2015; Ball & Neufeld 2018; Berhanu et al. 2019; Pedersen
et al. 2019; Peng & Lister 2020). The description of the skin and its restraining effect on the
underlying fluid flow is then compactly described by coupling membrane, Euler–Bernoulli
or Föppl–von-Kármán equations (Timoshenko & Woinowsky-Krieger 1959) for the skin
with lubrication theory for the underlying viscous spreading. An important feature of
the spreading dynamics in this problem is that it becomes limited by conditions at the
periphery of the flow: although the spreading could potentially adopt a self-similar form
(once the memory of the initial shape of a mound of fluid is lost, or the flow expands far
beyond the radius of a vent through which the fluid is pushed, and there is no longer an
intrinsic horizontal length scale), the singular nature of the contact line at the periphery
prevents the convergence to such a state. Instead, the expansion is controlled by how
the elastic sheet is ‘peeled off’ the underlying substrate by the viscous flow, becoming
quasi-steady and constant pressure over the bulk of the viscous film (Flitton & King 2004;
Lister et al. 2013; Hewitt et al. 2015).

Although popular, an elastic skin is not the only possible model for the crust. Indeed,
as often argued for lava flows (Griffiths & Fink 1993; Griffiths 2000; Castruccio, Rust &
Sparks 2013), when the surface layer is a significantly broken-up solidified crust, other
models may be more relevant, such as a substantially more viscous fluid, or a plastic
material. The latter also applies when a solid crust is softer and forced to deform well
beyond its yield point, but without fracture. Similarly, floating crusts of ice and other
complex fluids (MacAyeal 1989; Feltham 2008; Schoof & Hewitt 2013; Sauret et al. 2015;
Sayag & Worster 2019) are typically neither elastic nor viscous.

In the current paper, we reconsider the problem of a viscous fluid spreading underneath
a skin. We depart from previous analysis (e.g. Lister et al. 2013; Hewitt et al. 2015;
Peng & Lister 2020) by adopting a model for the crust which allows that surface layer
to deform either much more viscously than the underlying fluid, or as an ideal plastic
solid. For this task, we employ a model for a viscoplastic plate which is derived from
the governing equations of a material described by a standard non-Newtonian constitutive
law, the Herschel–Bulkley law (Balmforth & Hewitt 2013; Ball & Balmforth 2021). The
derivation of the plate model follows previous work for sheets of viscous fluid (Howell
1996; Ribe 2001, 2002), and in certain limits can be reduced to that of a viscous fluid
or ideal plastic material. The model therefore provides the viscoplastic analogue of the
Föppl–von-Kármán plate equations, and connects viscous sheet models and classical
theories of plastic plates (Prager & Hodge 1951; Hopkins & Prager 1954; Hopkins &
Wang 1955; Hodge & Belytschko 1968; Lubliner 2008), whilst further adding the effects
of in-plane tensions to the latter. Our use of this viscoplastic model underscores a key
simplification that we make, namely that we take the skin to be a materially distinct
layer, not generated by solidification, reaction or evaporation. This simplification limits
the application to situations in which the gradual thickening of the skin during spreading
is not important.

Although we employ a different description for the plate, one of the questions we address
is whether peeling at the contact line still impacts the spreading dynamics. We therefore
adopt the common practice of regularizing the contact-line behaviour by pre-wetting the
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substrate with a thin film of viscous fluid. Viscous fluid is then introduced and driven
underneath the plate through a source, our interest lying in the regime in which the
resulting, spreading ‘blister’ is much deeper than the pre-wetted film. We explore in detail
the peeling layer and confirm that it exerts the same control on spreading as when the skin
is elastic.

From a mathematical perspective, the different form of the model for the viscoplastic
plate over an elastic one leads to some novel features in the peeling dynamics. If the
plate is purely viscous, it turns out that the peeling problem simplifies dramatically in
comparison with the corresponding elastic analysis. This simplification arises because of
the existence of an integral constant that permits one to avoid a detailed match between
the main blister and the peeling layer. This simplification also features when the plate has
a yield stress. However, understanding the spatial structure of the peeling layer is rather
more challenging, as a convoluted sequence of interlaced plugs and yielded zones can arise
in the plate, somewhat like in other problems with viscoplastic films (Jalaal & Balmforth
2016; Jalaal, Stoeber & Balmforth 2021).

2. Model equations

2.1. Governing equations
We model a thin plate of viscoplastic fluid satisfying the Herschel–Bulkley constitutive law
lying above a shallow layer of viscous fluid flowing over a horizontal surface, as sketched
in figure 1. Both fluids are incompressible. The thickness D of the plate is comparable
to the typical depth of the viscous fluid layer H, but both are much smaller than the
characteristic horizontal length scale L

ε = H
L � 1, δ = H

D = O(1). (2.1a,b)

We use either a Cartesian coordinate system (x, y, z) or cylindrical polars (r, θ, z) to
describe the geometry; the normal to the underlying plane points in the z−direction.
The governing equations for an incompressible fluid with velocity field u are, discarding
inertia,

∇ · u = 0, (2.2)

0 = −∇p + ∇ · τ + ρg, (2.3)

where g = (0, 0, −g) is gravity, ρ is the density of the fluid, p is pressure and τ is the
deviatoric stress tensor.

In the viscous fluid, τjk = μγ̇ jk, where μ is the viscosity. For the plate, on the other
hand, the Herschel–Bulkley constitutive law provides

γ̇ = 0, τ < τY ,

τ =
(

Kγ̇ n−1 + τY

γ̇

)
γ̇ , τ ≥ τY ,

⎫⎬
⎭ (2.4)

where τY , K and n represent the yield stress, consistency and power-law index, and

γ̇ jk = ∂uj

∂xk
+ ∂uk

∂xj
, γ̇ =

√√√√1
2

∑
j,k

γ̇ 2
jk, τ =

√√√√1
2

∑
j,k

τ 2
jk. (2.5a–c)

For τY → 0, the Herschel–Bulkley law reduces to that for a power-law fluid (and a viscous
one if, further, n = 1); when the yield stress dominates over the rate-dependent viscous
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Figure 1. A sketch of the model problem and its geometry: a thin viscoplastic plate is pushed upwards as a
shallow film of viscous fluid is pumped underneath.

component of the stresses, the model is equivalent to a perfectly plastic material described
by the von Mises yield condition.

The densities of the viscous fluid and plate are not necessarily the same; ρ = ρf denotes
the density of the viscous fluid, whereas ρ = ρp is that of the plate. At the interface
between the two fluids, z = h(x, t), we apply the usual kinematic condition and demand
that stresses are continuous, ignoring any interfacial tension.

2.2. Lubrication theory for the viscous fluid
Because the fluid layer underneath the plate is relatively shallow, we exploit the lubrication
approximation to describe the flow dynamics. In this approximation, the pressure becomes
hydrostatic and drives a flow underneath the plate with a Poiseuille-type velocity profile
that is O(ε−1) larger than the vertical velocity. Importantly, lubrication pressures far
exceed viscous shear stresses, implying that the normal force exerted by the fluid on
the plate is primarily generated by that pressure, and that the underlying viscous flow
is not strong enough to provide a significant traction on the lower side of the plate. The
plate therefore deforms mainly in the transverse (i.e. z) direction with a relatively weak
in-plane velocity. In particular if V denotes a characteristic vertical velocity, the horizontal
velocities of the plate are O(εV).

Given these considerations, we follow conventional lubrication theory and use the
depth-integrated mass conservation equation to derive a dimensionless evolution equation
for the local fluid depth,

∂h
∂t

= ∇ · (h3∇p) + source. (2.6)

To arrive at this dimensionless form, the local fluid depth is scaled by H, horizontal lengths
by L, time by H/V and pressure with the scale,

N = 12μL2V
H3 , (2.7)

which render h and p as new dimensionless variables (avoiding any corresponding notation
changes). The term written as source denotes the dimensionless vertical velocity above the
vent, where the viscous fluid is fed underneath the plate. If P denotes the dimensionless
fluid pressure on the underside of the plate, then

p = P + G(h − z) or ∇p = ∇P + G∇h, (2.8a,b)

957 A9-4



Viscoplastic blisters

where

G = ρf gH
N (2.9)

characterizes the influence of gravity on the blister. Practically, we take the scales L and
V to be prescribed by the size and flow speed associated with the vent.

As mentioned earlier, we demand that there is a thin film of viscous fluid everywhere
underneath the viscoplastic plate with h = h0; i.e. we pre-wet the underlying plane with
viscous fluid, following common practice in thin-film theory. This device allows us to
avoid any potential problems in dealing with a true contact line (a triple-phase contour
where the two fluids and substrate meet one another). In line with the introduction of this
thin film to ‘regularize’ the problem, we consider the limit in which its thickness is small:
h0 � 1.

2.3. Viscoplastic plate model
The lubrication pressure built up underneath the plate forces this skin to deflect upwards.
As shown in Ball & Balmforth (2021), provided the plate is thin, the local thickness D
does not change to leading order, and a combination of bending stresses and in-plane
tensions oppose deformation. The centreline of the plate then lies at HZ = 1

2D + Hh, and
W = Zt = ht denotes the dimensionless vertical plate velocity.

The analysis in Ball & Balmforth (2021) indicates that the stresses developed in the plate
are O(P), where

P = K
(DV
L2

)n

. (2.10)

(Note that in Ball & Balmforth (2021) there is no viscous fluid layer underneath the plate,
and we took the vertical length scale to be D.) These stresses generate a normal force on
the plate of O(PD2/L2) that counters the load exerted by the fluid pressure NP from
below. As these must balance, we take

N = PD2

L2 , or H =
(

12μL2(2+n)

KD2+nVn−1

)1/3

, (2.11a,b)

which gauges the depth of the blister forced by the influx of viscous fluid.
The main thrust of the reduction in Ball & Balmforth (2021) is to express the force

balance on the plate in terms of the bending moments and in-plane tensions that result
from these stresses, and to relate those moments and tensions to VW and the (suitably
scaled) in-plane velocity (H/L)VU through constitutive relations that descend from
the original Herschel–Bulkley law. The constitutive laws are written in terms of the
rates of curvature and in-plane extension, which in dimensional form are (V/L2)K and
(VD/L2)D. The corresponding dimensionless rates are given by the tensors, K = ∇∇W
and D = 1

2δ(∇U + ∇UT + ∇hT∇W + ∇WT∇h), in Cartesian coordinates, or

K =
(

Wrr (r−1Wθ )r
(r−1Wθ )r r−2Wθθ + r−1Wr

)
(2.12)

and

D = δ

(
Ur + hrWr

1
2 r−1(Uθ − rVr − V + ZθWr + ZrWθ )

1
2 r−1(Uθ − rVr − V + ZθWr + ZrWθ ) r−1(U + Vθ ) + r−2ZθWθ

)
(2.13)

in polar form, where U = (U, V).
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The dimensional bending moments and tensions are D2PM and DPΣ , where, over the
sections where the plate is yielded,

M = Γ n−1{(Υ I0,n − I1,n)Δ + [2Υ I1,n − I0,n+2 + (α2 − Υ 2)I0,n]Γ }

+ Bi
Γ

{(Υ I0,0 − I1,0)Δ + [2Υ I1,0 − I0,2 + (α2 − Υ 2)I0,0]Γ }, (2.14)

Σ = Γ n−1[I0,nΔ + (I1,n − Υ I0,n))Γ ] + Bi
Γ

[I0,0Δ + (I1,0 − Υ I0,0)Γ ], (2.15)

with

Γ = 2K + 2 Tr(K)I, Δ = 2D + 2 Tr(D)I, (2.16a,b)

Γ 2 = 1
2 [Tr(Γ 2) − 1

3 Tr(Γ )2], Υ = Tr(ΔΓ ) − 1
3 Tr(Δ)Tr(Γ )

2Γ 2 , (2.17a,b)

α2 = Tr(Δ2) − 1
3 Tr(Δ)2

2Γ 2 − Υ 2 (2.18)

and

Ij,n(α, Υ ) =
∫ 1/2

−1/2
(Υ − z) j[(z − Υ )2 + α2](n−1)/2 dz. (2.19)

We refer to the dimensionless yield stress parameter,

Bi = τY

P = τY

K

( L2

DV
)n

, (2.20)

as the Bingham number. If the plate is not locally yielded, then Γ = 0. The original yield
condition, τ = τY , descends to the relations,

Σ2 = Bi2(α2I2
0,0 + I2

1,0), X = Bi2(α2Υ I2
0,0 + Υ I2

1,0 − I1,0I0,2),

M2 = Bi2[α2(I1,0 − Υ I0,0)
2 + (I0,2 − Υ I1,0 − α2I0,0)

2],

}
(2.21)

where the three invariants,

M2 = 1
2 [Tr(M2) − 1

3 Tr(M)2], Σ2 = 1
2 [Tr(Σ2) − 1

3 Tr(Σ)2], (2.22a,b)

X = 1
2 [Tr(MΣ) − 1

3 Tr(M)Tr(Σ)]. (2.23)

In the absence of inertia and any interfacial tensions, the force balance on the plate
demands that 0 = ∇ · Σ and 0 = ∇ · [∇ · (M + δhΣ)] − (ρp/ρf )G + P (in Cartesian
coordinates), or

0 = ∂

∂r
Σrr + 1

r
∂

∂θ
Σrθ + 1

r
(Σrr − Σθθ), (2.24)

0 = 1
r2

∂

∂r
(r2Σrθ ) + 1

r
∂

∂θ
Σθθ , (2.25)

0 = 1
r2

∂

∂r

(
r2 ∂Mrr

∂r

)
+ 2

r2
∂2

∂r∂θ
(rMrθ ) + 1

r2
∂2Mθθ

∂θ2 − 1
r

∂Mθθ

∂r

+δ

[
hrrΣrr + 2

(
h
r

)
rθ

Σrθ + 1
r

(
hr + 1

r
hθθ

)
Σθθ

]
− ρp

ρf
G + P (2.26)

(in polar form).
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3. Planar blisters

In the planar problem, the horizontal force balance on the plate reduces to ∂Σxx/∂x = 0,
highlighting how the viscous traction exerted on the plate by the fluid underneath is too
small to appear in lubrication theory. Hence, if the plate is free at its edges, it is not
possible to build up an appreciable tension. The plate model then simplifies substantially
((Δxx, Υ, α) → 0) to furnish the problem,

∂h
∂t

= W, (3.1)

W = ∂

∂x

[
h3 ∂

∂x
(P + Gh)

]
+ source, (3.2)

∂2Mxx

∂x2 + P = G ρp

ρf
, (3.3)

∂2W
∂x2 = −

[
(n + 2) Max(|Mxx| − 1

2
Bi, 0)

]1/n

sgn(Mxx). (3.4)

The plate is yielded when |Mxx| > Bi/2, and ∂2W/∂x2 = 0 otherwise. Symmetry demands
that

∂W
∂x

= ∂

∂x
Mxx = ∂P

∂x
= 0 at x = 0. (3.5)

Away from the pumped-up blister, the plate rests on the pre-wetted film, so that(
W,

∂W
∂x

,
∂P
∂x

)
→ 0 for x � 1. (3.6)

To model the influx of viscous fluid, we set

source =
{

1 − x2, |x| < 1
0, |x| > 1 . (3.7)

Practically, we solve the system in (3.1)–(3.4) for a Bingham plate numerically starting
with the initial condition h(x, 0) = h0. We adopt a finite spatial domain of length L, with
L mostly chosen sufficiently large that the far boundary remains sufficiently distant to
have no effect on the results (see Appendix B). The numerical scheme constructs the
instantaneous vertical velocity W and depth h(x, t) at each moment in time by solving
(3.2)–(3.4) as a boundary-value problem in space using MATLAB’s built-in solver bvp4c,
given the simple finite difference scheme for (3.1),

h(x, t) = h(x, t − dt) + 1
2 dt[W(x, t) + W(x, t − dt)], (3.8)

together with the previous pair, h(x, t − dt) and W(x, t − dt), and a suitably chosen, small
time step dt. To ease the computations with Bi > 0, we also smooth the switch in (3.4) by
introducing the replacement,

Mxx = −
[

1
3

+ 1
2

Bi
(∣∣∣∣∂2W

∂x2

∣∣∣∣+ ε

)−1]
∂2W
∂x2 , (3.9)

which can be inverted to give

∂2W
∂x2 = −

[
1
4
(6|Mxx| − 3Bi − 2ε) + 1

4

√
(6|Mxx| − 3Bi − 2ε)2 + 48ε|Mxx|

]
sgn(Mxx).

(3.10)
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The value of ε is taken to be sufficiently small to ensure that the main details of the blisters
are independent of the precise value of this parameter. However, as we argue below, it is
not possible to fully divorce the structure of the solution from this regularization parameter
(see, again, Appendix B).

Because the underlying plane is everywhere separated from the plate by the pre-wetted
film, there is no true contact line at the edge of the pumped-up blister. Instead, we define an
effective edge using the first position x = Xe(t) that the fluid depth reaches the pre-wetted
film thickness; i.e. h(Xe, t) = h0.

3.1. Viscous beam Bi = 0
When the plate is purely viscous (Bi = 0; n = 1), further simplifications result in

W = ∂

∂x

[
h3
(

∂P
∂x

+ G ∂h
∂x

)]
+ source, P = 1

3
∂4W
∂x4 ,

∂h
∂t

= W. (3.11a–c)

The version of this viscous model in which the gravitational term dominates the bending
term in the evolution equation is well known (e.g. Huppert 1982), so we consider the
opposite limit by taking G → 0. In view of scalings, and with the restriction to the
Bingham case, this parameter is given more explicitly by

G = ρf gL6(12μ)1/3

VD4 K4/3 . (3.12)

3.1.1. Numerical results
A numerical solution to (3.11a–c) for G = 0 is shown in figure 2. Once pumping
commences a blister rises up above the vent (spanning |x| < 1). The blister then expands
sideways as the less viscous fluid from the vent is driven under the much more viscous
plate. As observed in spreading flow underneath elastic sheets, the blister quickly settles
into a quasi-steady shape in which the fluid pressure is almost uniform, with the
overlying skin evolving in the same manner as a viscous beam under a spatially uniform,
time-dependent load (cf. the ‘glass-blowing’ solutions of Ribe (2001)). At this stage, the
expansion is controlled by a thin layer at the edge over which the viscous plate is peeled off
the pre-wetted film and pressure gradients become significant. The figure shows details of
the main blister, as well as the peeling layer. Time series of some of the global features of
the blister are plotted in figure 3, for both the solution shown in figure 2 and more solutions
with varying h0. Plotted, in particular, are the maximum depth

hmax(t) = h(0, t), (3.13)

edge position Xe(t) and central vertical velocity and pressure, W(0, t) and P(0, t). These
attributes can be predicted by the matched asymptotic analysis of the blister and peeling
layer; see § 3.1.2.

Figure 4 shows solutions for some variations on the basic spreading problem, namely
for blisters in which the plate is terminated closer to the source, or when the pumping
is turned off after a time t = ts. The blisters under a shorter plate reach the edges after
an initial period of expansion, the peeling layer then stops advancing, prompting a faster
growth of the thickness. In fact, since the pressure becomes largely uniform, the second
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Figure 2. Numerical solution for a planar Newtonian plate (Bi = 0, n = 1) with h0 = 10−2 and L = 50.
(a) Evolution of the height of the blister. The red line indicates the blister’s edge Xe(t). Also shown are
snapshots of (b) vertical velocity W, (c) pressure P and (d) moment Mxx at the times indicated and colour
coded accordingly. The dashed lines plot the asymptotic solution for the blister from § 3.1.2. The inset in (c)
shows the almost uniform interior pressure. Insets in (b,d) show a collapse of profiles in the peeling boundary
layer when replotted using the scaled variables, ξ = (x − Xe)/Lp and f = h/h0, defined in (3.19a–d). The
dot-dashed black lines plot the numerical solution to the peeling equation (3.20).
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Figure 3. Time series of (a) maximum height hmax(t) and edge position Xe(t), and (b) central vertical
velocity and pressure, W(0, t) and P(0, t), for a planar Newtonian plate (Bi = 0, n = 1 and L = 50) with
differing pre-wetted layer thicknesses (h0 = (0.5, 1, 2, 4, 8) × 10−2). The arrows in (a,b) show the trends with
increasing h0.
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or pumping ceases at t = ts (with h0 = 10−2 and L = 50). Shown are (a–c) surface plots of h(x, t) above the
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and 3 (green dashed lines) and ts = 1, 5 and 20 (red dotted lines). The blue stars and red triangles indicate the
predictions of the peeling analysis in § 3.1.2 (with t ≡ ts for the latter); the green triangles show the predictions
in (3.14a,b). The insets show the final snapshots of the solutions in (d,e), with the small filled circles indicating
x = Xe(t), and the faint grey lines in the inset in (e) showing the evolution of h(x, t) for the solution of figure 2.

relation in (3.11a–c), along with the boundary condition and unit flux, predicts that

W ∼ 5
4L

(
1 − x2

L2

)2

and h ∼ 5t
4L

(
1 − x2

L2

)2

, (3.14a,b)

in agreement with the numerical solutions in figure 4. When the pump rate is terminated
after t = ts, the solution quickly converges to a steady state with P = 0 throughout. The
blister then largely remains at the shape it possessed when pumping ceased, because there
is no levelling by gravity or interfacial tension. The final shape is now given by the peeling
analysis, described next.
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3.1.2. Peeling analysis
When the pressure becomes approximately uniform, P ≈ P(t), over the bulk of the blister,
the quasi-static evolution of the shape is dictated by

P(t) ∼ 1
3

∂4W
∂x4 , (3.15)

subject to the symmetry conditions ∂W/∂x = ∂3W/∂x3 = 0 at x = 0. At the edge, x →
Xe(t), the condition h → h0 must be supplemented with further conditions reflecting how
the blister matches with the peeling layer. In particular, as indicated below, the peeling
layer possesses a much shorter spatial scale than the main blister. The mismatch in first
derivatives then demands that ∂W/∂x → 0 for x → Xe, leaving a further condition to be
imposed on ∂2W/∂x2 that we identify below. All this parallels the analysis required for an
elastic skin (Lister et al. 2013; Hewitt et al. 2015).

An additional constraint on the main blister arises from mass conservation,

2
3 t ∼

∫ Xe

0
(h − h0) dx or 2

3 ∼
∫ Xe

0
W dx. (3.16a,b)

Hence,

W ∼ 5
4Xe

(
1 − x2

X2
e

)2

, (3.17)

and so the blister has a curvature rate of

∂2W
∂x2

∣∣∣∣
x→Xe

∼ 10
X3

e
(3.18)

at the edge.
In the peeling layer, the solution takes the form of a travelling wave with

h ∼ h0f (ξ), W ∼ − Ẋeh0

Lp
f ′(ξ), ξ = x − Xe(t)

Lp
, Lp =

(
1
3

h3
0

)1/6

� 1, (3.19a–d)

where (from (3.11a–c), given f → 1 for ξ → ∞)

f − 1 = f 3f VI . (3.20)

This equation can be solved numerically, enforcing three boundary conditions on the
right, to ensure that f → 1 for ξ → ∞. To the left, we must impose conditions guided by
matching: the solution for the main blister possesses derivatives that are O(1) for x → Xe.
But the scaling of the peeling solution indicates that ∂2W/∂x2 → −Ẋeh0f ′′′/L3

p = O(1),

whereas ∂mW/∂xm = O(h1−m/2
0 ), which is small for m = 1 and large for m > 2. Hence to

accomplish the match we must impose ∂W/∂x = 0 at x → Xe for the main blister solution
(as noted earlier), and eliminate the higher derivatives of the peeling-layer solution,
corresponding to the conditions ( f IV , f V) → 0 for ξ → −∞. A sixth condition (such as
f = 1 at the right-hand point of the computational domain) is required to eliminate the
translational invariance of (3.20).

This construction furnishes a solution for the peeling region, which, in principle, then
provides a matching condition for the edge curvature in (3.18). However, unlike in other
peeling problems (e.g. Flitton & King 2004; Lister et al. 2013; Hewitt et al. 2015), the
peeling equation in (3.20) has an even number of derivatives, which implies the existence
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of an integral. By multiplying the peeling equation (3.20) by f ′, rearranging and integrating
we find

1
2 ( f ′′′)2 − f ′′f IV − f ′f V + f −1 − 1

2 f −2 = const. (3.21)

But, on the left for large |ξ |, the asymptotic form of the solution is

f ∼ aξ3 + bξ2 + cξ − 1
120a2 log ξ + . . . (3.22)

(for some constants a, b and c), whereas f → 1 on the right. Hence[
1
2 ( f ′′′)2

]
ξ→−∞

= 1
2 , (3.23)

or f ′′′ → −1. Therefore, the limiting curvature rate of the peeling-layer solution to the left
is

∂2W
∂x2 ∼ h0Ẋe

L3
p

. (3.24)

Matching (3.18) with (3.24) implies that

Ẋe ∼ 10L3
p

h0X3
e

= 10
X3

e

√
1
3

h0, (3.25)

and so (given (3.17))

Xe(t) ∼
(

1 + 40

√
1
3

h0t

)1/4

, hmax(t) ∼ 1
8
√

3h0

⎡
⎣(1 + 40

√
1
3

h0t

)3/4

− 1

⎤
⎦+ h0.

(3.26a,b)

Evidently, the solution arrives at the peeling-controlled, uniform-pressure state for times
of O(h−1/2

0 ) (given that Xe is O(1); cf. figures 2 and 4).
Finally, one can integrate (3.1) (after changing variables to x/Xe(t) to account for the

motion of the edge), to show that

h ∼ hmax

(
1 − |x|

Xe

)3 (
1 + 3|x|

Xe

)
. (3.27)

The scalings in (3.26a,b) are compared with the numerical solutions in figure 3. The
numerical solution of the peeling equation (3.20) is also compared with the finer spatial
structure of the numerical solution in figure 2.

Note that a simple scaling analysis of (3.11a–c) implies that P ∼ X2
e h−3

maxḣmax ∼
X−4

e ḣmax. That is, X2
e ∼ hmax. But mass conservation also implies that Xehmax ∼ t, and

so hmax ∼ t2/3 and Xe ∼ t1/3. These scalings, which would characterize a self-similar
solution to (3.11a–c), disagree with (3.26a,b), as in the problem for an elastic skin. The
reason for this disagreement lies in the singular limit h0 → 0 evident in (3.26a,b), which
demonstrates how the pre-wetted film is essential in permitting the contact line to move;
without this regularization, no solution is possible, and, in particular, a similarity solution
does not exist (cf. Flitton & King 2004; Hewitt et al. 2015).

Both sets of scalings are also different from those suggested by Griffiths & Fink (1993)
to characterize spreading resisted by a viscous skin. In their scaling theory, the crust has
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a variable thickness, as that carapace is assumed to result from solidification as a thermal
boundary layer advances into the flow. However, the effect of the deepening of the skin
can be removed by setting their thermal diffusivity equal to t−1/2. This results in estimates
of hmax ∼ t0 and Xe ∼ t1 for a line source. These are different to what we derive here
because Griffiths & Fink assume that the resistance of the surface layer stems from vertical
shear, rather than viscous bending (as underlying (3.26a,b)) or extension (which would
control the outflow if the tension in the skin overcame the bending stresses). Given that the
skin floats atop a much less viscous shear flow, it is hard to see when significant vertical
shears could be developed over that crust. The results of Griffiths & Fink for a circular
blister (point source) and a plastic skin are also different to what we derive below for the
same reason.

3.2. Viscoplastic beam
Solutions for a viscoplastic beam with Bi = 0.1, n = 1 and G = 0 are shown in figure 5.
For the plate to deform upwards with positive curvature at the centre, but bend back down
to pre-wetted film near x = Xe(t) with negative curvature, there must be yielded regions
at both the centre and edge of the blister. Owing to the implied switch of sign of the
bending moment, these yielded regions necessarily become separated by a plug spanning
0 < X1 < |x| < X2 < Xe, with Mxx = 1

2 Bi at |x| = X1 and Mxx = −1
2 Bi at |x| = X2. The

figure indicates the borders of the plug, as well as the edge of the blister. Also shown are
some snapshots of the vertical velocity, pressure and bending moments, which highlight
the main characteristics of the solution.

As for the viscous plate, after a short transient, the main blister again evolves into a
quasi-steady state with an almost uniform pressure distribution (see panel b). Outside the
main blister another peeling layer arises characterized by relatively sharp gradients near
x = Xe(t). However, the wavetrain over the peeling layer is rather more complicated than
for a viscous plate: a sequence of interlaced plugs and yielded zones appear, which are
difficult to capture numerically and sensitive to our regularization of the constitutive law
(Appendix B). The first two plugs are indicated in the surface plot of h(x, t) in panel (a);
the computed bending moment and pressure distribution of (b,d) are not reliable beyond
these two plugs, and are not plotted accordingly. Despite such flaws in the numerical
solution, the main blister and first two plugs of the wavetrain are reliably computed, being
insensitive to the detailed structure of the more distant parts of the wavetrain (cf. figure 14
in Appendix B).

The main attributes (hmax(t), Xe(t), W(0, t) and P(0, t)) of the blisters in computations
with different Bingham numbers are shown in figure 6. Also plotted are the time
series of the plug borders. All these data match satisfyingly with the viscoplastic
version of the peeling analysis of § 3.1.2, outlined below. Although the yield stress adds
some twists into this analysis, the route taken is largely the same as for the viscous
theory.

3.2.1. Main viscoplastic blister
We focus on a Bingham plate with n = 1 and neglect gravity (G � 1). For a
uniform-pressure blister,

Mxx ∼ M0 − 1
2

Px2,
∂2W
∂x2 = −3 Max

(
|Mxx| − 1

2
Bi, 0

)
sgn(Mxx), (3.28a,b)
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Figure 5. Numerical solution for a planar Bingham plate (n = 1) with Bi = 0.1 (h0 = 10−2, ε = 10−9 and
L = 30). (a) A surface plot of h(x, t). The red solid and dashed lines show the edges and plugs of the main
blister. The first two plugs of the peeling layers are shaded grey. Also plotted are snapshots of (b) P(x, t),
(c) W(x, t) and (d) Mxx(x, t) at the times indicated (colour coded in time, from red to blue). The pressure plot
is divided into a magnification of the main blister (top) and the full pressure variation (bottom; vertically offset
for clarity). The black dashed lines show the asymptotic solution for the main blister; the black solid lines are
constructed from numerical solutions of the peeling equation (with matched values for B̌). In (c), the black dots
indicate the edges of the plug in the main blister. The inset in (c) shows a magnification of the peeling layer,
with W and x replotted using the scaled variables, ξ and −fξ , defined in (3.38a–d); the solutions of the peeling
equation are offset for clarity.

where M0(t) is the central bending moment. Over the central yielded region, |x| < X1,
where sgn(Mxx) > 0, (3.28a,b) indicates that

W ∼ W(0, t) + 1
8 Px4 − 3

2(M0 − 1
2 Bi)x2. (3.29)

In the yielded region at the edge [X2, Xe], sgn(Mxx) < 0 and we find instead

W ∼ 1
8 P(x4 − 4X3

e |x| + 3X4
e ) − 3

2 (M0 + 1
2 Bi)(x2 − 2Xe|x| + X2

e ). (3.30)

Over the plug in between, W(x, t) is linear in x. Overall, mass conservation still demands
(3.16a,b). Piecing together the various parts of the profile then furnishes

P ∼ 2Bi

X2
2 − X2

1
, Mxx ∼ Bi(X2

1 + X2
2 − 2x2)

2(X2
2 − X2

1)
, (3.31a,b)
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Figure 6. Numerical results for a planar Bingham plate (n = 1) with Bi = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 (h0 =
10−2, ε = 10−8 and L = 30), plotting time series of (a) hmax(t) and Xe(t), (b) W(0, t) and P(0, t) and (c) the
yield points X1(t) and X2(t). The dashed lines show the predictions based on (3.44) and the viscoplastic peeling
theory. The curves are colour coded by Bingham number and the arrows indicate the trend with increasing Bi.

W ∼ Bi

4(X2
2 − X2

1)
×

⎧⎪⎨
⎪⎩
[
x4 − 6X2

1x2 − 3X4
1 + 3(X2 − Xe)

2(X2 + Xe)
2] , x ≤ X1,[

3(X2 − Xe)
2(X2 + Xe)

2 − 8X3
1x
]
, X1 < x ≤ X2,

(x − Xe)
2 [x2 + 2Xex + 3X2

e − 6X2
2
]
, x > X2,

(3.32)

where the yield points are determined by the algebraic problem,

X3
1 = (Xe − X2)

2(X2 + 1
2 Xe), (3.33)

20(X2
2 − X2

1) = 3Bi[2(X5
2 − X5

1) + X3
e (3X2

e − 5X2
2)]. (3.34)

The curvature rate at the edge is

∂2W
∂x2

∣∣∣∣
x=Xe

∼ 3Bi(X2
e − X2

2)

(X2
2 − X2

1)
. (3.35)

For Bi → 0, (X2, X1) → Xe/
√

3 and Bi/(X2
2 − X2

1) → 5/X5
e , recovering the results

in the viscous limit. Conversely, the plastic limit arises when X2 → Xe and X1 → 0,
corresponding to the development of viscous hinges at the centre and edge that permit
the deflection of an otherwise straight, rigid beam. In detail, (3.33)–(3.34) reduce to

X3
1 ∼ 3

2 Xe(Xe − X2)
2 and 4 ∼ 9Bi Xe(Xe − X2)

2, (3.36a,b)

giving

X1 ∼
(

2
3Bi

)1/3

, X2 ∼ Xe − 2
3

(XeBi)−1/2 and
∂2W
∂x2

∣∣∣∣
x=Xe

∼ 4Bi1/2

X3/2
e

. (3.37a–c)
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3.2.2. Viscoplastic peeling layer
Over the peeling layer, we search for another quasi-steady wavetrain with the form,

ξ = x − Xe

Lp
, h ∼ h0f (ξ), Mxx ∼ Ẋeh0

3L3
p

M̂(ξ), Lp =
(

1
3

h3
0

)1/6

. (3.38a–d)

The problem then reduces to

f ′ = ( f 3M̂′′′)′, f ′′′ = Max[|M̂| − B̌, 0]sgn(M̂), (3.39a,b)

where

B̌ = 3Bi L3
p

2Ẋeh0
=

√
3h0 Bi
2Ẋe

. (3.40)

Although this rescaled Bingham number appears small due to the factor of
√

h0, the
denominator is also expected to become small at late times, promoting the size of B̌. In
fact, as shown below, Ẋe = O(

√
h0), rendering B̌ order one.

Provided that f → 1 and M̂′′′ → 0 for ξ → ∞, we may integrate the first relation in
(3.39a,b) once, to find

f − 1
f 3 = M̂′′′, f ′′′ = Max[|M̂| − B̌, 0]sgn(M̂). (3.41a,b)

These peeling equations must be integrated from the left, where a match with the outer
yielded region of the main blister is needed, to the right, where f → 1 and |M̂| → B̌.
As for the viscous plate, the match to the blister demands that we again eliminate
some of the higher derivatives of the peeling-layer solution on the left, which in this
case are M̂′ and M̂′′. The boundary conditions to impose to the right, however, are less
transparent.

One option is to assume that the peeling solution meets the plugged pre-wetted film at a
finite position, and then impose f = 1, f ′ = f ′′ = 0 and |M̂| = B̌ there. This construction
is illustrated in figure 7(a) for B̌ = 0.1. Four possible solutions are shown, allowing for
zero, one, two or three extrema in the bending moment M̂(ξ). The addition of each
extremum, analogous to each oscillation of the Newtonian peeling solution, corresponds
to the inclusion of an additional plug and yielded region over the peeling layer. For the
planar beam, however, and as illustrated by the dashed lines in the figure, these solutions
are not acceptable because a continuation of M̂(ξ) into the pre-wetted film to the right
unavoidably leads to further breaches of the yield stress (no further boundary conditions
are available to ensure that the derivatives of M̂(ξ) vanish at the final yield point).

Although the solutions shown in figure 7(a) cannot provide an acceptable peeling-layer
structure for a viscoplastic beam, we point out below in § 4.1 that they may be relevant
for a circular blister. Moreover, these solutions clearly demonstrate a convergence to a
common form on the left of the peeling region as one adds more extrema in the bending
moment. This suggests that one can build a true peeling-layer solution by including an
infinite sequence of plugs and yielded regions, with the bending moment continually
oscillating between ±1

2 Bi. Such a construction is supported by numerical solutions of
the initial-value problem like that shown in figure 5, and further arguments are provided
in Appendix A. Figure 7(b) presents several other numerical solutions to the peeling layer
(3.41a,b) that construct more of the sequence by imposing different right-hand boundary

957 A9-16



Viscoplastic blisters

–5 0 5

–1.0

–0.8

–0.6

–0.4

–0.2

0

5 10 15

–0.05

0

–10 0 10 20 30 40 50

–10

–8

–6

–4

–2

0

50 10

–0.1

0

B̌

B̌ = 0.1

B̌ = 0

–B̌

+1

–1

0.6

0.3

0.2

f ′′ vs ξ

ξ

ξ

f ′′ vs ξ

M̂

M̂
/B̌

(a)

(b)

Figure 7. Numerical solutions of the peeling equation (3.41a,b). In (a), the solution is assumed to meet
the plugged pre-wetted film after passing through zero, one, two or three extrema in bending moment,
corresponding to differing numbers of interwoven plugs and yielded regions. Plotted are M̂(ξ) (main panel)
and f ′′(ξ) (inset) for B̌ = 0.075 (blue lines). The stars indicate where the peeling solutions meet the pre-wetted
film. The dashed lines indicate the trend of the bending moment if it is continued to the right. In (b), peeling
solutions constructed by fixing M̂ = −1 − B̌ and M̂′ = M̂′′ = 0 to the left, and then imposing M̂′ = 0, |M̂| = B̌
and the constraint in (3.42) (with the constant equal to 1

2 ) on the right. In the main panel M̂/B̌ is plotted against
ξ for B̌ = 0.1, 0.2, . . . , 0.6 (translated in ξ to align the first yield point); the inset shows the corresponding
solutions for f ′′(ξ), along with that for B̌ = 0. The solutions with B̌ = 0.3, . . . , 0.6 are those that are also
plotted in figure 5. The lighter (red) line in (a) shows the solution with four plugs constructed using the
boundary conditions adopted in (b).

conditions (as stated in the caption). The plugs widen and the yielded regions narrow with
the progression along the wavetrain, and it proves numerically challenging to construct
longer wavetrains than those plotted.

Fortunately, such a construction can again be avoided when matching with the main
blister because the equations in (3.41a,b) admit another integral,

f ′M̂′′ − f ′′M̂′ + 1
2 [Max(|M̂| − B̌, 0)]2 + f −1 − 1

2 f −2 = const. (3.42)
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(obtained by multiplying the first equation by f ′ and then performing some algebra). Since
(M̂′, M̂′′, f −1, f −2) → 0 on the left, and ( f , |M̂|) → (1, B̌) on the right, we arrive at

1
2 [Max(|M̂| − B̌, 0)]2

∣∣∣
ξ→−∞

= 1
2 , (3.43)

which again implies (3.24).
The match with (3.35) now gives

Ẋe ∼
(

X2
e − X2

2

X2
2 − X2

1

)
Bi
√

3h0. (3.44)

This equation reduces to the viscous plate problem detailed in § 3.1.2 for Bi → 0, and, in
the plastic limit (with X2 → Xe and X1 → 0), gives

Xe(t) ∼
(

1 + 10

√
1
3

Bi h0t

)2/5

, hmax(t) ∼ 2
3
√

3 Bi h0

⎡
⎣
(

1 + 10

√
1
3

Bi h0t

)3/5

− 1

⎤
⎦+ h0.

(3.45a,b)

Note that, strictly speaking, when the peeling layer matches directly onto the plug of the
main blister, a different set of matching conditions are needed because W is necessarily
a linear function there. Consequently, the matching conditions on the peeling solution
become revised to f ′′′ = M̂′′ = 0, and the scalings must be modified. We now have that
Max(|M̂| − B̌, 0) = 0 to both right and left, and so the integral constant (3.42) implies
[Ŵ ′M̂′]ξ→−∞ = 1

2 , demanding that we impose the condition Wx → Ẋ2
e /2h0 for x → Xe

on the blister solution. But this condition eventually also leads to (3.45a,b) and so this
limit requires no new considerations.

The results from integrating (3.44) in combination with (3.34) from the initial condition
Xe(0) = 1 are compared with the numerical data in figure 6, along the implied predictions
for the other bulk attributes of the blister, using (3.31a,b)–(3.32). Again, the plastic
scalings are different from those expected from a simple scaling analysis (and similarity
solution): balancing terms in (3.1)–(3.4) when the yield stress dominates suggests that
P ∼ Bi/X2

e ∼ X2
e h−3

maxḣmax, and so (Xe, hmax) ∼ t1/2.

4. Circular plate

We turn now to axisymmetric spreading from a circular vent. When δ = H/D � 1, so that
the viscoplastic plate is much thicker than the film of viscous fluid underneath, tensions
remain unimportant and the main resistance to flow stems from bending stresses. We
consider this simpler situation first, before more briefly considering the situation where
tensions can become important.

4.1. Circular plate without tension
For the bending of an axisymmetric plate without tension, we first record the model
equations written in polar coordinates (r, θ):

W = ht = 1
r

∂

∂r

(
rh3 ∂P

∂r

)
+ source, 0 = ∂2Mrr

∂r2 + 2
r

∂Mrr

∂r
− 1

r
∂Mθθ

∂r
+ P, (4.1a,b)
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Mrr
Mθθ

]
= −

(
Γ n−1

2n+1(n + 2)
+ Bi

4Γ

)[
Γrr
Γθθ

]
, M ≥ 1

4
Bi,

Γ = 0, M <
1
4

Bi,

⎫⎪⎬
⎪⎭ (4.2)

Γrr = 4
∂2W
∂r2 + 2

r
∂W
∂r

, M ≡
√

1
3
(M2

rr + M2
θθ − MrrMθθ ),

Γθθ = 2
∂2W
∂r2 + 4

r
∂W
∂r

, Γ ≡
√

1
3
(Γ 2

rr + Γ 2
θθ − ΓrrΓθθ ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

Note that the yield condition implies that the plugged regions of the plate must have
a vertical velocity that is independent of radius (unlike in the planar problem, where
rotations described by linear functions of x can be rigid). We again adopt a parabolic
profile for the influx of viscous fluid, so that

source =
{

1 − r2, r < 1
0, r > 1.

(4.4)

4.1.1. Main blister
Assuming that the pressure again becomes uniform in radius within the blister r < Xe(t)
(a feature that we confirm below), we may rescale the variables so that

r = ηXe, W = PX4
e w(η),

⎡
⎣ Γ

Γrr
Γθθ

⎤
⎦ = PX2

e

⎡
⎣ γ (η)

γrr(η)

γθθ (η)

⎤
⎦ ,

⎡
⎣ M

Mrr
Mθθ

⎤
⎦ = PX2

e

⎡
⎣ m(η)

mrr(η)

mθθ (η)

⎤
⎦ .

(4.5a–d)

From (4.1a,b)–(4.3), we then arrive at the canonical problem, for n = 1,

0 = m′′
rr + 2

η
m′

rr − 1
η

m′
θθ + 1,

[
mrr
mθθ

]
= − 1

12

(
1 + 3B̂

γ

)[
γrr
γθθ

]
, B̂ = Bi

PX2
e
,

(4.6a–c)

γrr = 4w′′ + 2
η

w′, γθθ = 2w′′ + 4
η

w′, γ ≡
√

1
3 (γ 2

rr + γ 2
θθ − γrrγθθ ), (4.7a–c)

with the boundary conditions, w(1; B̂) = w′(1; B̂) = 0, which are required for a match
towards the pre-wetted film. This problem was solved in Ball & Balmforth (2021). Sample
numerical solutions for w = w(η; B̂) are shown in figure 8. Although the shape of the
solution is not very sensitive to B̂, the amplitude varies significantly (see panels a,b).
Two other key quantities can be constructed from these solutions,

K(B̂) = w′′(1; B̂) and I(B̂) =
∫ 1

0
w(η; B̂)η dη, (4.8a,b)

as displayed in figure 8(c,d).
For B̂ → 0, we obtain the result for a viscous plate,

w(r; 0) = 3
64(1 − η2)2, K(0) = 3

8 , I(0) = 1
128 . (4.9a–c)

In the limit B̂ → B̂crit ≈ 0.184, the solution limits to a perfectly plastic state (cf. Hopkins
& Wang 1955; Eason 1958) with w = O((B̂crit − B̂)2), giving I(B̂) = O((B̂crit − B̂)2).
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(a). The dashed lines show w(0; B̂) ∼ 6.37(0.184 − B̂)2, K ∼ 3.58(0.184 − B̂) and I ∼ (0.184 − B̂)2.

In that limit, w(η) develops narrow viscoplastic hinges at the edge, the net result of which
is that K(B̂) = w′′(1; B̂) = O(B̂crit − B̂), as seen in figure 8(c).

4.1.2. Peeling layer
The reduced scale of the peeling layer implies that, over this region, the main balances in
(4.1a,b)–(4.3) are

W = ht ∼ ∂

∂r

(
h3 ∂P

∂r

)
,

∂2Mrr

∂r2 ∼ −P, Mθθ ∼ 1
2

Mrr,

Mrr ∼ −1
3

∂2W
∂r2 − 1

2
Bi sgn

(
∂2W
∂r2

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.10a–d)

But this system admits the same quasi-steady, travelling-wave solution as in the planar
problem with the form (3.38a–d) and (3.40), except that ξ = (r − Xe)/Lp. Thus, the blister
solution must again satisfy the matching condition,

∂2W
∂r2

∣∣∣∣
r→Xe

∼ Ẋe√
1
3 h0

, (4.11)

leading to

Ẋe ∼ PX2
e

√
1
3 h0 K(B̂). (4.12)

The mass conservation constraint (
∫ Xe

0 Wr dr = 1
4 ) also imposes

1
4

∼ PX6
e I(B̂), or Bi X4

e ∼ B̂

4I(B̂)
. (4.13a,b)
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Hence

X4
e Ẋe ∼ 1

4

√
1
3

h0
K(B̂)

I(B̂)
, (4.14)

where B̂ ≡ Bi/(X2
e P) is determined from Xe(t) as in (4.13a,b) (see figure 8e, f ). Also,

ḣmax = W(0, t) ∼ w(0; B̂)

4X2
e I(B̂)

. (4.15)

For Bi → 0 (B̂ → 0), we arrive at

Xe(t) ∼
(

1 + 60

√
1
3

h0t

)1/5

, hmax(t) ∼ 1
8
√

3h0

⎡
⎣(1 + 60

√
1
3

h0t

)3/5

− 1

⎤
⎦+ h0.

(4.16a,b)

Conversely, in the plastic limit, for which we may use the limiting forms of the functions
K(B̂) and I(B̂) for B̂ → B̂crit, we find

Xe(t) ∼ (1 + 7.23
√

Bi h0t)1/3, hmax(t) ∼ 1
1.51

√
Bi h0

[(1 + 7.23
√

Bi h0t)1/3 − 1] + h0.

(4.17a,b)

As indicated by figure 8( f ), provided Bi1/4Xe < 1 at the beginning of the constant-pressure
phase, (4.14) predicts that the blister expands first at the viscous rate in (4.16a,b) before
switching to the plastic one in (4.17a,b) at later times. The corresponding scalings of the
non-existent similarity solution are Xe ∼ t1/4 and hmax ∼ t1/2 for a viscous plate, and Xe ∼
t3/8 and hmax ∼ t1/4 for a plastic one.

Note that, although the peeling equations in (4.10a–d) admit the travelling-wave solution
in (3.38a–d) and (3.40), there is one important difference with the planar problem: for the
viscoplastic beam of § 3.2, the stress state is fully determined over each plug as the one
bending moment, Mxx, becomes continued through those unyielded regions with the higher
derivatives specified by continuity at the previous yield point. This feature implies that the
peeling-layer solutions shown in figure 7(a) are unacceptable, because the finite higher
derivatives of Mxx, as rescaled into M̂, prompt further breaches of the yield condition.
By contrast, for the circular blister, the leading-order expression of force balance over
the peeling region, ∂2Mrr/∂r2 + P ∼ 0, only constrains Mrr, and the angular component
Mθθ remains unspecified. The stress state is therefore indeterminate. Consequently, if one
can find a solution for the two components that satisfies both force balance and the yield
condition, the implication is that one can consistently continue the peeling-layer solutions
shown in figure 7(a) into the plugged pre-wetted film. In other words, one can, in principle,
connect the blister to the pre-wetted film through a peeling layer with a finite number of
plugs and yielded zones. We illustrate this feature of the circular blister problem below.

4.1.3. Numerical solutions
We construct numerical solutions to (4.1a,b)–(4.3) for circular blisters using a similar
numerical scheme to that outlined in § 3 for the planar problem. This includes a similar,
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Figure 9. Axisymmetric Bingham plates (n = 1) without tension. (a) A surface plot of h(r, t) above a density
plot of log10 |P|, over the (r,

√
t)-plane for Bi = 0.1. The red line indicates the edge of the blister Xe(t), and the

grey shading shows the plugs. On the right, time series of (b) hmax(t) and W(0, t) and (c) Xe(t) and P(0, t) are
plotted for solutions with varying Bingham number (Bi = 0, 0.1, 0.2, 0.3, 0.5, 0.8; h0 = 10−2, ε = 10−6 and
L = 20). The curves are colour coded by increasing Bi (from blue to red), and the expected long-time power
laws for a viscous and plastic plate are indicated. The dashed lines show the predictions of the peeling analysis
(integrating (4.14)).

convenient regularization of the constitutive law, which in this case replaces (4.2) with[
Mrr
Mθθ

]
= −

(
Γ n−1

2n+1(n + 2)
+ Bi

4(Γ + ε)

)[
Γrr
Γθθ

]
, (4.18)

for all values of M. This regularization removes the indeterminacy of the stress state over
the plugs, selecting certain solutions for Mrr and Mθθ where M < 1

4 Bi. The value of ε is
taken to be sufficiently small to ensure that the solution for the blister over the yielded
regions is insensitive to the precise value of this parameter.

Figure 9 presents numerical solutions, showing details of an example with Bi = 0.1, and
then the bulk characteristics, [Xe(t), hmax(t), W(0, t), P(0, t)], for various values of Bi. The
evolution of the profile of the axisymmetric viscoplastic blister is qualitatively similar to
that in the planar problem (comparing figure 9(a) with figure 5a), with the main blister
again evolving at constant pressure after a short transient. The plug structure is, however,
different: the main blister always remains fully yielded and the peeling layer connects the
main blister to the prewetted film without passing through any or only a single intervening
plug. In other words, the viscoplastic wavetrain over the peeling layer is more restricted. In
figure 9(b,c), the bulk properties of the blister compare satisfyingly with the predictions of
the peeling analysis, derived from numerically integrating (4.14) from the initial condition
Xe(0) = 1.

Figure 10 shows further details of the spatial structure of the blister for three Bingham
numbers. For a purely viscous plate (Bi = 0; figure 10a,d,e), the numerical solutions
display the collapses expected over the main blister (§ 4.1.1) and peeling layer (§ 4.1.2),
and compare well with the asymptotic solutions predicted for each region. Note that the
peeling region can be identified in the plots of the two moments as the region over which
2Mθθ matches Mrr.
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Figure 10. Axisymmetric Bingham plates without tension (n = 1, h0 = 10−2, ε = 10−6 and L = 20) for
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1
4 Bi]) over the (r, t)-plane. The red line shows the edge of the blister Xe(t), and the dark blues areas in
(b,c) indicate the plugs. Below are plotted snapshots of the moments Mrr and 2Mθθ . In (d, f,h), the moments
compared with quasi-static solutions from § 4.1.1 (dots and dotted lines), with the viscous solution in (d) scaled
for a collapse over the main blister (cf. (4.5a–d)). For (e,g,i), the moments are scaled as in the peeling analysis
(cf. § 4.1.2 and (3.38a–d)), (M̂rr, M̂θθ ) = (Mrr, Mθθ )3L3

p/h0Ẋe, and compared with asymptotic solutions (dots,
dotted lines) that connect the blister to the pre-wetted film without any intervening plugs. In (d,r,g,i), the times
of the snapshots are t = 50, 100, . . . , 250 (from blue to red); for ( f,h), t = 100, and the invariant M is also
shown. The solid grey lines in ( f,h) indicate ± 1

2 Bi.
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For the viscoplastic plates, the structure of the main blister is again reproduced by the
quasi-static analysis of § 4.1.1. Over the peeling layer, however, there are complications
because of the plug that occasionally intervenes between the main blister and the
pre-wetted film. If no such plug arises, one expects a peeling-layer solution that directly
connects the main blister to the pre-wetted film, as illustrated by the narrowest example in
figure 7(a). In fact, this solution is independent of Bingham number because that parameter
can be eliminated from the peeling equations (3.39a,b) and features only as an additive
constant when there is just one yield point. In other words, the peeling-layer solution
is identical to the Newtonian one, but for the subtraction in M̂ = f ′′′ − B̌ (the moment
being negative). This feature is exploited in figure 10(g,i), in which the scaled moments
(M̂rr, M̂θθ ) + B̌ are plotted over the peeling layer, where

(M̂rr, M̂θθ ) = (Mrr, Mθθ )
3L3

p

h0Ẋe
. (4.19)

Were the peeling solution to contain an intervening plug and therefore depend on B̌, as
for the other solutions in figure 7(a), a different comparison would be required for each
snapshot, B̌ = √

3h0 Bi/(2Ẋe) varying with time.
The plots of the moments in figure 10 also highlight how Mθθ /= 1

2 Mrr over the plugs

in the peeling layer. This is the feature mentioned earlier that adds the freedom to allow
the peeling layer to plug up without passing through an infinite wavetrain (the distinctive
feature of the planar viscoplastic blister). Awkwardly, however, the occasional emergence
of an intervening plug over the peeling layer embeds additional, history-dependent spatial
structure there that detracts from any comparison of the numerical solutions with the
simplest peeling-layer solution. The failure of 2Mθθ to match Mrr over the intervening
plugs also renders irrelevant the other peeling-layer solutions in figure 7(a).

4.2. Effects of tension
For a viscous, axisymmetric plate with tension, the model reduces to

W = ht = 1
r

∂

∂r

(
rh3 ∂P

∂r

)
+ source, (4.20)

[Mrr, Mθθ ] = − 1
12

[Γrr, Γθθ ] = − 1
6r

[2rWrr + Wr, rWrr + 2Wr] , (4.21)

[Σrr, Σθθ ] = [Δrr, Δθθ ] = 2δ

r
[2r(Ur + hrWr) + U, r(Ur + hrWr) + 2U] , (4.22)

0 = ∂

∂r
Σrr + 1

r
(Σrr − Σθθ), (4.23)

0 = 1
r2

∂

∂r

(
r2 ∂Mrr

∂r

)
− 1

r
∂Mθθ

∂r
+ δ

[
hrrΣrr + 1

r
hrΣθθ

]
+ P. (4.24)

We solve these equations numerically for different values of δ.
Figure 11 shows numerical solutions with δ = 0, 0.1, 1 and 10. For δ = 0, the peeling

analysis of § 4.1 applies, as confirmed in the figure. When δ > 0, the growth of blister
height coupled with the decreasing vertical velocity implies that tension eventually
dominates bending at sufficiently late times. Although the solutions with δ = 1 and 10 in
figure 11 both reach this phase by the end of the computations, that with δ = 0.1 does not.
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Figure 11. Axisymmetric Newtonian plate including tension, with δ = 0, 0.1 1 and 10 (from red to blue);
h0 = 10−2 and L = 50. Plotted are time series of (a) hmax(t) and W(0, t), and (b) Xe(t) and P(0, t), then
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of the peeling analysis without tension. Late-time scalings for strong tension are indicated in (a,b).

The emergence of relatively strong tension adjusts the late-time scalings of the solution.
Some further details of the solution with δ = 10 are shown in figure 12. The radial velocity
U(r, t) and stress Σrr(r, t) are less localized than W(r, t), decaying like r−2 in the far
field. The bending moment is, however, strongly concentrated near the edge at late times.
Simultaneously, the pressure distribution again becomes relatively flat over the blister.

To rationalize the observed late-time scalings for relatively strong tension, we follow
the strategy outlined by Peng & Lister (2020) for a blister underneath an elastic sheet with
both bending and tension (although we avoid a detailed matched asymptotic expansion).
As in that problem, the constant pressure of the quasi-static main blister eventually
becomes countered in the normal-force balance (4.24) by the tension terms, rather than
bending forces. Those tension terms can be written as δX−2

e η−1(ηhηΣrr)η. Thus,

Σrr ∼ −ηPX2
e

2δhη

, (η1/2Σrr)η = 3δU
Xeη3/2 , (η1/2U)η = η1/2ΣrrXe

4δ
− η1/2hηWη

Xe
,

(4.25a–c)

which, after a little algebra, can be combined into a differential equation for H(η) =
h(r, t)/hmax(t), given the power-law form of hmax(t) and Xe(t). In view of the mass
conservation constraint

X2
e hmax

∫ 1

0
ηH(η) dη ∼ 1

4 t, (4.26)
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the dominant balances over the main blister then imply that

h ∼ hmax ∼ t
X2

e
, W ∼ W(0, t) ∼ 1

X2
e
, U ∼ t

X5
e
, (4.27a–c)

Σrr ∼ Σ(0, t) ∼ δt
X6

e
, P ∼ P(0, t) ∼ δ2t2

X10
e

. (4.28a,b)

The peeling layer, on the other hand, is still dominated by bending, which conflicts with its
omission for the main blister. To connect the blister with the peeling layer, an intermediate
region with a reduced spatial scale is therefore needed over which the bending and tension
terms first counter one another in the normal-force balance. The intermediate region is
evident in the snapshots of Mrr plotted in figure 12(b): the bending moment is small over
the main blister but reaches significant amplitudes over the intermediate region to the left
of the edge x = Xe(t), or η = 1. The scale of this region is Δ(t) � Xe(t), and, here, the
main normal-force balance becomes

Mrr

Δ2 ∼ δhrΣrr

Δ
. (4.29)

Moreover, the tension remains Σrr ∼ δtX−6
e in order to match with the main blister, and

hr ∼ tX−3
e so that the slopes also match (h itself becomes small, O(δhmax), within the

intermediate region). But the bending moment must still match with that in the peeling
layer to the right of the intermediate region, demanding

Mrr ∼ W
Δ2 ∼ Ẋe√

h0
. (4.30)

Thus

Xe ∼ h3/46
0 δ4/23t7/23, hmax ∼ h−3/23

0 δ−8/23t9/23, W(0, t) ∼ h−3/23
0 δ−8/23t−14/23,

P(0, t) ∼ h−15/23
0 δ6/23t−24/23, Σ(0, t) ∼ h−9/23

0 δ−1/23t−19/23.

}

(4.31a–e)

We also note that �X−1
e ∝ t−6/23 , rationalizing the somewhat slow narrowing of the

intermediate region on the scale of η = r/Xe(t). That said, the scaling Δ ∝ t1/23 indicates
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Xe(t) hmax(t)

Planar, viscous Bi = 0, n = 1 h1/8
0 t1/4 h−1/8

0 t3/4

Planar, plastic Bi /= 0, n = 1 (Bi h0)
1/5t2/5 (Bi h0)

−1/5t3/5

Planar, power law Bi = 0, n /= 1 h1/(3n+5)

0 t2/(3n+5) h−1/(3n+5)

0 t3(n+1)/(3n+5)

Axisymmetric, viscous Bi = 0, n = 1, δ � 1 h1/10
0 t1/5 h−1/5

0 t3/5

Axisymmetric, plastic Bi /= 0, n = 1, δ � 1 (Bi h0)
1/6t1/3 (Bi h0)

−1/3t1/3

Axisymmetric, power law Bi = 0, n /= 1, δ � 1 h1/[2(2n+3)]
0 t1/(2n+3) h−1/(2n+3)

0 t(2n+1)/(2n+3)

Axisymmetric, viscous, Bi = 0, n = 1, δ = O(1) h3/46
0 δ4/23t7/23 h−3/23

0 δ−8/23t9/23

with tension

Table 1. Summary of spreading laws.

that this region widens very slowly with time over the original radial scale (a feature that
is indeed observed for the bending moment of the numerical solution).

5. Discussion

In this paper we have considered the spreading of a viscous fluid underneath a planar
or circular viscoplastic plate described by a Herschel–Bulkley constitutive law. We have
considered the specific situation in which the viscous fluid is pumped at constant flux into a
narrow gap between the plate and a flat solid substrate, to push up a growing blister against
bending stresses. As for viscous flow underneath an elastic plate (e.g. Lister et al. 2013;
Hewitt et al. 2015; Peng & Lister 2020), the interior of the blister develops quasi-statically
at constant pressure, and the spreading dynamics is controlled by conditions within a
distinctive peeling region at the edge of the blister. We have determined the form of this
spreading dynamics for planar and circular blister, paying particular attention to the limits
of a very viscous or plastic plate, and exploring the effect of tension in the case of a viscous
circular plate.

A novelty of viscoplastic peeling is that the mathematical matching problem simplifies
considerably owing to the existence of a special ‘peeling integral’. This integral constant
permits one to avoid any detailed analysis of the peeling region and immediately place a
constraint on the rate of curvature at the edge of the blister. This dictates the spreading rate
along the lines of Tanner’s law for spreading droplets (cf. Tanner 1979; Lister et al. 2013),
as shown in table 1 for viscous and plastic blisters. Nevertheless, the spatial structure of
the peeling layer has some interesting features, including a sequence of interwoven plugs
and yielded regions in the plate, somewhat like in other problems with viscoplastic films
(Jalaal & Balmforth 2016; Jalaal et al. 2021).

In all the analysis presented, we have focused on the Bingham plate without exploring
the consequences of n /= 1, an important point in view of the fact that most experimental
materials have a power-law viscosity. For n /= 1, the analysis becomes more complicated,
with the shape of the main blister being given by a hypergeometric function and a different
peeling equation to analyse. Despite this, using simple scaling arguments, we can write
down the spreading laws expected for a power-law viscosity, as shown in table 1; more
detailed analysis is left for future work.

For viscous flow underneath an elastic skin there have been numerous experiments
to complement and confirm theoretical models (Lister et al. 2013; Pihler-Puzović et al.
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2015; Ball & Neufeld 2018; Berhanu et al. 2019). An equivalent experiment could be
envisaged for the viscoplastic version studied here. For this task, two experimental fluids
must be chosen with a sufficient viscosity difference that the approximation of zero viscous
traction by the underlying fluid is valid. To avoid potential complications observed for
fluids with a common solvent (Ball, Balmforth & Dufresne 2021; Ball et al. 2022), the
fluids must be immiscible. For example, one could employ Carbopol, a commonly used
experimental yield stress fluid, for the plate, and a perfluorinated oil for the viscous fluid.
Such experiments, with the Carbopol concentration tuned to furnish suitable effective
viscosity contrasts, might then test the spreading laws proposed in table 1. However,
the finer details of the viscoplastic blister, such as the structure of the wavetrain, make
experimental validation difficult without the use of carefully designed techniques (e.g.
Jalaal et al. 2018).
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Appendix A. Viscoplastic wavetrain

Beyond the blister edge there exists a quasi-steady wavetrain which decays into the
far-field pre-wetted film (assuming a sufficiently long domain). Over the wavetrain, the
height is approximately equal to the pre-wetted film height (h ∼ h0) and the bending
moment oscillates through a sequence of plugs buffered by narrow yielded regions where
Mxx ≈ ±1

2 Bi; see figure 13. With the approximation, f 3M̂′′′ ≈ M̂′′′, (3.39a,b) then reduces
to

f − 1 = M̂′′′, f ′′′ = Max[|M̂| − B̌, 0]sgn(M̂). (A1a,b)

In order to decay to the pre-wetted film, however, the plugs and yielded regions must scale
differently. To see this, let f − 1 = �F(�1/3ξ) and M̂(ξ) = M(�1/3ξ) for � � 1. Then
(A1a,b) becomes, over the plugs,

F = M′′′, F ′′′ = 0. (A2a,b)

The change of argument, needed to balance terms in (A2a,b), highlights how the length
of the plugs must become relatively long (on the original scale of the peeling layer).
Conversely, over the yield section centred at ξ = ξ∗, we set

χ = �−1/3(ξ − ξ∗), f = 1 + �φ0 + �4/3(ξ − ξ∗)φ′
0 + �7/3Φ(χ),

M = ±1
2 Bi + �4/3Υ (χ),

}
(A3a–c)

to obtain
0 ∼ Υ ′′′, Φ ′′′ = Υ. (A4a,b)

Again, the rescaling of ξ reflects a change of scale; this time, the narrowing length of the
yielded sections. With the preceding forms of the solutions over the plugs and yielded
sections, the derivatives of M̂ and f can all be made to match at the yield points, provided
that we also impose the limits M̂′ → 0 at the borders of each plug (cf. figure 13).
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Figure 13. A planar Bingham plate with Bi = 0.2 (h0 = 10−2, ε = 10−10, L = 30), plotting (a) h(x, t) and
(b) Mxx for t = 1, 1.2, . . . , 2, then magnifications of (c) ∂W/∂x and (d) ∂2W/∂x2 around the first plug in the
train (the boxed region in a) at t = 1.4. The grey lines in (b) plot the yield surfaces Mxx = ±Bi/2. The insets
show magnifications of the first plug in (a) (the dots show the yield points of the final snapshot), and the second
yielded region in (c,d) (indicated by the boxes in the main panels). The dotted lines show fitted cubic profiles
for ∂W/∂x. The inset in (b) plots the lengths of the yielded regions and plugs against � = Max(|h/h0 − 1|),
where the maximum is taken over each yielded region or to the right of each plug.

Equations (A4a,b) indicate that M ∓ 1
2 Bi is quadratic and ∂W/∂x is cubic over the

yield sections. The boundary-layer structure in ∂W/∂x is clearly visible in the numerical
solution shown in figure 13, as are the locally parabolic and small pieces of Mxx or
∂2W/∂x2 over the narrow yielded sections.

At this stage, it is also possible to understand the structure of the wavetrain: to achieve a
convergence to the pre-wetted film, the train must pass through a succession of widening
plugs and narrowing yielded sections. Over the plugs, the bending moment switches
between ±1

2 Bi, with vanishing first derivative, whilst f is quadratic and can be made
to approach f − 1 = O(�) and f ′ = O(�4/3) at the right-hand border (figure 13a). This
corresponds to demanding that the solution to the left of the plugs satisfy three conditions
(just as the viscous peeling equation must satisfy three boundary conditions for ξ → ∞).
However, because ∂W/∂x is constant over each plug, that gradient must be reduced instead
over the subsequent yielded section. In particular, there, the cubic form of Wx can be
adjusted so that Wx → 0 to leading order to the right. This leads to the step-like structure
of that quantity in figure 13(c), with each step lowering the value by a factor of O(�1/3).

All this implies that the viscoplastic wavetrain, unlike that for a viscous plate, inevitably
becomes spatially extended. The decaying spatial structure of the wavetrain is also
especially sensitive to numerical error and our regularization of the constitutive law.
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Figure 14. Numerical results for a planar Bingham (n = 1) plate with Bi = 0.1 and h0 = 10−2 at the times
indicated, for (a–c) varying regularization ε = 10−3, 10−6, 10−9 with L = 30 and for (d–f ) varying domain
lengths L = 10, 30, 50 with ε = 10−9. Insets in (a,b) show magnifications (the boxed regions in a,b). The grey
lines indicate the yield points Mxx = ±Bi/2 = ±0.05.

Both lead to an artificial truncation of the sequence of yielded zones beyond some distance
from the main blister. For these reasons we avoid showing too much of the details of the
more distant parts of the wavetrain, as discussed below.

Appendix B. Numerical parameters

In the figures in the main text, we avoid showing too much detail of the wavetrain as
it is sensitive to the regularization and the length of the domain. In order to quantify
these effects, focusing on the planar problem, we vary the regularization parameter ε and
the length of the domain L and compare with the solutions shown in figure 5 for Bi =
0.1, h0 = 10−2, ε = 10−9 and L = 30. In figure 14(a–c) we vary ε and show comparisons
at three time snapshots, chosen as representative times of the numerical solutions used.
As the regularization parameter is increased, less of the wavetrain is captured, with the
blister passing through zero, one or two intervening plugs at t = 100 for ε = 10−3, 10−6

and 10−9, respectively. Despite this the main blister shape remains largely unchanged. We
choose to use a regularization parameters ε = 10−8–10−9 for figures 5 and 6 to capture
the bulk dynamics, and a smaller parameter ε = 10−10 in figure 13 when we want to focus
on the first few intervening plugs.

Figure 14(d–f ) shows the effect of changing the domain length L, where boundary
conditions W = ∂W/∂x = h3∂P/∂x = 0 at x = L are placed setting the vertical velocity,

957 A9-30



Viscoplastic blisters

its gradient and the flux to zero. It is evident that the smaller domain size of L = 10
truncates the wavetrain before the regularization is able to have an influence. In contrast,
as the domain is increased to L = 50 the moment does not change as the regularization has
already caused the moment to decrease to zero before x = 30. This observation motivates
the choice of a domain length of L = 30 for figures 5 and 6.
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