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a b s t r a c t

A theory is presented for the dynamics of slender sheets of viscoplastic fluid. First a model suitable for
relatively small curvature is presented and applied to the fall of a liquid bridge supported at its two ends.
Second, order-one curvatures are considered, along with the sagging of a beam with a free end that is
either emplaced or extruded horizontally. We then present a theory combining both limits of curvature,
and consider the buckling of a nearly vertical column. Analogous models for a circular viscoplastic thread
are also discussed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

An everyday vision of viscoplastic fluid dynamics is afforded
whenever one squeezes toothpaste out of a tube. The paste initially
emerges from the tube as a solid cylinder, before yielding under
gravity and fluidly bending downwards; eventually the paste
forms a distinctively curved thread. Alternatively, squeezing the
toothpaste vertically upwards creates an upright column that suf-
fers a form of Euler buckling once its height exceeds some limit
(Fig. 1). Similar viscoplastic extrusions feature in a number of other
household and industrial fluid problems ranging from the caulking
gun to manufacturing and food processing.

In solid mechanics, the problem of a sagging or dangling elastic
thread has a rich history dating back to Galileo, and theory for
bending of beams and rods is well developed [7]. The essential pre-
mise of the theory is that the slenderness of the geometry of the
sheet or thread can be exploited to simplify the governing equa-
tions of linear (or even nonlinear) elasticity and furnish a reduced
model determining the deflection as a function of time and arc
length along the central axis. The extension of this theory to per-
fectly plastic sheets and rods was popular in the mid 1900s
[10,8], although most attention seems to have been directed at
the contained (i.e. spatially confined) plastic deformation of elas-
tic–plastic beams and the determination of the limit for failure
(the onset of unconfined plastic flow). A relevant exception is the
body of work on the impact loading of plastic beams by a suddenly
applied force, and the determination of the degree of permanent
deformation thereby suffered (see [8], Section 7).
ll rights reserved.
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The analogous theory for viscous sheets and threads was pre-
sented only much more recently, and catalyzed in part by the anal-
ogy between Stokes flow and elasticity (e.g. [14,4,11,15]). In this
context, flow problems much like the bending of extruded tooth-
paste have been considered. Notable examples include the sagging
and extrusion of viscous beams ([11]; the analogues of Galileo’s
cantilever and the ‘‘reverse spaghetti problem’’), the falling viscous
catenary [15,6], the folding of viscous sheets [9,12], and the coiling
of syrup [13].

Our goal in the current work is to provide the equivalent of
these solid and fluid mechanical theories for a slender viscoplastic
sheet or thread. In Section 2, we begin the mathematical discus-
sion by formulating a theory for a two-dimensional sheet of Her-
schel–Bulkley fluid with relatively small curvature. We then
apply this theory to the problem of the viscoplastic catenary –
our version of the solid mechanical problem posed by Bernoulli
centuries ago. The viscous version of this problem was studied in
[15], and a related study with a visco–elasto-plastic rheology
was recently carried out in [5]. In Section 3, we continue on to ex-
plore larger deflections of the sheet, focussing on the Bingham
fluid. The order-one curvature theory is then applied to study
the sagging of a viscoplastic beam with a free end, with the beam
either emplaced horizontally to begin with (i.e. the viscoplastic
counterpart of Galileo’s problem), or extruded horizontally (as in
Ribe’s model of subducting slabs [12]). Section 4 continues the dis-
cussion by outlining a higher-order formulation that combines the
small and order-one curvature theories, in addition to capturing
the dynamics of sheets undergoing pure extension and no bending.
That theory is then applied to the analogue of the Euler buckling
problem, the failure and collapse of a viscoplastic column extruded
almost vertically. In the appendix we present a complementary
discussion of axisymmetric viscoplastic threads, and recover an
essentially equivalent theory. Thus, most of our results apply
equally to threads as well as sheets.

http://dx.doi.org/10.1016/j.jnnfm.2012.05.007
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http://www.sciencedirect.com/science/journal/03770257
http://http://www.elsevier.com/locate/jnnfm


Fig. 1. Top row: a horizontal extrusion of ‘‘Sensodyne Whitening’’ toothpaste. The photographs are four seconds apart. Lower left: an extrusion of ‘‘Neosporin’’ (images are 2,
2 and 3 seconds apart). Lower right: extruding the Sensodyne toothpaste vertically, with images 1 and 0:5 seconds apart.

N.J. Balmforth, I.J. Hewitt / Journal of Non-Newtonian Fluid Mechanics 193 (2013) 28–42 29
2. Viscoplastic sheets and the drooping catenary

2.1. Dimensional formulation

Consider a thin sheet of a viscoplastic fluid described by the
Herschel–Bulkley constitutive model, deforming due to surface
tension and the body force of gravity. The geometry is sketched
in Fig. 2. In this section, the sheet undergoes small deflections of
order its thickness and, as in classical beam theory, it is convenient
to use the Cartesian coordinate system ðx; zÞ orientated with the
horizontal. The velocity field in these coordinates is ðu;wÞ, pressure
is p, and the components of the total and deviatoric stress tensors
are denoted rij � sij � pdij and sij, respectively.

The governing equations are conservation of mass and
momentum,
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@z
¼ 0; ð1Þ
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where q is the fluid density, t is time, and g is gravity. The constitu-
tive model may be written in the form

sij ¼ K _cn�1 þ sY

_c

� �
_cij if s > sY ; ð4Þ

and _cij ¼ 0 otherwise, where

_cxx ¼ � _czz ¼ 2
@u
@x
; _cxz ¼

@u
@z
þ @w
@x

; ð5Þ
Fig. 2. A sketch of the geometry. The sheet is described by the Cartesian coordinates
ðx; zÞ in Section 2, and by the curvilinear coordinates ðs;nÞ in Section 3.
and the second invariants are s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

xx þ s2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
.

Here K; n and sY are rheological parameters, the latter being the
yield stress.

The upper and lower surfaces of the fluid are located at
z ¼ Z�ðx; tÞ ¼ Z � 1

2 H sec h, where z ¼ Zðx; tÞ denotes the midline,
Hðx; tÞ is the thickness, and hðx; tÞ is the angle the midline makes
with the horizontal (see Fig. 2). The kinematic conditions are

@Z�
@t
þ uðx; Z�; tÞ

@Z�
@x
¼ wðx; Z�; tÞ: ð6Þ

The internal stresses generate forces on these surfaces,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@Z�=@xÞ2

q rxz � rxx@Z�=@x
rzz � rxz@Z�=@x

� �
; ð7Þ

which are countered by the interfacial forces,

� c@2Z�=@x2

½1þ ð@Z�=@xÞ2�2
�@Z�=@x

1

� �
; ð8Þ

where c is the surface tension.
Depending upon the specific problem under consideration, the

ends of the sheet may have prescribed stresses, displacement or
velocity; we defer prescription of these end conditions, as well as
the initial state of the sheet, until later when we consider explicit
examples.

2.2. Scaling

The slenderness of the sheet implies that � ¼ H=L� 1, where H

is a typical thickness of the undeformed sheet and L is a character-
istic horizontal scale. We use these two scales to non-dimensional-
ize lengths, and introduce a characteristic vertical speed scale, U ,
and extensional stress, S, to remove dimensions from the velocity
field, time and stresses:

x ¼ Lx̂; ðz; Z; Z�;HÞ ¼ Hðẑ; bZ ; bZ�; bHÞ; ð9Þ
ðu;wÞ ¼ Uð�û; ŵÞ; t ¼ U�1Ht̂; ð10Þ
ðp;rxx;rxz;rzzÞ ¼ Sðp̂; r̂xx; �r̂xz; �2r̂zzÞ; ð11Þ
ðsxx; sxz; szzÞ ¼ Sðŝxx; �ŝxz; ŝzzÞ; ð12Þ

so that the dimensionless variables are distinguished by their hats.
The rate-dependent part of the constitutive law motivates choosing
the stress scale to be
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S ¼ K
�U
L

� �n

: ð13Þ

The specific scaling of the various velocity and stress components is
guided by the analogous theory for a Newtonian sheet [3,4,11].

With these choices, the continuity Eq. (1) becomes

@û
@x̂
þ 1
�2

@ŵ
@ẑ
¼ 0; ð14Þ

in view of which we set

ŵ ¼ cW ðx; tÞ þ Oð�2Þ: ð15Þ

On discarding the hat decoration and retaining only the leading or-
der terms, the momentum equations take the dimensionless form,

0 ¼ @rxx
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þ @rxz
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; ð16Þ

Re
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and the constitutive law reduces to

sxx ¼ 2 _cn�1 @u
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þ Bsgn
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; _c ¼ 2
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���� ����; ð18Þ

for jsxxj > B, and j@u=@xj ¼ 0 otherwise. The dimensionless parame-
ters are

Re ¼ qL2U2

H2S
; G ¼ qgH

�2S
and B ¼ sY

K
L

�U

� �n

; ð19Þ

representing measures of inertia, gravity and yield stress. Below, we
will be primarily interested in situations in which the Reynolds
number, Re, is not important, and focus chiefly on studying the ef-
fect of varying the gravity parameter, G, and Bingham number, B.

The smaller scaling of rxz ¼ sxz in (4) and (5) implies that

@u
@z
þ @W
@x
¼ 0: ð20Þ

Moreover, because rzz is also scaled to be small, szz � p ¼ Oð�2Þ,
indicating

p ¼ szz ¼ �sxx and rxx ¼ 2sxx: ð21Þ

Finally, the boundary conditions become

@Zþ
@t
¼ @Z�

@t
¼W; ð22Þ

rxz � rxx
@Z�
@x
¼ 0; ð23Þ

rzz � rxz
@Z�
@x
¼ �C

@2Z�
@x2 ; ð24Þ

where

C ¼ c
�LS

: ð25Þ

Thus, in view of our scalings,

Z� ¼ Z � 1
2

H; ð26Þ

and H is fixed in time (and given by the initial state).

2.3. Reduction

We now integrate (16) and (17) in z and use (23) and (24):

@R
@x
¼ 0; ð27Þ

and

ReH
@W
@t
¼ @Q
@x
þ 2C

@2Z
@x2 � GH; ð28Þ
where R and Q are the stress resultants,
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Z Zþ1
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2H

rxx dz and Q ¼
Z Zþ1
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rxz dz: ð29Þ

After multiplying (16) by ðz� ZÞ, a similar integral furnishes

@M
@x
þ R

@Z
@x
¼ Q ; ð30Þ

where the effective moment is

M ¼
Z Zþ1

2H

Z�1
2H
ðz� ZÞrxx dz: ð31Þ

Consequently, eliminating Q,

ReH
@W
@t
¼ @

2M
@x2 þ ðRþ 2CÞ @

2Z
@x2 � GH: ð32Þ

Aside from some guidance in the choice of asymptotic scalings,
the constitutive law has not yet played any role. However, rxx must
still be connected to the leading-order vertical velocity W. Condi-
tion (20) assists in part:

u � Uðx; tÞ � ðz� ZÞ @W
@x

; ð33Þ

where Uðx; tÞ is the horizontal midline velocity. That is,

@u
@x
¼ D� ðz� ZÞWxx; ð34Þ

where

D ¼ Ux þ ZxWx ð35Þ

and subscripts on U; W and Z denote partial derivatives. To proceed
further, we must first decide where the fluid is yielded and where it
is rigid. The fluid is locally unyielded if there is a range of z with
@u=@x ¼ 0. From (34), we observe that this demands both D ¼ 0
and Wxx ¼ 0. But then @u=@x ¼ 0 across the entire sheet in this par-
ticular cross-section, so for a given horizontal position, the sheet
must be either fully yielded or rigid across its thickness. For the
yielded sections, (18), (21) and (34) give

rxx ¼ 2 j _cxxjn þ B
� �

sgnð _cxxÞ; ð36Þ

with

_cxx ¼ 2D� 2ðz� ZÞWxx; ð37Þ

We may now construct the resultant stress and moment: if the
sheet is yielded,

R ¼ HnjWxxjn�1Wxx

nþ 1
ðj1þ �Njnþ1 � j1� �Njnþ1Þ þ 2BHNsgnðDÞ ð38Þ

and

M¼�Hnþ2jWxxjn�1Wxx

2ðnþ1Þðnþ2Þ ð1þn� �NÞj1þ �Njnþ1þð1þnþ �NÞj1� �Njnþ1
h i

�1
2

BH2sgnðWxxÞð1�N2Þ;

ð39Þ

where

�Nðx; tÞ ¼ 2D
HWxx

; Nðx; tÞ ¼Min 1; j�Nj
� �

: ð40Þ

Such a state requires jRj > 2BHN and jMj > 1
2 BH2ð1� N2Þ. On the

other hand, if jRj < 2BHN and jMj < 1
2 BH2ð1� N2Þ, the fluid is rigid

and D ¼Wxx ¼ 0. The variable N represents the ratio of deformation
in extension to that in bending, and exerts an important control on
the integral contribution of the yield stress in (38) and (39).
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Note that, as in the theory of perfectly plastic beams [10], the
extensional stress in (36) is discontinuous across the ‘‘neutral
curve’’, z� Z ¼ D=Wxx. Such curves of discontinuity are a feature
of ideal plasticity theory; fewer analogous results appear in the lit-
erature regarding the Herschel–Bulkley fluid, for which the regu-
larity of the velocity field demanded by the viscous part of the
stress tensor might further smooth the solution. If that were the
case, the stress jump across z� Z ¼ D=Wxx must be smoothed by
a boundary layer, the details of which lie hidden at higher asymp-
totic orders. Although we ignore further discussion of this awk-
ward point here, it is essential to point out that the stress jump
in (36) divorces our model from that proposed in [5]. In that study,
the stress field is assumed smooth and linear in z at the outset. The
current analysis would suggest that this assumption is inconsistent
with the Herschel–Bulkley constitutive model (which neglects
elastic deformations, but which are included in [5]), given the lead-
ing-order form of the velocity field.

2.4. The Bingham catenary

We now discard surface tension (C = 0) and focus on a uni-
formly thick sheet (H = 1) of Bingham fluid (n = 1). The model de-
rived above is then summarized as

Zt ¼W;
@R
@x
¼ 0;

@2M
@x2 þ RZxx ¼ Gþ ReWt; ð41Þ

where

M ¼ �1
3

Wxx �
1
2

Bð1� N2ÞsgnðWxxÞ; ð42Þ

R ¼ 4Dþ 2BNsgnðDÞ; ð43Þ

and

D ¼ Ux þ ZxWx; N ¼Min 1;
2D
Wxx

���� ����� �
; ð44Þ

apply where the sheet is yielded. If the fluid is rigid, Wxx ¼ D ¼ 0
and R and M are determined by (41), continuity, and the boundary
conditions.

For the catenary, both ends of the sheet are fixed. These ends
can be placed at x ¼ �1, given the freedom of the horizontal
lengthscale L in our non-dimensionalization. We then impose
Wð�1; tÞ ¼Wxð�1; tÞ ¼ Uð�1; tÞ ¼ 0. Similarly, we can exploit the
freedom of the velocity scale U to set the parameter G to unity.
We make this choice in all the calculations presented below,
although we avoid explicitly putting G ¼ 1 in the formulae since
the effect of gravity is then made more transparent and because
G remains a parameter in later sections where U is selected
differently.

2.4.1. Small times
To begin, we ignore inertia, in which case two integrals of the

second relation in (41) furnish

M ¼ � þ 1
2

Gx2 � RZ ð45Þ

(in view of the symmetry of the catenary about x ¼ 0), where � is a
constant of integration. For small times, Z is small, being OðtÞ. It is
also not difficult to establish that R must also be of this order in this
limit. Thus, (45) reduces to M � � þ 1

2 Gx2, and in any yielded sec-
tions we have

M � �1
3

Wxx �
1
2

BsgnðWxxÞ: ð46Þ

During the initial fall, the centre of the catenary is expected to at-
tain the largest negative vertical velocity, whereas W ¼Wx ¼ 0 at
the fixed ends, reflecting local maxima in W. Thus, Wxx must vanish
somewhere between the centre and ends. As described in the previ-
ous subsection, such inflexions may herald the appearance of rigid
plugs. It is therefore plausible to suppose that yielded zones appear
over the central section of the catenary and at its edges, and allow
for intervening rigid plugs.

Defining

xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2� þ BÞ

G

r
and xb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB� 2� Þ

G

r
: ð47Þ

Eq. (46) gives

Wxx �
3
4

G�
ðx2

a � x2Þ; jxj < xa

ðx2
b � x2Þ; xb < jxj < 1;

(
ð48Þ

over the two yielded regions. The intervening plugs occupy
xa < jxj < xb, where the sheet profile is linear in x. Thus, after match-
ing W and Wx at the yield points, x ¼ �xa and �xb,

W �
W0 � 1

8 Gx2ðx2 � 6x2
aÞ; jxj < xa

W0 þ 1
8 Gx3

að8jxj � 3xaÞ; xa < jxj < xb

1
8 Gð6x2

b � 2jxj � x2 � 3Þð1� jxjÞ2; xb < jxj < 1;

8>><>>: ð49Þ

with

W0 ¼ �
1
8

G 8ð1� xbÞ3 � 5ð1� xbÞ4 þ 8x3
axb � 3x4

a

h i
ð50Þ

and

x3
a ¼

1
2
ð1� xbÞ2ð2þ xbÞ: ð51Þ

Note that W ! 0; � ! � 1
2 B, and ðxa; xbÞ ! ð0;1Þ for B! 1

2 G.
That is, the catenary becomes rigid throughout, so unless B < 1

2 G
the fluid does not deform at all (a criterion also derived in [5]).
Also, the rigid plugs disappear if xa ¼ xb. This corresponds to the
Newtonian solution with B = 0 and W ¼ �Gð1� x2Þ2=8. In other
words, when B is decreased through 1

2 G, the catenary yields over
narrow sections at the edges and centre; if B is lowered further
to the Newtonian limit, the yielded zones expand and eventually
merge together.

2.4.2. Later times
As the catenary falls with the fixed velocity structure in (49), Z

grows linearly with time. Thus, for times of order unity, we can no
longer neglect the term RZ in (45). We resort to numerical compu-
tations to determine the later-time evolution. For the task, we con-
sider initial-value problems beginning with the initial conditions,
Zðx;0Þ ¼ 0; Uðx;0Þ ¼ 0 and Wðx;0Þ given by (49).

To expedite the computations, we further introduce a number
of modifications to the system defined by (41)–(44). First, we re-
tain the inertial term in the third equation in (41) in order to pre-
serve the form of that evolution equation. Moreover, we include an
analogous term in the second of these equations: �2ReUt ¼ Rx. This
addition is not asymptotic, as it brings in only a single selection of
the terms that arise at higher order of the expansion, but it modi-
fies the equation so that it can also be time stepped. Provided �2Re
and Re are sufficiently small, the system evolves such that R is
practically independent of position and the vertical inertia is neg-
ligible (values less than about unity are found to be sufficient).
Thus, we first modify the equations such that they constitute an
initial-value problem for the dependent variables, Zðx; tÞ; Wðx; tÞ
and Uðx; tÞ.

Despite this reformulation, the transparency of the initial-value
problem remains obscured by the yield condition and the need to
apply different formulae over any rigid sections. Our second mod-
ification avoids this complication by regularizing the step functions
in the definitions of M and R. Specifically, we replace sgnðWxxÞ and



Fig. 4. Further details of the three computations of Fig. 3. In (a), RðtÞ is plotted
against t1=2. Panels (b)–(d) show the locations of the plugs (as given by the regions
where jMj < 1

2 Bð1� N2Þ). The dashed horizontal lines for t1=2 < 3 indicate x ¼ �xa

and�xb from (47) and (51). In (b), for the larger times, the grey lines track the loci of
the positions where M switches sign.
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sgnðDÞ by tanhðf=kÞ, where f ¼Wxx or D, and k is a regularization
parameter. This allows us to apply the constitutive law everywhere
and avoid explicit consideration of the yield conditions, though at
the expense of replacing the plugs with weakly yielded zones. We
make k as small as the computations will allow for given settings of
B; Re and �, and further decrease its size in time in order to avoid
the regularization playing too significant a role in the evolution
over long times when the catenary is settling into its final state
(typical values of k are 10�4 at the outset of the computation,
and 10�5 by the end).

With these modifications, the two equations representing force
balance are turned into standard partial differential evolution
equations. We then evaluate spatial derivatives using Chebyshev
collocation [16] and the resulting ordinary differential equations
are integrated using a standard stiff time integrator (MATLAB’s
ODE15s), exploiting symmetry to compute only half of the cate-
nary ð0 6 x 6 1Þ. Unfortunately, the code does not perform well
with a fine spatial grid, and to allow for long time integrations,
we were limited to resolutions of the order of 100 collocation
points.

Sample solutions are shown in Figs. 3–5. The first of these fig-
ures displays snapshots of the deflection of the midline (i.e.
Zðx; tÞ) for three representative values of B. The second figure dis-
plays the corresponding time series of RðtÞ, together with the loca-
tions of the rigid sections of the catenaries (i.e. the plugs, where
jMj < 1

2 Bð1� N2Þ, shown shaded on a space–time diagram). The fi-
nal figure displays snapshots of W; U and M.

For low values of yield stress (illustrated by the computation
with B ¼ 0:1 in Figs. 3 and 4), the catenary falls significantly and
remains roughly parabolic, except near the ends. The stress resul-
tant, RðtÞ, first climbs to a maximum before falling into a slow de-
cline. Initially, two slender plugs are present, with borders
predicted by the locations, x ¼ xa and xb, determined earlier. Some-
what later, however, these plugs shrink around two particular
zero-crossings of M, which migrate towards the edges of the
thread. At later times, further zero-crossings appear in more cen-
tral areas, creating a complicated spatio-temporal pattern. As indi-
cated in Fig. 5a, although M passes through zero, its magnitude
does not apparently fall below 1

2 Bð1� N2Þ. Hence, for the lowest
yield stresses, no localized plugs appear to survive the fall of the
catenary.

For moderate yield stress (B = 0.2) the remnants of the two
plugs present in the initial state play a more significant role,
although they also thin slightly and migrate edgewards during
the catenary’s fall. In addition, a new plug region forms in the cen-
tral section of the catenary for later times. Because both the older
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Fig. 3. Snapshots of falling catenaries for (a) B ¼ 0:1, (b) B ¼ 0:2 and (c) B ¼ 0:4. The
snapshots are shown for times of t ¼ 375

ffiffiffiffiffiffiffiffiffiffi
j=10

p
, j ¼ 1;2; . . . ;10.
plugs and the new one invade regions that were previously
yielded, the catenary profile does not remain straight over these ri-
gid sections. Instead, the sheet adopts a more complicated shape.

For the highest yield stress (B = 0.4), the two initial plugs re-
main intact and largely fixed in their original locations. The associ-
ated straight rigid sections of the catenary thereby persist
throughout the evolution, and the fall is mediated by the yielded
layers at the sheet’s centre and edges. The shape consequently
develops a distinctive triangular form with ‘‘plastic hinges’’ over
those thin regions, much as noted in the dynamic loading of per-
fectly plastic beams ([8], chapter 7).

An important feature of the numerical solutions is that they
suggest that the viscoplastic catenary does not fall indefinitely, un-
like its viscous relative [15]. This is emphasized further in Fig. 6,
which shows R and the greatest vertical extension of the catenary
(i.e. jZð0; tÞj) as functions of time, for a wide range of yield stresses.
In all the cases except those with small B, the vertical extension ap-
pears to slow and approach a constant value over large times.
Continuing the integrations at small B yet further indicates that
even these computations appear to converge towards steady
states. Estimates of the final R and the distance that the catenary
falls are included in Fig. 6.

Unfortunately, our numerical integrations are not particularly
reliable over long times owing to the limitations of the numerical
scheme and the regularization implicit in the code. Thus, it is diffi-
cult to be completely secure in the conclusion that the yield stress
can halt the fall of the catenary, relying solely on these results. In-
stead, we now offer two asymptotic solutions that back up the con-
clusion. For yield stresses corresponding to order one Bingham
numbers, Kamrin and Mahadevan [5] also arrive at this result,
using their version of the slender-beam theory and a finite-
element simulation of a two-dimensional elasto-plastic model.
For B ¼ Oð�Þ, these authors show that the yield stress no longer
arrests the fall of the catenary; in this regime, curvatures grow to
order-one values, invalidating the theory of this section.



Fig. 5. More details of the three computations of Figs. 3 and 4. Panels (a)–(c) refer to the three values of B, with each panel showing snapshots at t ¼ 187 of W (solid) and U
(dashed) in the upper plots, and M (solid) and � 1

2 Bð1� N2ÞsgnðWxxÞ (dashed) in the lower plots. The shaded regions in (b)–(c) are the plugs; the vertical lines in (a) indicate
the zero-crossings of M.
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Fig. 6. Time series of (a) RðtÞ and (b) jZð0:tÞj, for B ¼ 0:04;0:08; . . . ;0:44, with the
trend of increasing yield stress indicated by the arrows. The dotted lines show the
viscous case (B ¼ 0). The insets show jRðtÞj and jZð0; tÞj at the final time, t ¼ tf , of
the computations (lasting longer than shown for the lower values of B); the dashed
lines show the predictions from the separable solution in (52) and (57) and the
dotted lines that in (67), (72) and (73).
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2.4.3. Separable, low-yield-stress solutions
When there are no plugs within the catenary (which likely

arises when B is small), we can search for a separable solution suit-
able once the vertical velocity W has declined sufficiently that the
bending term M drops out of the main balance of forces. Then,
RZ � � þ 1

2 Gx2, or

Z � � G
2R
ð1� x2Þ ð52Þ

given that Zð�1; tÞ ¼ 0 (and that slender boundary layers exist at
the ends over which the bending term returns to adjust the solution
so that Wxð�1; tÞ ¼ 0). Hence,

W � G _R

2R2 ð1� x2Þ; Wxx � �
G _R

R2 ð53Þ

and

D � Ux � 4x2 G2 _R

R3 : ð54Þ

Because Wxx is independent of x, it follows from (43) that D must
also be independent of x, implying

U � � xG2 _R

3R3 ð1� x2Þ: ð55Þ

Hence

R � �4G2 _R

3R3 � 2Bsgnð _RÞMin 1;
2G
3R

� �
: ð56Þ

Regardless of the choice in Minð1;2G=3RÞ, we find that _R < 0, and
so (56) can be re-arranged into
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_R � � R2

4G2 �
ð3R2 � 4BGÞ; 2G < 3R;

3RðR� 2BÞ; 2G > 3R:

(
ð57Þ

It follows that, for a finite yield stress, RðtÞ converges to the limiting
value, R1 ¼Minð2B;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4BG=3

p
Þ. Conversely, for B ¼ 0; R 	 t�1=3, as

noted previously by Teichman and Mahadevan [15]. In other words,
the yield stress arrests the fall of the catenary, as suggested by the
numerical results.

Note that the numerical solutions presented earlier indicate
that persistent plugs impede the convergence to a separable solu-
tion of this kind for B J 0:15 with G = 1. Thus, the second limit,
R!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4BG=3

p
, which occurs for B > G=3, is not relevant. A compar-

ison of the separable solution with numerical computations at low
B is presented in Fig. 7. The predictions for the final stress resultant
(R1 ¼ 2B) and furthest fall (jZð0;1Þj ¼ G=4B) are also included in
Fig. 6.

2.4.4. Catenaries featuring an undeformed pair of plugs
The numerical solutions suggest that when B is not far from its

critical value (0:36 K B < 1
2 ;G ¼ 1), the paired plugs present in the

initial condition remain largely intact throughout the evolution.
These undeformed plugs border the yielded central section of the
catenary, and are in turn buffered from the ends by two yielded
boundary layers that become increasingly thin as time progresses
(see Figs. 4c and 5c). Furthermore, we observe that the catenary
approaches its final shape with U and W decreasing algebraically
with time, ðU;WÞ 	 t�2 (see Fig. 8), and N < 1. In this situation,
we can again construct the final state analytically.

To describe the long-time dynamics, we set

Z ¼ Z0ðxÞ þ t�1Z1ðxÞ þ 
 
 
 ; ð58Þ
W ¼ t�2W2ðxÞ þ 
 
 
 ; U ¼ t�2U2ðxÞ þ 
 
 
 ; ð59Þ
R ¼ R0 þ t�1R1 þ 
 
 
 ; M ¼ M0ðxÞ þ t�1M1ðxÞ þ 
 
 
 ; ð60Þ

and

N ¼ N0ðxÞ þ t�1N1ðxÞ þ 
 
 
 ; ð61Þ
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Fig. 7. Initial-value problems for small B. Panel (a) shows snapshots of Zðx; tÞ with
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ffiffiffiffiffiffiffi
j=6

p
, j ¼ 1;2; . . . ;6. The dotted curve shows

the separable solution in (52) with R ¼ 2B. (b) shows R as a function of t for
computations with the values of B indicated. The dotted lines are determined from
integrating (57), assuming that Rð0Þ ¼ 0:4.
with W2 ¼ �Z1. The inertialess force balance remains as in (45),
with � ¼ � 0 þ t�1� 1 þ 
 
 


Within the yielded central section, the constitutive laws in (42)
and (43) demand that

R0 ¼ 2BN0; M0 ¼ �
1
2

B 1� N2
0

� �
; ð62Þ

given that N0 < 1 and Wxx > 0 here. The following order of t�1 fur-
ther indicates that R1 / N1. Hence, both N0 and N1 are independent
of position, which also indicates that M0 and M1 are likewise con-
stant. Eq. (41) then implies that

Z0 ¼ Z0ð0Þ þ
Gx2

2R0
and Z1x ¼ �

xGR1

R2
0

: ð63Þ

If the plugs are largely undeformed, then Z and W must be linear
functions of position there. Moreover, in the late-time limit, when
the boundary layers at the edges are sufficiently thin, Z0 ! 0 for
jxj ! 1. Thus, on demanding that Z0; M0 and their first derivatives
match with the solution for the yielded midsection, we find

Z0 ¼
Gðx2

a � 2xa þ x2Þ=2R0;

Gxaðjxj � 1Þ=R0;

jxj < xa and xa < jxj < 1;

8><>: ð64Þ

M0 ¼
� 1

2 B 1� N2
0

� �
;

� 1
2 B 1� N2

0

� �
þ 1

2 Gðjxj � xaÞ2;
jxj < xa and xa < jxj < 1;

8><>: ð65Þ

As the plug solution limits to the boundary layers at the edge, on the
other hand, M0 ! þ 1

2 B 1� N2
0

� �
, in view of the reversal of the sign of

Wxx. Hence,

xa ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B
G

1� N2
0

� �r
: ð66Þ

Note that the furthest fall of the catenary is therefore given by

jZ0ð0Þj ¼
Gxað2� xaÞ

2R0
: ð67Þ

To determine R0 (or N0), we need to study U2: over the central
yielded section, from (44) and (62), we have

U2x ¼ Z0xZ1x �
1
2

N0Z1xx !
GR1N0

2R2
0

� x2G2R1

R3
0

: ð68Þ

But over the plugs, where D ¼ 0 and matching requires

W2x ¼ �Z1x ¼
xaGR1

R2
0

; ð69Þ

we find

U2x ¼ �
x2

aG2R1

R3
0

: ð70Þ

These relations can be integrated from x ¼ 0, where U2 ¼ 0, up to
the boundary layers at the edges, where U2 must match onto the
corresponding boundary-layer solution. For the latter, we argue
that, since Zx and Wx must both become small in order to satisfy
the boundary conditions, then Ux 	 �R0Wxx=4B in the boundary
layers (given that Wxx < 0 and R 	 �2BN there). Hence, integrating
over the boundary layer, we find the matching condition,

U2 ¼ �
R0W2x

4B
¼ �GxaR1

4R0B
; for x! �1: ð71Þ

After sorting through the remaining algebraic details, we arrive at
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R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xaBG

3
ð3� 2xaÞ

r
; ð72Þ

which, from (66), further implies

xa ¼
1
2

3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

8B
G
� 1

� �s" #
: ð73Þ

The predictions from (65), (72) and (73) are compared with numerical
results in Figs. 6 and 8. The asymptotic solutions for R0 and jZ0ð0Þj end
at B ¼ G=6 when xa ! 1, corresponding to an intersection with the
curves given by the theory for low B derived earlier. However, a cen-
tral plug forms in the initial-value problems with 0:15 K B K 0:36 and
G = 1, invalidating both theories before they intersect.

Note that it is not possible to perform a complementary analysis
to provide the final state for arbitrary B because of the dynamics of
the plug regions: these regions can migrate, appear or disappear
during the catenary’s evolution. Consequently, the rigid zones are
not necessarily straight, but have a shape dictated by the history
of the falling catenary; without analytical solutions like those in
(64) we cannot connect the solution for the yielded sections to
the boundary layers.

3. Order-one curvature

3.1. Dimensional formulation

We next consider a thin sheet that is bent sufficiently that cur-
vatures become order one. As sketched in Fig. 2, the sheet is now
described by a coordinate system, ðs;nÞ, based on arc-length s
and the normal coordinate n. With respect to the Cartesian coordi-
nates of Section 2, a point on the midline is described by the vector
rcðs; tÞ, and the local curvilinear coordinate axes make an angle
hðs; tÞ with the horizontal. Adjusting the notation from Section 2,
we now define u ¼ ðu;wÞ as the velocity in the curvilinear coordi-
nate system (with respect to the ðs;nÞ axes). Similarly, the stress
tensors, sij and rij, are also now referred to this system. To ease
the construction of the model, we ignore both inertia and surface
tension, and adopt the Bingham model.

In the curvilinear coordinate system, conservation of mass and
force balance can be expressed in the form [3,11]

@u
@s
þ h

@w
@n
� jw ¼ 0; ð74Þ

@rss

@s
þ h

@rsn

@n
� 2jrsn ¼ qgh sin h; ð75Þ

@rsn

@s
þ h

@rnn

@n
þ jðrss � rnnÞ ¼ qgh cos h; ð76Þ

where
j � @h
@s

and h � 1� jn; ð77Þ

denote the curvature and metric coefficient.
The upper and lower surfaces of the sheet are located at

n ¼ � 1
2 Hðs; tÞ. Here, force balance and the kinematic conditions de-

mand that

hrsn �
1
2
rss

@H
@s
¼ hrnn �

1
2
rsn

@H
@s
¼ 0; ð78Þ

and

w ¼ wc �
1
2
@H
@t
þ 1

h
u� uc �

1
2

H
@h
@t

� �
@H
@s

� 	
; ð79Þ

where uc ¼ ðuc;wcÞ denotes the velocity of the centreline of the
sheet. The expression in (79) results from the fact that n ¼ � 1

2 H de-
note material surfaces, and the material derivative relevant for the
current coordinate system is

D
Dt
¼ @

@t
þ 1

h
u� uc þ n

@h
@t

� �
@

@s
þ ðw�wcÞ

@

@n
:

Note that ŝ ¼ @rc=@s � ðcos h; sin hÞ and uc ¼ @rc=@t, and so

@h
@t
¼ @wc

@s
þ juc and

@uc

@s
¼ jwc: ð80Þ
3.2. Scaling and the approximate velocity field

As in the small-curvature theory, we use a characteristic thick-
ness, H, length, L, speed, U , and stress, S, to non-dimensionalize the
variables:

ŝ ¼ s
L
; ðn̂; bHÞ ¼ 1

H
ðn;HÞ; ðû; ŵÞ ¼ 1

U
ðu;wÞ; ð81Þ

with t̂ ¼ L�1Ut, and

ŝij ¼
sij

S
; ðr̂ss; �r̂sn; �r̂nnÞ ¼

1
S
ðrss;rsn;rnnÞ: ð82Þ

This scaling is guided by the form of (75) and (76). Note that the
velocity component, u, and the extensional stress component, rnn,
are now one order larger than in the previous section, as is the time
scale.

With these rescalings, and after dropping the hat decoration,
conservation of mass becomes

�
@u
@s
þ ð1� �jnÞ @w

@n
� �jw ¼ 0: ð83Þ

Moreover, on scaling the rate-of-strain tensor with �U=L, the
dimensionless constitutive law is
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sij ¼ _cij þ B _cij= _c; if s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ss þ s2
sn

q
> B; ð84Þ

and _cij ¼ 0 otherwise, where

_css ¼
2
�
ð@u=@s� jwÞ
ð1� �jnÞ ; _cnn ¼

2
�
@w
@n

;

_csn ¼
1
�
ð@w=@sþ juÞ
ð1� �jnÞ þ

1
�2

@u
@n

: ð85Þ

In view of the scaling of the total stress components in (82),
which imply that the dimensionless pressure is
p ¼ � 1

2 ðrss þ �rnnÞ, the deviatoric stresses are given to leading or-
der by

sss ¼ rss þ p ¼ 1
2
rss; ssn ¼ �rsn; snn ¼ �sss: ð86Þ

Thus, sss and snn are order one, but ssn must be order �. In turn, from
the constitutive law, this demands that ð _css; _cnnÞ 	 Oð1Þ and
_csn 	 Oð�Þ, despite the expressions in (85), which contain additional
factors of ��1. To avoid this inconsistency, we must carefully choose
the leading-order form of the velocity field. From the physical per-
spective, this is equivalent to observing that, in order to preserve
the slender geometry of the sheet, the velocity field must have a
specific dependence on the transverse coordinate n. This depen-
dence is the same as for a Newtonian sheet [11].

More specifically, the conservation of mass equation and the
scalings for the deviatoric stresses can be satisfied if the velocity
field takes the form,

w ¼Wðs; tÞ þ Oð�2Þ; u ¼ Uðs; tÞ � � Ws þ jUð Þnþ Oð�2Þ; ð87Þ

where

Us � jW ¼ Oð�Þ: ð88Þ

If we define

D ¼ ��1 Us � jWð Þ and X ¼ Ws þ jUð Þs ð89Þ

as the stretching and bending rates of the centreline [11], we then
have

_css ¼ 2D� 2Xnþ Oð�Þ; _c ¼ j _cssj þ Oð�2Þ ð90Þ
rss ¼ 4D� 4Xnþ 2Bsgn D�Xnð Þ þ Oð�Þ: ð91Þ
3.3. Reduction

As in the small curvature case, the strain rate _css changes sign at
n ¼ D=X, and we define

N ¼Min 1;
2D
HX

���� ����� �
; ð92Þ

(cf. (44)). The resultant extensional stress and bending moment, in
the case that the fluid is yielded, are then

R ¼
Z 1

2H

�1
2H

rss dn ¼ 4HDþ 2BHNsgnðDÞ þ Oð�Þ; ð93Þ

and

M ¼
Z 1

2H

�1
2H

nrss dn� 1
3

H3X� 1
2

BH2ð1� N2Þsgn Xð Þ þ Oð�Þ: ð94Þ

As in the small curvature theory, we may formulate integral
expressions of force balance by integrating Eqs. (75) and (76) over
n. Similarly, an expression of torque balance follows from integrat-
ing the product of (76) and n. In dimensionless form and ignoring
small terms of Oð�2Þ, the result is
@R
@s
� �jM ¼ �GH sin h; ð95Þ

�
@2M
@s2 þ jR ¼ �GH cos h; ð96Þ

where as before, G ¼ qgH=�2S. When j ¼ Oð�Þ, these relations re-
duce to (27) and (32) at leading order. Now, with j ¼ Oð1Þ, the lead-
ing order form requires R ¼ Oð�Þ. Hence we write

R ¼ �N; ð97Þ

and

@N
@s
� jM ¼ GH sin h; ð98Þ

@2M
@s2 þ jN ¼ GH cos h: ð99Þ

Re-examining (93), the stress condition R ¼ Oð�Þ implies that
N ¼ Oð�Þ and D ¼ Oð�Þ so that the sheet stretches only at Oð�2Þ. As
in the Newtonian case, stretching is less significant than in the
small curvature limit since the large curvature allows the sheet to
deform by bending instead [3,4]. Thus the expression in (94) may
be simplified to

M ¼ �1
3

H3X� 1
2

BH2sgn Xð Þ; if jMj > 1
2

BH2; ð100Þ

otherwise X = 0 and the sheet is rigid. Note that to relate N to the
stretching of the sheet, the full complement of Oð�Þ corrections
must be included in rss and (93). This is not required for our current
purposes; the details are, however, provided in the next section
where they feature in the combined theory summarized there.

Finally, substitution of the velocity field (87) into the kinematic
conditions in (79) and (80) now indicates that wc 	W þ Oð�2Þ and

@H
@t
þ U

@H
@s
¼ Oð�2Þ; ð101Þ

while

@h
@t
þ U

@h
@s
¼ @W

@s
þ jU þ Oð�2Þ: ð102Þ

Here, U ¼ U � uc is the translation speed of the fluid with respect to
the centreline, which is independent of s to Oð�2Þ, and equal to a
prescribed extrusion speed, U ¼ UeðtÞ, if fluid is fed into the sheet
from one end. Eq. (101) indicates that, to leading order, the
sheet thickness again does not change, and we may take H ¼ 1 for
a sheet with uniform initial or extruded thickness.

In summary, the reduced model for the sheet with order one
curvature is given by (98) and (99), with h evolving according to
(102); where fluid is yielded, M is related to X by (100). Provided
the boundary conditions determine the stresses at one end (as in
the free-end problems described below), the resultant stress N is
furnished by integrating (98) without any need to employ the con-
stitutive law to relate this quantity to the stretching rate.

3.4. The viscoplastic version of Galileo’s problem

We now illustrate the order-one curvature theory with two
model problems. In the first, we examine the deflection of an ini-
tially horizontal beam with one end fixed and the other free. This
is the viscoplastic counterpart of the elastic problem posed centu-
ries ago by Galileo.

We locate the fixed end at s = 0 and the free end at s ¼ L. At the
fixed end, we have

Uð0; tÞ ¼Wð0; tÞ ¼Wsð0; tÞ ¼ hð0; tÞ ¼ 0: ð103Þ

The stress-free conditions at the free end, rxz ¼ rxx ¼ 0, imply that

NðL; tÞ ¼ MðL; tÞ ¼ MsðL; tÞ ¼ 0: ð104Þ



1 We ignore how the fluid is extruded, such as from the tube in Fig. 1. In fact, in
order to be pushed through the tube, the fluid may be forced to yield and canno
therefore emerge as a plug. Instead, the fluid adjusts towards the rigid state over a
small exit region, the description of which lies beyond our slender approximation.
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Note that the dimensionless parameters, L and G, can be chosen as
unity, in view of the freedom in the characteristic length, L, and
speed, U .

3.4.1. Small displacements
At small times, h and j are also small, and the bending moment

follows from integrating (99) subject to (104):

M � 1
2

GðL� sÞ2 ð105Þ

(taking H ¼ 1). The constitutive expression (100) for M implies that
the fluid is rigid with 0 ¼ X �Wss if M < 1

2 B. Thus, when

L < Lc �
ffiffiffiffi
B
G

r
: ð106Þ

the moment is not sufficient for the beam to yield anywhere, and so
there is no deflection. If L > Lc , on the other hand, only the section
L� Lc < s < L remains rigid, and the beam bends over the interval
0 < s < L� Lc , such that

1
3

Wss � �sgnðMÞ jMj � 1
2

B
� �

¼ �1
2

G ðL� sÞ2 � L2
c

h i
: ð107Þ

Thus, using the boundary conditions (103),

W � �G
1
8
ðL� sÞ4 � 1

8
L4 � 3

4
L2

c s2 þ 1
2

L3s
� 	

; ð108Þ

for 0 < s < L� Lc , and

W ��G
1
8
ðL4

c �L4Þ�3
4

L2
c ðL

2�L2
c Þ�

1
3

L3
c ðL�LcÞþ L3

c �
3
2

L2
c Lþ1

2
L3

� �
s

� 	
ð109Þ

for L� Lc < s 6 L.
For small deflections, the centreline position is approximately

z ¼ Zðs; tÞ (as in Section 2) with h ¼ Zs, and (102) reduces to the
familiar equation, Zt ¼W . Thus, since W is a prescribed function
of position, the deflection grows linearly with time until the small
displacement approximation becomes invalid.

3.4.2. Large displacements
For later times we resort to numerical solution of the Oð1Þ cur-

vature Eqs. (98)–(102). We discretize (98) and (99) using first-
order finite differences on a uniform grid, incorporating the stress
boundary conditions (104). Having thus calculated Mðs; tÞ, and
hence Xðs; tÞ from (100), Eq. (89) is similarly discretized, incorpo-
rating the boundary conditions (103), to calculate U and W. Eq.
(102) can then be integrated in time to determine hðs; tÞ, from
which we can reconstruct rcðs; tÞ:

rcðs; tÞ ¼
Z s

0
ðcos h; sin hÞds: ð110Þ

Note that this construction does not require us to regularize the
constitutive law, unlike our scheme for the catenary in Section 2.4.

Snapshots of sagging beams for three values of B are shown in
Fig. 9, and compared with the small displacement solution from
(108) and (109). The unyielded sections of the sheet are shown
by grey lines, while the yielded region is shown by a black line.
The low-yield-stress solution with B = 0.01 in the first panel is very
similar to the corresponding Newtonian solution [11], except for a
small solid plug adjacent to the free end. The beam sags more
slowly and the rigid sections are wider for the higher yield stresses.
Importantly, as these beams fall downwards and rotate towards
the vertical, the gravitational moment decreases below that given
by (105). More of the beam then freezes into place, forming bent
rigid sections. Eventually, the beam converges to a steady state
with M < 1

2 B everywhere.
The final shape of the beam is therefore controlled by the time-

dependent expansion of the plugs, preventing us from providing
any analytical solutions for general B. Nevertheless, when B is close
to GL2 an approximate solution can be derived. In this limit, only a
small region close to s = 0 yields and bends; the bulk of the beam
remains rigid and straight, hinging with an angle h ¼ HðtÞ on the
boundary layer at the fixed end (cf. the solution with B = 0.9 and
GL2 ¼ 1 in panel (c) of Fig. 9). For the rigid section, j ¼ 0 and so
(99) gives M ¼ 1

2 GðL� sÞ2 cos H. The fluid therefore yields at
s ¼ L� ðB=G cos HÞ1=2 � L (where jMj ! 1

2 B). As the rigid section
rotates, this yield point moves back to s ¼ 0, whereupon the beam
comes to rest with

H ¼ cos�1ðB=GL2Þ: ð111Þ

This prediction is compared with the numerical solution for B = 0.9
in Fig. 9.

3.5. The extruded beam

Our second example is the viscoplastic analogue of Ribe’s [11]
subducting slabs: the beam is extruded through a fixed end at
s = 0 with a prescribed speed and angle:

Uð0; tÞ ¼ Ue; Wð0; tÞ ¼Wsð0; tÞ ¼ 0; hð0; tÞ ¼ he: ð112Þ

For illustration, we take he ¼ 0, and by choice of velocity scale we
set Ue ¼ 1. Because the fluid undergoes very little extension, the
beam lengthens at the extrusion speed, and so the free end is lo-
cated at

s ¼ LðtÞ ¼ L0 þ Uet; ð113Þ

where L0 is the initial length. Once more, we impose

NðL; tÞ ¼ MðL; tÞ ¼ MsðL; tÞ ¼ 0: ð114Þ
3.5.1. Small displacements
When displacements are small, the solution derived for W in

Section 3.4.1 applies equally to the extruded beam. The only differ-
ence is that L, and hence W, now vary with time, and, because the
extrusion is not necessarily horizontal, we must replace G by
G cos he to account for the inclination of gravity. Eq. (102) becomes

Zt þ UeZs ¼W; ð115Þ

which can be integrated analytically given the solution for W in
Section 3.4.1.

The small-time solution indicates that the extrusion begins
with a rigid plug of length LðtÞ < Lc being pushed out of the fixed
end.1 Once LðtÞ surpasses Lc , the gravitational moment exceeds 1

2 B
at s ¼ 0, creating an expanding yielded zone over which the beam
bends downwards. Again, when the beam droops sufficiently to
effectively reduce the gravitational moment, the small displacement
approximation becomes invalid.

3.5.2. Larger displacements
To compute solutions for larger displacements we use the same

numerical procedure as in Section 3.4.2, except that we employ a
spatial grid that translates with the extrusion speed; new grid
points are continually added to the solution domain at s = 0 to ac-
count for the extrusion of fresh fluid. Sample solutions with differ-
ent yield stress are shown in Figs. 10 and 11. As predicted by the
small-time solution, the fluid yields near the extrusion when the
critical length, Lc ¼

ffiffiffiffiffiffiffiffiffi
B=G

p
, is exceeded. Thereafter, the beam bends

distinctively around on itself, curling underneath the extrusion and
t
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finally collapsing towards the vertical.
Notable features of the solutions are the ‘kinks’ that become fro-

zen into the shape of the beam, particularly near the free end.
These kinks emerge when the gravitational moment, jMj, acting
on previously yielded sections declines below 1

2 B, once those sec-
tions bend and rotate underneath the point of extrusion. This effect
is countered by the continued horizontal extrusion which builds
the moment back up, and by the swinging of the free end to posi-
tions to the left of the extrusion point, which generates negative
moments. The result is a relatively complicated spatio-temporal
pattern of intertwined plugs and yielded regions, as seen in panel
(c) of Fig. 11.

4. A higher-order model

The models presented above are complementary, but different
versions of slender sheet theory for a viscoplastic fluid. In particu-
lar, if one adopts the second model, and then takes the limit that
the curvature becomes small, one only recovers the small-curva-
ture theory if, in that theory, the stretching rate, D, vanishes to
leading order (compare (42) and (100); if D! 0, then N! 0 and
the two formulae coincide). The key point is that the degree of cur-
vature exerts a critical control on the extensional stresses and rate
of stretching within the sheet via the main balance of forces: when
the curvature is relatively small, higher extensional stresses are
permitted in comparison to bending forces, allowing for greater
stretching rates. With order-one curvatures, however, the bending
stresses can only balance much lower extensional stresses, and the
corresponding stretching rates are necessarily smaller. These phys-
ical ingredients are incorporated using different asymptotic sca-
lings in the two models (in the small curvature model,R
rxx dz ¼ R, whereas the order-one curvature theory takesR
rss dn ¼ �N).

To avoid an unsatisfying division of the dynamical behaviour
into two different models we must therefore mix the asymptotic
orderings. In particular, the key is to proceed to higher order in
the order-one curvature theory and retain the next-order terms.
Important milestones of this construction are relegated to Appen-
dix A, as it amounts to a longer-winded version of the derivation of
Section 3. Here, we simply quote the combined, higher-order for-
mulation that results, and apply this theory to the problem of
the Euler buckling of a viscoplastic column.

Without surface tension and inertia, the equations of force bal-
ance remain

@R
@s
� �jM ¼ �GH sin h; ð116Þ

�
@2M
@s2 þ jR ¼ �GH cos h: ð117Þ

The sheet thickness and inclination evolve according to



−1 0 1 2
−9

−8

−7

−6

−5

−4

−3

−2

−1

0 1

1.7

2

3.5

4.5

9

x

z

(a)

−0.5
0

−0.5
0

t = 1     (b)

0 1

−1
0
1
2 t = 1.7

0 1

t = 2

0 1.5

M
 a

nd
 N

/3 t = 3.5

0 3

−1
0
1
2 t = 4.5

0 4

s

t = 9

0 9

−1
0
1
2

s

  (c)

0

5

10

0 2 4 6 8 10
−π

−π/2

0

t

θ

  (d)

Fig. 11. (a) Snapshots at the times indicated of the extruded beam with B = 1; black and grey shading distinguishes the yielded sections and plugs, respectively, and the
dotted line shows the path taken by the free end. The upper plots compare the solution at the first two times with the small-displacement solution of Section (3.5.1) (dashed
line, with the yield point indicated by the cross; the right-most dotted lines also correspond to this small-displacement solution). (b) Bending moment M (solid) and scaled
extensional stress N=3 (dashed), as functions of arc length s, for the times shown in (a). The plugs (with jMj < 1

2 B) are shown shaded. (c) Space–time diagram of the evolution
of the plugs (shaded). (d) Time series of the angle at the free end, with the dashed line showing the equivalent Newtonian solution. The vertical dotted lines in (c) and (d)
indicates the times of the snapshots shown in (a) and (b). Ue ¼ G ¼ 1; he ¼ 0 and L0 ¼ 0:1.

N.J. Balmforth, I.J. Hewitt / Journal of Non-Newtonian Fluid Mechanics 193 (2013) 28–42 39
@H
@t
þ @

@s
ðHUÞ ¼ 0;

@U
@s
¼ @U
@s
� jW ; ð118Þ

@h
@t
þ U

@h
@s
¼ @W

@s
þ jU: ð119Þ

Where the fluid is yielded, the constitutive law demands

R ¼ 4HDþ 2BHNsgnðDÞ � 5
6
�jH3X� 1

2
�jBH2ð1� N2ÞsgnðXÞ; ð120Þ

M ¼ �1
3

H3X� 1
2

BH2ð1� N2ÞsgnðXÞ: ð121Þ

Here, as in Section 3,

D ¼ Us � jW
�

; X ¼ ðWs þ jUÞs; N ¼Min 1;
2D
HX

���� ����� �
:

Alternatively, if the fluid is rigid, D ¼ X ¼ 0.

4.1. Yield conditions

Fluid first yields when the extensional stress and moment ex-
ceed a threshold determined by the constitutive relations in
(120) and (121). Those relations may be re-organized into the
inequalities,
R� �jM þ 1
2

H2X
���� ����P 2BHN ð122Þ

and

jMjP 1
2

BH2ð1� N2Þ: ð123Þ

Hence, the fluid cannot flow if

jMj < 1
2 Max BH2 � 1

4B jR� �jM þ 1
2 H2Xj2;0


 �
! 1

2 Max BH2 � 1
4B jR� �jMj2;0


 � ð124Þ

since X ¼ 0 where the fluid is rigid. The failure of (124) corresponds
to a yield condition on the moment and extensional stress, given
force and torque balance (which determine R and M) and the geom-
etry (i.e. � and j).

Fig. 12 sketches the location of the yield condition on the
jR� �jMj; jMjð Þ-plane. The condition corresponds to a locus

parameterized by N that is the union of a parabola (for N < 1)
and a piece of the jR� �jMj-axis (with N ¼ 1). Below this locus,
in the shaded region, the fluid sheet is rigid. Thus, if one envisions
a situation in which the stress on the sheet is slowly ramped up
from zero, force and torque balance on each section of the rigid
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sheet dictate R and M, and identify a particular pathway taken
upon the ðjR� �jMj; jMjÞ-plane. When this path intersects the
yield condition (as illustrated by the dashed curve and star in
Fig. 12), the fluid yields, with a certain choice for N then prescribed
(and which determines the location of the neutral curve where rss

switches sign within the sheet).
Yielding through pure bending with no extensional stress corre-

sponds to following a straight path from the origin inclined at an
angle tan�1ð�jÞ. This reduces to a vertical path along the jMj-axis
for �j! 0, and recovers the yield criterion jMj > 1

2 BH2 encoun-
tered in Section 3.4.1.

Yielding can, however, also occur without any bending whatso-
ever; this corresponds to a path along the jR� �jMj-axis with
M ¼ 0, and the condition in (124) then reduces to jRj < 2BH. This lat-
ter limit is relevant to an initially upright or vertically extruded
viscoplastic column: the orientation of the sheet (h ¼ p=2) guaran-
tees that M = 0, whereas the force balance furnishes R ¼
��GHðL� sÞ. Hence the column yields at the base (s = 0) when the
length L exceeds the threshold, L� ¼ 2B=�G, corresponding to a mode
of compressive failure. Note that the order-one curvature theory of
Section 3 is unable to account for this failure of the column, and
unphysically predicts that a perfectly vertical beam never yields.

4.2. Euler buckling of a nearly vertical extrusion

We now return to the extrusion problem considered in Sec-
tion 3.5, but focus on the situation that the beam is extruded al-
most vertically, rather than horizontally, creating an upright
column. The boundary conditions remain as in (112)–(114), except
that we now take he � 1

2 p. The full higher-order model in (116)–
(121) can then be solved numerically, using a similar scheme to
that described in Sections 3.4.2 and 3.5.2. A sample solution is
shown in Fig. 13.

In this example, the column is extruded at speed Ue ¼ 1 and has
length L0 ¼ L� � 2B=�G at t ¼ 0. Thus, for t > 0 a small yielded sec-
tion occurs adjacent to the point of extrusion where the compres-
sive stress overwhelms the yield stress. If the extrusion angle is
slightly off vertical, 0 < he � p=2� 1, bending then begins close
to the extrusion, which eventually precipitates a sudden buckling
of the column. During the buckling a large gravitational moment
is generated, forcing almost the whole column to yield. Much of
the fluid becomes rigid again once the column falls underneath
the point of extrusion and hangs vertically downwards. Thereafter,
the extensional stress remains sufficient to maintain a yielded sec-
tion underneath the extrusion point, over which fluid continues to
elongate and thin for longer times.

Initially, the yielded section remains small and the column
effectively hinges about that boundary layer. The dynamics are
controlled by the hinge in this phase of evolution, and we may
build an asymptotic solution exploiting our small parameter �:
we first observe that the bulk of the column rotates as a rigid shaft
with angle hðs; tÞ ¼ HðtÞ. The force and torque balance in (116) and
(117) then indicate that

R ¼ ��G½L� þ t � s� sin H ð125Þ

and

M ¼ �1
2

GðL� þ t � sÞ2 cos H: ð126Þ

To resolve the relatively narrow hinge and its small-time
dynamics we introduce the rescalings

ðs; tÞ ¼ �ðS; TÞ; ðh;HÞ ¼ 1
2
pþ �4½wðS; TÞ;WðTÞ�: ð127Þ

The curvature over this region, j ¼ @h=@s! Oð�3Þ, therefore re-
mains relatively small, and imposing force and torque balance is
equivalent to a reduction of (125) and (126):

R 	 �2Bþ �2GðS� TÞ; M 	 2
G
�2B2W: ð128Þ

By introducing these expressions into the yield condition (124), we
determine the yield point,

S ¼ T þ bW; where b ¼ 4B2

G2 : ð129Þ

For 0 6 S 6 T þ bW, the constitutive relations (120) and (121), then
imply the scalings, U 	 Oð�Þ; W 	 Oð�4Þ, ðD;XÞ 	 Oð�2Þ and
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N 	 1þ Oð�2Þ. Thus, D 	 ��1US and X 	 ��2WSS, and a little more
algebra furnishes
WSS ¼
3
2 �

4GbW; S 6MaxðT � 3bW;0Þ;
3
8 �

4GðT þ bW� SÞ; MaxðT � 3bW; 0Þ 6 S

(
ð130Þ
(corresponding to N ¼ 1 and N < 1, respectively). Integrating this
expression from S ¼ 0 (where WS ¼ 0) upto the yield point (129),
where WS ! �3@W=@T , gives
@W
@T
¼

3
2 GbW T � bWð Þ; 3bW 6 T;
3

16 GðT þ bWÞ2; 3bW > T:

(
ð131Þ
The solutions of this equation blow up in finite time, corresponding
to a catastrophic collapse of the column. The predictions of (131)
are compared to full numerical solutions in Fig. 13 for three differ-
ent extrusion angles, he ¼ 1

2 pþ �4Wð0Þ. The initial angle, Wð0Þ, dic-
tates the time taken to buckle.

Note that the dynamics captured by (131) is quite unlike that of
a classical linear instability. Also, the scalings in (127) furnish an
asymptotic solution to the beam model for small times. However,
these scalings also undo the scaling that underscores the slender
approximation itself, implying that the model may not be formally
valid over this initial interval. It is hard to see how one could avoid
this inconsistency whenever the beam yields over a sufficiently
narrow region.
5. Discussion

In this paper we have presented three models describing the
bending of a slender sheet of viscoplastic fluid. The first, suitable
for relatively small curvature, is the analogue of classical elastic
beam theory. The second describes order-one curvatures, along
the lines of standard theories of elastic shells and viscous sheets.
Our third model incorporates both small and order-one curvature
within the same framework. In Appendix B, we extend the discus-
sion and demonstrate that very similar models can be derived for
circular threads. Thus, our viscoplastic solutions for falling catenar-
ies, sagging and extruded beams, and buckling columns largely car-
ry over to such three-dimensional settings (as in the flow problems
of Fig. 1). Our results indicate that the gravitational fall of a visco-
plastic sheet can be halted by the yield stress, or even prevented
entirely. For extrusions, the yield stress prevents any deformation
until a critical length is reached, whereafter dynamically evolving
yielded zones mediate the distinctive drooping of a beam and the
catastrophic collapse of an upright column.

The higher-order formulation in Section 4 also captures the
extensional dynamics of a viscoplastic sheet. This accounts for
compressional modes of failure, as well as yielding in pure bend-
ing, which is crucial in our example of the buckling column. The
model also allows for long-time elongation and thinning, as the
sheet or thread progresses towards a possible pinch-off, which
properly demands the inclusion of surface tension. Indeed, the re-
moval of bending from the higher-order thread model and the
incorporation of the leading-order effects of surface tension ren-
ders that formulation equivalent to the theory of axisymmetric
viscoplastic filaments presented by Balmforth, Dubash and Slim
[1,2]. Thus, our formulation offers a compact description of slender
viscoplastic sheets and threads in a wide range of physical settings.
We leave open for future work the detailed application of the mod-
el to particular physical problems, as well as the generalization to
fully three-dimensional viscoplastic plates and shells.
Appendix A. Oð�Þ contribution to R

Continuing the expansion of the velocities in (87) to Oð�2Þ we
find

w ¼W � �2nDþ 1
2
�2n2Xþ Oð�3Þ;

u ¼ U � �n Ws þ jUð Þ þ Oð�3Þ; ðA:1Þ

where D and X are as defined in (89), and hence

_css ¼ 2 D� nXð Þ þ 4�jnD� 3�jn2Xþ Oð�2Þ: ðA:2Þ

The position at which _css changes sign is

n ¼ n� �
D
X

1þ 1
2
�jD

� �
þ Oð�2Þ: ðA:3Þ

Since sss ¼ rss þ p ¼ 1
2 rss � 1

2 �rnn, the order � correction to rss

includes a contribution from rnn, which is obtained from the lead-
ing-order form of the transverse force balance (76) and boundary
conditions, rnn ¼ 0 on n ¼ � 1

2 H. One finds

rnn ¼ �4jnD� 2jX
1
4

H2 � n2
� �

� 2jBsgnðXÞ Maxð1
2

H; jn�jÞ � jn� � nj
� 	

þ Oð�Þ; ðA:4Þ

and

rss ¼ 4ð1þ �jnÞðD� nXÞ � 1
2
�jH2Xþ 2Bsgnð _cssÞ

� 2�jBsgnðXÞ Max
1
2

H; jn�j
� �

� jn� � nj
� 	

þ Oð�2Þ: ðA:5Þ

Integrating over the width, we arrive at the formulae quoted in
(120) and (121). Note that, to be strictly accurate to Oð�Þ,
N ¼Min 1; jn�= 1

2 Hj
� �

. However, the Oð�Þ correction to n� is only rel-
evant when R 	 Oð�Þ, in which case D 	 Oð�Þ and the term 1

2 �jD is
smaller still. Thus, in Section 4 we retain only the leading order and
write N ¼Minð1; j2D=HXjÞ.
Appendix B. The viscoplastic thread

Consider a thin thread moving under the action of gravity with-
in the ðx; zÞ�plane (precluding three-dimensional motions such as
coiling [13]). As in Section 3, the centreline is described by rcðs; tÞ; s
is arc length, n is the perpendicular coordinate in the ðx; zÞ plane,
and the third dimension is now represented by the coordinate y.
The velocity components in the ðs; y;nÞ coordinate system are de-
noted ðu;v;wÞ, and the surface of the thread is located at
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ n2

p
¼ Rðs;/; tÞ, where ðr;/Þ are polar coordinates in the

plane perpendicular to the centreline; n ¼ r cos /; y ¼ r sin /. We
assume that the thread is axisymmetric either to begin with or
where it is extruded; as it turns out, the thread then remains axi-
symmetric to leading order from then on, and we may take
R ¼ Rðs; tÞ.

The nondimensionalization is the same as in Section 3, scaling y
and v in the same way as n and w, and setting

ŝij ¼ S�1sij; r̂ss ¼ S�1rss; �r̂ij ¼ S�1rij; ðB:1Þ

where the last statement applies to all components except rss. After
dropping the hat decoration, the dimensionless equations of mass
and momentum conservation are
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�
h
@u
@s
þ @v
@y
þ @w
@n
� �j

h
w ¼ 0; ðB:2Þ

1
h
@rss

@s
þ @rsy

@y
þ @rsn

@n
� 2�j

h
rsn ¼ �G sin h; ðB:3Þ

�
h
@rsy

@s
þ @ryy

@y
þ @ryn

@n
� �j

h
ryn ¼ 0; ðB:4Þ

�
h
@rsn

@s
þ @ryn

@y
þ @rnn

@n
þ j

h
ðrss � �rnnÞ ¼ �G cos h; ðB:5Þ

where h ¼ 1� �nj and G ¼ qgH=�2S, as in the main text. The free-
stress boundary conditions on r ¼ R are

hrsy sin /þ hrsn cos /� �rss@R=@s ¼ 0; ðB:6Þ
hryy sin /þ hryn cos /� �rsy@R=@s ¼ 0; ðB:7Þ
hryn sin /þ hrnn cos /� �rsn@R=@s ¼ 0: ðB:8Þ

The kinematic boundary condition may be written as

v sin /þw cos / ¼ wc cos /

þ � @R
@t
þ 1

h
@R
@s

u� uc þ �R cos /
@h
@t

� �� 	
; ðB:9Þ

where wc is the transverse velocity of the centreline.
The dimensionless constitutive law for the Bingham fluid is

sij ¼ _cij þ B _cij= _c; if s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ss þ s2
sn

q
> B; ðB:10Þ

and _cij ¼ 0 otherwise, where

_css ¼
2
�
@u=@s� jw

1� �nj
; _cyy ¼

2
�2

@v
@y

; _cnn ¼
2
�2

@w
@n

;

_csn ¼
1
�
@w=@sþ ju

1� �nj
þ 1
�2

@u
@n

; _csy ¼
1
�

@v=@s
1� �nj

þ 1
�2

@u
@y
;

_cyn ¼
1
�2

@v
@n
þ @w
@y

� �
; ðB:11Þ

The dimensionless pressure is p ¼ � 1
3 ðrss þ �ryy þ �rnnÞ, and the

deviatoric stresses are given by

sss ¼ rss þ p! 2
3
rss; syy ¼ �ryy þ p! �1

3
rss;

snn ¼ �rnn þ p! �1
3
rss;

ssn ¼ �rsn; ssy ¼ �rsy; syn ¼ �ryn: ðB:12Þ

Thus, ð _css; _cyy; _cnnÞ 	 Oð1Þ, but ð _csn; _csy; _cynÞ 	 Oð�Þ. As for the two-
dimensional problem, this demands a certain form for the velocity
field; in the current case

u ¼ U � �n Ws þ jUð Þ þ Oð�3Þ; ðB:13Þ

v ¼ �1
2
�2yDþ 1

2
�2nyXþ Oð�3Þ; ðB:14Þ

w ¼W � 1
2
�2nDþ 1

4
�2ðn2 � y2ÞXþ Oð�3Þ; ðB:15Þ

where the stretching rate D and bending rate X are defined as in
(89). Thus, _css ¼ 2ðD� nXÞ þ Oð�Þ and

rss ¼ 3ðD� nXÞ þ
ffiffiffi
3
p

BsgnðD� nXÞ þ Oð�Þ: ðB:16Þ

We may now calculate the leading order expressions for the resul-
tant extensional stress and bending moment:

R ¼
Z

A
rss dA; M ¼

Z
A

nrss dA; ðB:17Þ
where the integrals are taken over the circular cross section in the
plane perpendicular to the centreline. Thence, when the fluid is
yielded,

R ¼ 3pR2Dþ 2
ffiffiffi
3
p

BR2 sin�1 Nþ Nð1� N2Þ1=2
h i

sgnðDÞ ðB:18Þ

and

M ¼ �3
4
pR4X� 4ffiffiffi

3
p BR3ð1� N2Þ3=2sgnðXÞ; ðB:19Þ

where

N ¼ Min 1; D=RXj jð Þ: ðB:20Þ

Integrals of the force balance Eqs. (B.3)–(B.5) give, to Oð�2Þ,

@R
@s
� �j @M

@s
¼ �GA sin h; ðB:21Þ

�
@M
@s
þ jR ¼ �GA cos h; ðB:22Þ

where A ¼ pR2 is the cross-sectional area. The integrated mass con-
servation equation is

@A
@t
þ @

@s
ðAUÞ ¼ 0;

@U
@s
¼ �D; ðB:23Þ

where U ¼ U � uc is the velocity of the fluid relative to the centre-
line. Finally, the centreline evolution Eq. (80) again reduces to (102).

As for the two dimensional sheet, when j ¼ Oð1Þ the force bal-
ance equations demand R ¼ Oð�Þ and hence, from (B.18), D 	 Oð�Þ
and N 	 Oð�Þ. Eq. (B.19) then simplifies to

M ¼ �3A2X
4p

� 4BA3=2

p
ffiffiffiffiffiffiffi
3p
p sgnðXÞ; if jMj > 4BA3=2

p
ffiffiffiffiffiffiffi
3p
p ; ðB:24Þ

and X = 0 otherwise. In the other extreme, when there is no bend-
ing (i.e. for a vertical thread), j ¼ X ¼ 0; D ¼ Us, and (B.18) simpli-
fies to

R ¼ 3ADþ
ffiffiffi
3
p

BAsgnðDÞ; if jRj >
ffiffiffi
3
p

BA; ðB:25Þ

and D ¼ 0 otherwise.
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