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A theoretical model is presented to explore how surface waves in an inviscid fluid layer 5

are damped by the bending stresses induced in a overlying floating film of yield-stress fluid. 6

The model applies in the long-wavelength limit, combining the shallow-water equations for 7

the inviscid fluid with a theory for the bending of a thin viscoplastic plate described by 8

the Herschel-Bulkley constitutive law. An exploration of the energetics captured by the 9

model suggests that waves decay to rest in finite time, a result that is confirmed using a 10

combination of approximate, numerical and asymptotic solutions to the model equations. 11

In the limit that the plate behaves like a perfectly plastic material, the sloshing motions 12

take the form of triangular waves with bending restricted to narrow viscoplastic hinges. 13

DOI: 10.1103/PhysRevFluids.00.003300 14

I. INTRODUCTION 15

The damping of surface waves by floating material plays an important role in geophysics and 16

engineering. In the marginal ice zone, for example, broken floating ice damps sea waves, with 17

important implications on the maintaince of ice cover and the Arctic climate [1,2]; the old adage 18

“pouring oil on troubled waters” stems from the notion of calming wave motion by floating a viscous 19

fluid film on the surface [3,4], and sloshing in liquid filled containers can be mitigated by foam to 20

limit flooding and damage [5,6]. 21

To explore experimentally how floating particles affected wave motion, Sutherland and Balm- 22

forth [7] examined how layers of floating hydrogel spheres damped sloshes in a rectangular tank. 23

At larger amplitudes, it was found that the particles contributed to the familiar exponential damping 24

arising from viscous boundary layers along the sides of the tank. But for lower amplitudes, wave 25

motion was damped more strongly by the pack of particles, bringing sloshes to rest in finite time. 26

This nonlinear effect was attributed to the jamming of the particles as they were brought together 27

during certain phases of the slosh cycle. A similar nonlinear damping was subsequently observed 28

by Kalinichenko [8], who studied the effect of floating particles of polystyrene on surface waves. 29

The nonlinear dyamics of a moving contact line has also been shown to arrest sloshing motion in 30

finite time [9–12]. 31

The purpose of the present article is to consider theoretically the effect of a floating viscoplastic 32

film on wave motion. When the film is relatively stiff, one expects that the waves chiefly deform that 33

“plate” by bending, without significant thinning. This scenario is the viscoplastic analog of wave 34

propagation under an elastic beam, theoretical models for which have been proposed previously 35

for ice-covered ocean [1,2]. With a classical Euler-Bernoulli beam, the main effect is to alter the 36

dispersion relation of low-amplitude water waves [2], although linear (exponential) damping can 37

also be introduced by generalizing the model to a viscoelastic beam [13]. 38

For a viscoplastic beam, the bending stresses stemming from a constant viscosity likely con- 39

tribute to any exponential damping, whereas the yield stress introduces the possibility of a transition 40

to a rigid state, or jamming. Thus, one anticipates that some of the features observed experimentally 41

for floating hydrogel may be captured in a model in which the sloshing of a water layer is resisted by 42
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FIG. 1. Sketch of the geometry.

a floating viscoplastic plate. Since foams are also sometimes described by viscoplastic constitutive43

laws [14], this type of model may also apply to sloshing problems with floating foam [5].44

To formulate a relatively simple model, we consider a shallow layer of water below a thin vis-45

coplastic plate. In particular, in this limit, we couple the classical shallow-water equations [15] with46

the viscoplastic plate model derived by Balmforth and Hewitt [16]. The latter is derived from the47

governing equations of a yield stress fluid in the thin-plate limit, incorporating the Herschel-Bulkley48

constitutive law to describe the rheology [17]. The full three-dimensional version of this model [18]49

combines the effects of bending and tension, and therefore provides the viscoplastic analog of the50

Föppl–von Kármán plate equations, bridging between viscous sheet models [19–21] and classical51

theories of plastic plates [22–24]. For the present task, however, we do not need the full machinery52

of this model, and use a reduction of it, suitable for low-amplitude two-dimensional waves in which53

only bending is important. Our goal is to explore how the nonlinear viscosity and yield stress of54

the Herschel-Bulkley constitutive law affect wave damping, and to confirm that the latter can arrest55

motion in finite time. In an Appendix, we remove the restriction that the water layer is shallow, and56

consider the effect of the viscoplastic bending stresses on irrotational surface waves.57

II. MODEL EQUATIONS58

A. Governing equations59

We model a thin plate of viscoplastic fluid satisfying the Herschel-Bulkley constitutive law lying60

above a shallow layer of inviscid fluid, as sketched in Fig. 1. Both fluids are incompressible. The61

thickness D of the plate is comparable to the typical depth of the inviscid fluid layer H. Both are62

much smaller than the characteristic lengthscale L over which the plate bends, or, equivalently, that63

characterizes depth variations of the inviscid fluid layer:64

ε = H
L � 1, δ = D

H = O(1). (1)

We use a Cartesian coordinate system (x, z) to describe the geometry, where the z axis points verti-65

cally upwards, opposite to gravity, with acceleration g. The governing equations for incompressible66

fluid with velocity field u = (u,w) are67

∇ · u = 0, (2)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ − ρgẑ, (3)

where ρ denotes the density of each fluid, p is pressure, and τ is the deviatoric stress tensor. In68

the inviscid fluid, we discard the deviatoric stresses τ jk , but for the plate, the Herschel-Bulkley69
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constitutive law provides the relations 70

γ̇ = 0, τ < τY ,

τ =
(

K γ̇ n−1 + τY

γ̇

)
γ̇, τ � τY , (4)

where τY , K , and n represent the yield stress, consistency, and power-law index, and 71

γ̇ jk = ∂u j

∂xk
+ ∂uk

∂x j
, γ̇ =

√√√√1

2

∑
j,k

γ̇ 2
jk, τ =

√√√√1

2

∑
j,k

τ 2
jk . (5)

For τY → 0 and n → 1, the Herschel-Bulkley law reduces to that for a viscous fluid. 72

The densities of the viscous fluid and plate are not necessarily the same; ρ = ρ f denotes the 73

density of the inviscid fluid, whereas ρ = ρP is that of the plate. At the interface between the two 74

fluids, z = h(x, t ), we apply the usual kinematic condition and demand that stresses are continuous, 75

ignoring any interfacial tension. 76

B. Shallow water theory for the inviscid fluid 77

Because the fluid layer underneath the plate is relatively shallow, we exploit the shallow-water 78

approximation to describe the flow dynamics. In this approximation, the vertical pressure gradient 79

becomes hydrostatic, so that 80

p(x, t ) = ρ f g(h − z) + P(x, t ), (6)

where P(x, t ) denotes the confining pressure due to the plate. The flow speed u(x, t ) is also inde- 81

pendent of depth, and conservation of mass and momentum reduce to the shallow-layer equations 82

ht + (hu)x = 0, (7)

ρ f (ut + uux ) = −ρ f ghx − Px, (8)

where the subscripts x and t denote partial derivatives. 83

C. Viscoplastic plate model 84

Pressures built up underneath the plate force that skin to bend. As shown previously [16,18], 85

provided the plate is thin, the local thickness D does not change to leading order, and a combination 86

of bending stresses and in-plane tensions oppose deformation. Thus, the centerline of the plate lies 87

at Z = 1
2D + h, and W = Zt = ht denotes the vertical plate velocity. 88

The main thrust of the earlier reductions [16,18] is to formulate vertically integrated equations of 89

motion for the plate, together with constitutive relations for the bending moment and in-plane 90

tension that oppose the imposed stresses, all descending from the original governing equations and 91

Herschel-Bulkley law. When wave amplitudes remains sufficiently small that significant tensions are 92

not generated, only the bending moment M acts, and conservation of vertical momentum demands 93

ρPD
∂W

∂t
= ∂2M

∂x2
+ P + ρP gD. (9)

The constitutive law for M is given by 94

M = −
(

KDn+2

n + 2
|Wxx|n + 1

2
D2τY

)
sgn(Wxx ), (10)

if |M| � 1
2D2τY , with Wxx = 0 otherwise. 95
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D. Dimensionless model equations96

We now remove the dimensions from the equations by defining new variables, based on the97

natural scales characterizing motion in the shallow water layer, or the stress experienced when the98

plate bends, assuming that vertical displacements are of order of the plate thickness:99

t̃ = Ct

L = Vt

D , x̃ = x

L , h = H + Dη, Z = H + 1

2
D + Dη (11)

and100

ũ = Hu

DC , W̃ = W

V , M̃ = M

D2P , P̃ = L2

PD2
(P + ρP gD), (12)

where101

P = K

(DV
L2

)n

, C = LV
D =

√
gH. (13)

Here C is the natural wave speed of surface gravity waves on the shallow-water layer, which are102

associated with vertical motions of scale V = DC/L. The stress scale P characterizes the bending103

of the plate, which translates to a bending moment of order D2P and must counter a normal load of104

O(PD2/L2) in the thin-plate limit [16,18]. For standing waves, we take L to be set by the horizontal105

wavelength (so that 0 � x � 2π ). In addition to the power-law index n and depth ratio δ, we are106

then left with two other dimensionless groups (assumed order one):107

S = PD
ρ f gL2

and Bi = τY

P = τY

K

( L2

DV

)n

, (14)

which compare the bending stress scale to the forces of inertia or gravity in the inviscid fluid, and108

the yield stress to the (nonlinear) viscous bending stresses.109

After dropping the tilde decoration on the new variables, the dimensionless version of the model110

can then be written as111

ηt = Zt = W, (15)

ηt + ux + δ(ηu)x = 0, (16)

ut + δuux = −SPx − ηx, (17)

0 = Mxx + P, (18)

along with112

M = −[
(n + 2)−1|Wxx|n + 1

2 Bi
]
sgn(Wxx ), (19)

for |M| � 1
2 Bi, implying that the plate is yielded. If |M| < 1

2 Bi, on the other hand, and the plate is113

rigid, then Wxx = 0. The constitutive law in (19) is illustrated in Fig. 2 for a Bingham plate (n = 1)114

and a power-law plate with n = 5
3 and Bi = 0. Note that the vertical inertial term in (18) is discarded115

because it becomes O(ε2δ) � 1 for S = O(1).116

E. Periodic waves in the quasilinear limit117

If we now consider waves that are spatially periodic with wavelength L, in the limit δ = D/H →118

0, the nonlinear terms become deleted from the shallow-water part of the model to leave the119

“quasilinear” system,120

ηtt = Wt = ηxx − SMxxxx, (20)
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FIG. 2. An illustration of the constitutive law (19) for the bending moment M. In (a), we plot the
(discontinuous) law for Bi = 1

2 and n = 1 along with its regularizations in (31) (red with stars; ε = 0.01)
and (32) (blue with stars; ε = 0.02). The power-law model with n = 3

5 and Bi = 0 is plotted in (b), with its
regularization for ε = 0.01 (red line and stars). The insets show magnifications at low shear rates; for that in
(a), the unregularized law converges to the step, − 1

3 Bi sgn(Wxx ), corresponding to the perfectly plastic limit.

together with (19). For the initial condition, we set 121

η(x, 0) = 0, and W (x, 0) = A0 sin x, (21)

where the parameter A0 > 0 gauges the initial wave amplitude relative to the plate thickness. We 122

then look for spatially periodic, standing wave solutions over the interval 0 � x � 2π . However, 123

the spatial symmetries inherent in the model then imply that η(x, t ) = η( 1
2π − x, t ) and η(x, t ) = 124

−η(x + π, t ) for 0 � x � 1
2π . Consequently, some simplifications are implied in computations, 125

and the model also applies to domains with either Dirichlet boundary conditions at x = 0 and π , or 126

Neumann conditions at x = ± 1
2π . 127

Note that the model in (19)–(21) can be further rescaled to eliminate one of the parameters: if we 128

define (η̂,Ŵ ) = A−1
0 (η,W ), Ŝ = An−1

0 S and B̂i = A−n
0 Bi, then A0 is removed in favour of the two 129

new parameters Ŝ and B̂i. Practically, we avoid this final notational change, noting that it chiefly 130

implies that increases in the parameter A0 are equivalent to decreases in Bi (our main concern below 131

is with the Bingham plate, with n = 1). 132

Equation (21) implies an initial bending moment with 133

|M(x, 0)| = (n + 2)−1An
0 | sin x|n + 1

2 Bi. (22)

Thus, the initial condition demands that the plate is immediately held above the yield stress 134

everywhere but for the points x = 0 and π . When Bi > 0, one expects that rigid plugs develop 135

about these points at later times as the surrounding bending moment decreases. 136

For a viscous plate, with n = 1 and Bi = 0, the solution is given immediately by 137

η(x, t ) = A0

ω
e− 1

6 St sin ωt sin x, ω =
√

1 − S2

36
. (23)

With S = 0, we recover the shallow-water sloshing solution η(x, t ) = sin t sin x. For S > 0, the 138

slosh becomes damped by viscous bending stresses; when S > 6, the slosh becomes overdamped. 139

F. Energetics 140

The quasilinear system possesses an associated energy equation, 141

d

dt

∫ 2π

0

1

2
(u2 + η2) dx = S

∫ 2π

0
MWxx dx = −S

∫ 2π

0

[
(n + 2)−1|Wxx|n + 1

2
Bi

]
|Wxx| dx, (24)
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obtained by multiplying (20) by φ(x, t ) and integrating over a spatial period, where u = φx (or142

ηt = −φxx). Thus, the potential and kinetic energies of the inviscid fluid layer are dissipated by143

bending stresses in the plate. In particular, in view of the quadratic form of the energy, one expects144

that viscous bending (described by the first term on the left of (24) with n = 1, and which is also145

quadratic) leads to exponential decay, but the plastic bending stress introduces a linear-in-time decay146

of the wave amplitude, i.e., the arrest of motion in finite time. If n < 1, even the power-law viscous147

contribution leads to faster-than-exponential decay.148

Were the solution to remain of the form149

η(x, t ) = A(t ) sin x, W (x, t ) = Ȧ sin x, (25)

even when in the presence of the plate, then (24) implies that150

1

2
π

d

dt
(A2 + Ȧ2) = −S[2(n + 2)−1β|Ȧ|n + 2Bi]|Ȧ|, (26)

where151

β = 1

2

∫ 2π

0
| sin x|n+1 dx ≡ B

(
1

2
,

1

2
n + 1

)
denotes a beta function.152

When the damping is relatively weak (S � 1), the wave largely oscillates at the original153

frequency, with A ≈ a(t ) sin t , where a is a slower function of time. Hence the left-hand side is154

approximately πaȧ, and averaging the right-hand side over the fast oscillation then gives155

ȧ ≈ −S
[

2β2|a|n
π2(n + 2)

+ 4Bi

π2

]
sgn(a). (27)

For n = 1, the viscous bending term reduces to − 1
6Sa, giving a decay rate in agreement with (23).156

As noted above, the plastic bending moment prompts a final linear decay that ends in finite time;157

the associated stopping time is158

ts = 6

S log

(
1 + π2A0

24Bi

)
. (28)

With n < 1 and Bi = 0, the power-law viscous contribution leads to the solution,159

a ≈ A0

(
1 − t

ts

) 1
1−n

, ts = π2A1−n
0 (2 + n)

2β2S (1 − n)
. (29)

The preceding results must be viewed with some caution, however, as the bending stresses modify160

the form of the solution in (25). In particular, as we demonstrate below in Sec. III by numerically161

solving the model equations, these stresses create unyielded plugs over parts of the plate [where162

Wxx = 0 and (25) can no longer apply]. Nevertheless, the relatively high derivatives associated with163

viscous bending over the yielded regions imply that higher Fourier modes are much more strongly164

damped there than the gravest mode in (25). Consequently, the approximation in (26) works well in165

reproducing numerical solutions, as we shall see below in Sec. III.166

G. Computational method167

For n = 1, the constitutive law becomes more transparent:168

M = − 1
3Wxx − 1

2 Bi sgn(Wxx ), for |M| � 1
2 Bi (and Wxx = 0 otherwise). (30)

To ease analysis, this law may be regularized with the replacement,169

M = −1

2
Wxx

(
1 + 3Bi

2
√

ε2 + W 2
xx

)
, (31)
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for some regularization parameter ε � 1. This sets the stage for a relatively straighforward numer- 170

ical exploration of the quasilinear model in which a finite grid can be adopted in x and spectral 171

differentiation matrices [25] used to evaluate spatial derivatives. The resulting ordinatry differential 172

equations (ODEs) can then be integrated in time using a stiff integrator, following the usual method 173

of lines (practically, we use Matlab’s ODE15s). The regularization of the constitutive law in (31) 174

is key to this algorithm, as the switches in the original constitutive law imply that the smoothness 175

of the solution becomes lost at any yield points, limiting the convergence of any Fourier series 176

representation of the solution. Practically, we use a grid of 64 or 128 points and ε = 10−4 or lower, 177

and have verified that the solutions are not sensitive either to the precise number of grid points or 178

the value of ε. 179

Alternatively, the model equations can be attacked by replacing Wt in (24) by a centered 180

difference after discretizing in time with a suitably small time step �t . The resulting spatial 181

boundary-value problem can then be solved using Matlab’s BVP4c. In this algorithm, the bending 182

moment becomes one of the dependent variables in the BVP4c solution, and we employ the 183

alternative, regularized constitutive law, 184

Wxx = − 3
2

[|M| − 1
2 Bi +

√
(|M| − 1

2 Bi)2 + ε2
]

sgn(M ). (32)

The main limitation is now to maintain the accuracy of the solution by taking �t to be sufficiently 185

small; the regularization parameter can be taken to be very small (with BVP4c selecting an adaptive 186

spatial grid to ensure spatial accuracy). Practically, we use �t = 10−4 and ε = 10−6, again verifying 187

that the solution is insensitive to those precise values. The two schemes provide equivalent results; 188

the spectral algorithm is faster and more accurate in time integration, whereas the boundary-value 189

solver performs better in revolving any finer spatial features. We report results using the spectral 190

scheme. 191

For a power-law plate with Bi = 0, we again use the spectral method with 128 grid points, 192

regularizing the constitutive law by replacing |Wxx|n−1| by (W 2
xx + ε2)

n−1
2 . In this case, and take ε 193

to be 10−8 or smaller. The various regularized versions of the constitutive model, and how well 194

they reproduce the original discontinuous constitutive model (19) (for somewhat larger values of 195

the regularization parameter ε), are illustrated in Fig. 2. 196

III. RESULTS 197

A. Approximate solution 198

For n = 1, the approximation in (26) can be written as the relatively simple ODE, 199

Ä + A + 1
3SȦ + 2SBi

π
sgn(Ȧ) = 0, (33)

which is linear but for the switches at the sign changes of Ȧ. At such a change of sign, the rate 200

of change Ä predicted by (33) must be consistent with the associated increase or decrease of Ȧ, a 201

condition that demands that |A| exceeds 2SBi/π at this instant. If, however, |A| < 2SBi/π at this 202

moment, the solution cannot be continued consistently. Instead, the solution must reach an unyielded 203

state. The cessation of motion therefore arises at the first instant, 204

t = ts(S, Bi, A0) ≈ (2 j − 1)
π

ω
, j = 1, 2, . . ., (34)

that Ȧ(ts) = 0 and |A(ts)| < 2SBi/π . This cessation leaves a residual value for A(t ) which corre- 205

sponds to a frozen slosh of the plate. Sample solutions to (33) for S = Bi = 1
2 and different values 206

of A0 are illustrated in Fig. 3. The final amplitude A(ts) and cessation time ts are displayed as a 207

function of A0 in Fig. 4 for S = Bi = 1
2 . As the initial amplitude increases, the slosh is able to 208

continue through more and more oscillations, with the cessation conditions leading to the stopping 209
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FIG. 3. Approximate solutions, A(t )/A0, computed using (33) for S = Bi = 1
2 , n = 1, and the values of

A0 indicated (dotted lines). The limits ±2SBi/π are indicated by the dashed lines and the star indicates the
cessation of motion. The solid lines show η( 1

2 π, t ) from corresponding numerical results using (19)–(21) (with
n = 1). (The faint gray line shows the time axis.)

time increasing through a sequence of steps, and the final amplitude passing through sawtooth-like210

oscillations. The overall lengthening of the stopping time with increasing initial amplitude (but not211

the steps) is captured by the small-damping prediction in (28).212

0 10 20 30 40

-0.1

0

0.1

0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

FIG. 4. Approximate stopping times and final amplitudes, ts and A(ts ), against initial amplitude A0, using
(33) and S = Bi = 1

2 . The small damping prediction (28) and the limits ±2SBi/π are indicated by the solid
and dashed lines, respectively. In (a) the horizontal dotted lines show (34).
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FIG. 5. Sample solution for S = Bi = 1
2 , n = 1 and A0 = 19

8 , showing (a) time series of η, W and M at
x = 1

2 π , (b) the curvature rate Wxx (x, t ) as a density plot on the (x, t ) plane, and (c) ten equally spaced snapshots
of η(x, t ) between the first extrema of η( 1

2 π, t ) [occurring at the instants indicated by the dot-dashed lines in
(a) and (b)] along with the residual plate shape η(x, ∞). In (a) the dots show the corresponding prediction from
(33). The locus of the yield points are shown by the dashed lines in (b) and (c).

B. Numerical results for a Bingham plate 213

A sample numerical solution for a Bingham plate (n = 1) is displayed in Fig. 5. As suggested by 214

the approximate model, the bending stresses in the plate damp the slosh, which passes through two 215

decaying oscillations before coming to rest in finite time. The dynamics is more complicated than 216

captured by the approximate solution, however: the points at x = 0, π , . . ., expand immediately into 217

plugged sections of the plate whose borders vary with time. The shape of the plate therefore deviates 218

from the sinusoidal form in (25) and the final state becomes more complicated, depending on the 219

history of the plugs. Despite this, the prediction from (33) performs surprising well in reproducing 220

the amplitude, extracted as η( 1
2π, t ) (see also Fig. 3). 221

As in the approximate solution, sloshing ceases when the oscillation passes through a node [in 222

W ( 1
2π, t )] and the hydrostatic pressure gradient in the lower layer [described by the term ηxx in 223

(20)] is not sufficient to restart motion. This again leads to a steplike dependence of the stopping 224

time ts on initial amplitude (Fig. 6). The evolving spatial structure in the full problem, however, 225

renders the approximation in (33) a qualitative, but not quantitative, guide to the stopping time and 226

final amplitude; see Fig. 6. 227

The dynamics for other parameter settings are largely similar to that illustrated in Fig. 5. 228

However, for large S or Bi (or small A0), the plate returns to rest without passing through an 229

oscillation (e.g., Fig. 7). In the weakly damped limit, S � 1 and (A0, Bi) = O(1), on the other 230

hand, the oscillations are prolonged, as illustrated in Fig. 8. 231

C. Plastic limit 232

For S → 0 with SBi = O(1), the plate approaches a perfectly plastic limit in which the yield 233

stress makes the only contribution to bending over the bulk of the plate [the limit of the constitutive 234

law (19) illustrated in the inset of Fig. 2(a)], and viscous bending effects become localized to narrow 235
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0 2 4 6 8

-0.1

0

0.1

0 2 4 6 8
0

5

10

15

20

25

FIG. 6. Stopping times, ts, and final amplitudes, η( 1
2 π, ts ), against A0 for S = Bi = 1

2 and n = 1. The
thicker gray lines show the results from Fig. 4. The small damping prediction (28) and the limits ±2SBi/π are
indicated by the solid and dashed lines, respectively. In (a) the horizontal dotted lines show (34).

boundary layers. Solutions approaching this limit are displayed in Fig. 9. As S is decreased, the236

yielded regions become strongly localized to the extrema of the slosh, and the plugs occupy the237

bulk of the plate, which consequently remains largely straight. The narrow viscoplastic boundary238

layers at the troughs and crests correspond to the hinge points familiar in the theory of plastic239

plates [22,24]. In other words, in the perfectly plastic limit, the sloshing motion takes a distinctive,240

triangular wave form, with the plate only yielding in hinges at the wave crests and troughs.241

FIG. 7. Numerical solution for S = 5
2 , A0 = 1, n = 1, and Bi = 1

2 , plotting (a) time series η( 1
2 π, t ) and

(b) equally spaced snapshots of η(x, t ) and Wxx (x, t ) at intervals of 0.05. In (a) the dots show the solution of
(26). Panel (c) shows a density plot of the curvature rate Wxx , with the (red) contour showing the yield points.
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FIG. 8. Numerical solutions for a plate with S = 0.1, A0 = Bi = 1, and n = 1, plotting (a) time series
η( 1

2 π, t ) and (b) snapshots of η(x, t ) and Wxx (x, t ) near the maxima of A(t ) = η( 1
2 π, t ). In (a) the dots show

the solution of (26) and the envelope of the decaying oscillations is a ∼ ±A0(1 − t/ts ). Panel (c) shows a
density plot of the curvature rate Wxx , with the (red) contour showing the yield points.

FIG. 9. Numerical solutions for S = 4− j × 0.04, j = 0, 1, 2, 3, with A0 = 4, SBi = 1, and n = 1 (color
coded by the value of S , from red to blue). Plotted are (a) the time series η( 1

2 π, t ) and (b) the snapshots
W (x, π ). In (c) we show the positions of the yield points around x = 1

2 π on the (x, t ) plane. In (a) we also plot
the prediction from (26) for S → 0 (gray dot-dashed), and the asymptotic result predicted by (38) (black dots),
initializing that ODE at t = ti = 0.1 with A = η( 1

2 π, ti ) and Ȧ = W ( 1
2 π, ti ) from the solution with the smallest

value of S , to remove the effect of initial transients. In (b) the yield points are highlighted.
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The modification to the spatial structure of the solution indicates that the approximation of242

(26) cannot remain accurate as it relies on the separable solution in (25). Instead, we capture the243

triangular waveform for the plugged part of the plate in 0 � x � 1
2π , by writing244

η ∼ x�, W ∼ x�̇, u ∼ − 1
2 �̇

(
x2 − 1

4π2
)
, (35)

for some slope function �(t ) (given that ux = −W and
∫ 2π

0 u dx = 0). The energy of the slosh,245

which primarily comes from the plugs, is therefore246

4 × 1

2

∫ 1
2 π

0
(u2 + η2) dx ∼ 4 ×

(
π3�2

48
+ π5�̇2

480

)
. (36)

The dissipation takes place exclusively over the hinges, however. The hinge in 0 � x � 1
2π , extends247

from x = 1
2π , where Wx = 0, to a yield point x = xY that is a small distance to the left, where248

Wx = �̇. Here, moreover, the bending moment is given chiefly by the (constant) plastic contribution,249

M ∼ − 1
2 Bi sgn(Wxx ) ∼ 1

2 Bi sgn(�̇). Hence, the energy equation (24) becomes250

4 × d

dt

(
π3�2

48
+ π5�̇2

480

)
∼ −4 × S

∫ 1
2 π

xY

MWxxdx ∼ −4 × 1

2
SBi|�̇|, (37)

which is equivalent to251

Ä + 10

π2
A + 60

π4
SBi sgn(Ȧ) ∼ 0, (38)

since A ∼ 1
2�π . As shown in Fig. 9(a), (38) provides an asymptotic solution for the slosh amplitude252

in the plastic limit that is superior to the approximation in (26). Note that, for the example shown253

in this figure, the perfectly plastic solution in (35) is not consistent with the initial condition254

(21), which prompts a rapid initial transient. To remove any effect of this initial adjustment, the255

figure displays the solution of (38) with initial values for (A, Ȧ) matched to (η( 1
2π, ti ),W ( 1

2π, ti ))256

from the numerical solution with the smallest values of S at t = ti = 0.1.257

D. Power-law plate258

Finally, in Fig. 10 we show a solution for a power-law plate with n = 3
5 (Bi = 0). As predicted259

by the approximate analysis based on the energy equation, the amplitude decays in finite time, with260

an envelope and stopping time ts approximately given by (29). Despite this, the spatial structure of261

the solution departs from the separable form in (25), becoming noticeably flattened near the nodes,262

x = 0, π , . . ., where the effective viscosity diverges [Fig. 10(b)].263

Note that, for weakly damped solutions of the kind shown in Fig. 10 (with S � 1),264

η(x, t ) ∼ A(t ) sin x + δ3N (ξ, t ), δ = S 1
5−n , (39)

where N (ξ, t ) is a function that is localized to the nodes, x = jπ , j = 0, 1, . . ., and depends on265

the finer spatial scale, ξ = δ−1(x − jπ )(−1) j . This structure is demanded by the main balance of266

terms,267

Nξξ ∼ (|Nξξ t |n)ξξξξ , (40)

which descends from (20) and (19), and the need to suppress the curvature rate, Wxx ∼ −A(t ) sin x +268

δNξξ ∼ δξA + δNξξ , as x → jπ [cf. Fig. 10(b)]. These scalings imply that η − A sin x and Wxx +269

Ȧ sin x should scale as δ3 and δ, respectively, as demonstrated in Fig. 10(c) for a suite of com-270

putations with varying S . The convergence to the undamped limit is therefore relatively slow271

and its details are convoluted [requiring the solution to (40)]. With finite Bi, the weakly damped272

solutions have a somewhat similar form, although the structure is further modified and complicated273

by the need to eliminate Wxx at the moving boundaries of the plugs surrounding each node (see274
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FIG. 10. Numerical solutions for a power-law plate with S = 0.1, A0 = 1, Bi = 0, and n = 3
5 , plotting

(a) time series η( 1
2 π, t ) and (b) snapshots of η(x, t ) and Wxx (x, t ) near the maxima of A(t ) = η( 1

2 π, t ). In
(a) the dots show the solution of (26) and the envelope of the decaying oscillations is the prediction in (29).
Panel (c) shows scalings data for a suite of solutions with varying S , plotting the maximum values of η − A sin x

and Wxx + Ȧ sin x, averaged over the oscillation for 1
2 π < t < 5

2 π . Also indicated are δ = S 1
5−n and δ3 = S 3

5−n .

Fig. 8). Overall, mapping out the passage of the model to the undamped water-wave limit is not a 275

straightforward exercise. 276

IV. CONCLUSION 277

In this paper, we have explored the damping of standing surface waves by the bending of a 278

thin, floating film of yield-stress fluid. For this task, we coupled the shallow-water equations for an 279

inviscid layer of water with a model for the bending of an overlying viscoplastic plate, implying 280

a long-wavelength approximation for both the waves and the floating film. The analysis can be 281

easily extended to consider propagating waves. Moreover, as we demonstrate in the Appendix, the 282

assumption that the water layer is shallow is not key: the model can be straightforwardly generalized 283

to study the damping of irrotational surface waves on a water layer of arbitrary depth, assuming 284

only that surface displacements are of order the plate thickness (which is again taken to be small in 285

comparison to the wavelength). 286

The model predicts that sloshing motions corresponding to standing waves become arrested in 287

finite time by the yield stress, somewhat like how layers of floating particles have been observed to 288

impact seiches in a rectangular tank [7,8]. For a viscoplastic plate, however, the yield stress leads to 289

a linear decrease in wave amplitude with time. By contrast floating hydrogel or polystyrene appears 290

to prompt a weaker decay in which the wave amplitude decreases as a power law, (ts − t )α , with an 291

exponent α between 2 and 3 (ts being the stopping time). As we have noted, a weaker decay of the 292

wave amplitude can be achieved when the plate has a shear-thinning power-law viscosity and no 293

yield stress (the constitutive behavior being described by the Herschel-Bulkley model). Although 294

it is conceivable that a suspension of hydrogel spheres or polystyrene particles could behave like 295
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a single-phase, shear-thinning complex fluid, it seems more likely that the dynamical dilation and296

compaction of the floating particle pack during the cycle of the sloshing motions plays a key role in297

setting the rate of decay. In particular, since the local volume fraction of solid sets the effective yield298

stress, the dilation of the particle pack may weaken the effect of plastic bending until sloshing has299

largely subsided and the particles may once more jam. An incorporation of such dynamics requires300

a two-phase description.301

APPENDIX: NONSHALLOW SLOSHING302

When the lower layer is not shallow, we cannot use the reduction in Sec. II B for that region.303

Instead, we follow the quasilinear approximation of Sec. II E with ε = O(1) and δ � 1. The304

plate model then remains unchanged and we may deal with the inviscid lower layer by following305

conventional water-wave theory and assuming potential flow. Therefore, if (u,w) = ∇φ, where φ306

is the velocity potential, we have307

ε2φxx + φxx = 0, φz(x, 0, t ) = 0,
ε2ηt − φz = 0

φt + η + SP = 0

}
on z = 1, (A1)

after removing all dimensions as in Sec. II D (with the additional scalings of z by H, w by DC/L and308

φ by DCL/H), and linearizing the interfacial boundary conditions about the undisturbed surface,309

z = 1. We may solve (A1) with the use of a Fourier series, to find310

ηtt = − 1

επ

∞∑
j=1

j tanh ε j sin jx
∫ 2π

0
(η + SP) sin jx̂ dx̂, (A2)

in place of (20). Consequently, although some of the simplicity of the quasilinear equations in311

Sec. II E are lost, the model remains similar outside the shallow limit [the second derivative ∂2
x in312

(20) being replaced by the integral operator in (A2)]. In particular, the energy equation correspond-313

ing to (24) is314

d

dt

∫ 2π

0

[
1

2
η2 dx +

∫ 1

0

1

2

(
φ2

x + ε−2φ2
z

)
dz

]
dx = −S

∫ 2π

0

[
(n + 2)−1|Wxx|n + 1

2
Bi

]
|Wxx| dx,

(A3)
and, but for the change to some algebraic factors (associated with a different form for the kinetic315

energy of the sloshing motions), the approximate solution in Sec. III A and the asymptotic plastic316
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FIG. 11. Numerical solutions for a Bingham plate with S = Bi = 1
2 , and A0 = 1, above a nonshallow water

layer with varying ε. Plotted are time series of η( 1
2 π, t ) (solid) along with predictions from (A4) (dot-dashed),

with ε = 0.1, 1, 2, 3, and 4 (from red to blue). Motion ceases at the times indicated by stars.
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solution of Sec. III C are unchanged. For example, (33) is replaced with 317

εÄ

tanh ε
+ A + 1

2
SȦ + 2SBi

π
sgn(Ȧ) = 0. (A4)

Numerical solutions employing (A2) in place of (20) (and using a corresponding spectral scheme) 318

also demonstrate that there is no qualitative change to the dynamics captured by the model. Some 319

sample solutions are shown in Fig. 11. The main effect of reducing the aspect ratio of the water 320

layer (i.e., increasing ε) is to increase the inertia of the slosh, and therefore the damping time. 321
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