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Summary

The Föppl–von Kármán equations are used to explore the onset of linear instability and the
subsequent nonlinear development of buckling patterns in a flat elastic plate due to an imposed
shear or body force such as gravity. Experimental results are also presented for a clamped and
sheared sheet of Neoprene rubber and these compare favourably to theory.

1. Introduction

A classical problem in elasticity is the buckling of a flat plate under the influence of a compressive
stress (1). In the conventional formulation of the problem, the stress is applied by compressing the20

clamped edges of the plate. However, one can also buckle the plate by shearing the edges or by
introducing a body force like gravity directed within the plane of the plate. Despite a variety of
important applications in the engineering sciences and elsewhere, these latter buckling scenarios
have received much less attention and motivate the present study.

The buckling of a uniformly sheared, clamped plate was considered by Southwell and Skan (2)25

who used linear stability theory of a flat plate to derive a criterion for the onset of buckling in terms
of the imposed shear stress. Subsequent experiments (3) largely confirmed the predictions, once ma-
terial imperfections were taken into account. Beyond Southwell and Skan’s analysis, developments
of shear-induced buckling have remained relatively sparse, aside from a related body of work on
the wrinkling of membranes in which bending stiffnesses are either relatively insignificant or small30

(for example (4 to 6)). By contrast, in the current article we consider plates with significant bending
stiffness, which lends for a more transparent and complete exploration of the onset and development
of buckling patterns as the degree of shear increases. In fact, the wrinkled membrane can be consid-
ered as the asymptotic limit of strong shear in the buckling problem studied here. Thus, effectively,
we fill in the gap between the onset of buckling and the strongly sheared wrinkled membrane.35
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The buckling of a clamped plate under gravity has apparently not been considered previously,
although vertically suspended, laterally compressed membranes were studied by (7), and there are
common points with what one might call the ‘drapes problem’, in which a hanging curtain develops
arcing folds stemming from points where it is tethered (8). Our own interest in body-forced buckling
arose from a number of analogous applications in which a flowing fluid current tugs from beneath40

on an elastic surface layer. A primary application of such elastic-plated gravity currents is to the
wrinkling and folding of the solidifying surface layers of lava flow (9).

Our approach to the problem is a mix of theory and experiment. To describe the phenomenon
mathematically, we use the nonlinear plate equations of von Kármán and Föppl (1, 10). These equa-
tions are a popular model for finite deformations of plates that incorporate geometric nonlinearities,45

while retaining a linear constitutive law (for example (11, 12)). We complement this theory with a
suite of experiments on a sheet of Neoprene rubber. A sliding frame is used to impose a controlled
amount of shear on the clamped sheet, thereby allowing us to detect the onset of instability and
explore pattern formation for shear-induced buckling. Though comprising a far cruder and less con-
trolled experiment, we also used the same sheet to verify that gravity can also buckle the sheet when50

it is clamped to a frame and stood up vertically.
In section 2, we begin by formulating the problem in terms of the governing Föppl–von Kármán

equations. We then consider linear stability of a flat plate (section 3), extending the original results
of (2). Linear stability theory is limited in that it captures only the dynamics of infinitesimally small
perturbations, and there is a danger that finite-amplitude patterns may appear below the linear onset55

(subcritically). In section 4, we rule this possibility out and show that nonlinear buckling can be
expected only above the linear onset (that is, the bifurcation to buckling patterns is supercritical),
and then construct the patterns that smoothly appear from the flat base state using weakly nonlinear
theory. We then extend the results into the fully nonlinear regime using numerical solutions of
the full, steady Föppl–von Kármán equations (section 5). For the uniform shear case, we present an60

asymptotic analysis for large shear (section 6) which dovetails with the work of Wong and Pellegrino
(6, 13, 14). We present a comparison of the theoretical results with experiments in section 7 and
conclude in section 8.

2. Formulation

Consider an elastic plate of half thickness d, density ρ, Poisson ratio ν and Young’s modulus E .65

The undeformed plate lies in a plane described by coordinates X̃ = (X̃ , Ỹ ) and is clamped along
parallel edges at Ỹ = ±Y0. The plate is subjected to uniform shear by a 2ξ0 relative displacement of
the clamped edges parallel to their direction (Fig. 1a) or is suspended in a vertical plane and subject
to gravity of magnitude g (Fig. 1b). In both cases, the shear may be supplemented by compressive
or tensile forces resulting from a relative displacement of 2η0 of the clamped edges perpendicular70

to their direction in the plane of the plate.
The governing Föppl–von Kármán equations are given by

∇̃ · Ñ = 2ρgd

(− cos θ
sin θ

)
, 2ρd

∂2ζ̃

∂ t̃2 + 2d3 E

3(1 − ν2)
∇̃4ζ̃ = ∇̃ · (Ñ · ∇̃ζ̃ ), (1)

where t̃ is the time, ∇̃ = (∂/∂ X̃ , ∂/∂ Ỹ ) and ∇̃4 = (∂2/∂ X̃2 + ∂2/∂Ỹ 2)2, and the angle θ is the
inclination of the plate edges with respect to gravity (see Fig. 1b). The in-plane stresses are

Ñ = 2d E

1 − ν2 [ν tr(ẽ)I + (1 − ν)ẽ], (2)
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Fig. 1 The two configurations considered: (a) a plate with uniform shear induced by the relative displacement
of the clamped edges along their length and (b) a plate suspended in a vertical plane

with associated strains75

ẽ = 1

2
(∇̃ξ̃ + ∇̃ξ̃† + ∇̃ζ̃∇̃ζ̃ ), (3)

where ξ̃ = (ξ̃ , η̃) is the in-plane displacement, tr(·) denotes the trace, † the transpose and I the
identity.

The plate is clamped at its edges and subjected to prescribed displacements:

ξ̃ = ±ξ0, η̃ = ±η0, ζ̃ = ∂ζ̃

∂Ỹ
= 0 at Ỹ = ±Y0. (4)

In X̃ , we impose periodic boundary conditions, adopting a domain of length L̃ .

2.1 Non-dimensionalization80

We remove dimensions from the equations and identify the important dimensionless parameters by
introducing

X̃ = XY0, t̃ = t

√
(1 − ν2)ρY 4

0

Ed2 , ξ̃ = ξ d2

Y0
, ζ̃ = ζd, Ñ = N

2d3 E

Y 2
0 (1 − ν2)

, ẽ = e
d2

Y 2
0

.
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The governing equations (1) now become

∇ · N = G
(− cos θ

sin θ

)
,

∂2ζ

∂t2 + 1

3
∇4ζ = ∇ · (N ·∇ζ ) , (5)

with

N = ν tr(e)I + (1 − ν)e, e = 1

2
(∇ξ +∇ξ† +∇ζ∇ζ ). (6)

The boundary conditions (4) reduce to85

ξ = ±S/(1 − ν), η = ±T , ζ = ∂ζ

∂Y
= 0 at Y = ±1, (7)

plus periodicity in X with period L .
In addition to the scaled domain length (the aspect ratio) L and Poisson ratio ν, three further

dimensionless parameters appear:

S = (1 − ν)
ξ0Y0

d2 , T = η0Y0

d2 , G = ρg(1 − ν2)Y 3
0

d2 E
, (8)

which provide measures of the shear, tension and relative magnitude of gravitational and elastic
forces, respectively.90

2.2 Base state and perturbation equations

The equations admit the X -independent, flat solution

ξ = ξb = (1 − Y 2)G cos θ + SY

1 − ν
, η = ηb = 1

2
G sin θ(Y 2 − 1) + T Y, ζ = ζb = 0, (9)

having associated stresses

Nb =
[

ν(YG sin θ + T ) S/2 − YG cos θ

S/2 − YG cos θ YG sin θ + T

]
. (10)

By setting

ξ = ξb + ξ̂, ζ = ζ̂ , N = Nb + N̂, e = eb + ê, (11)

where the subscript b refers to the base state (9), we find that the perturbations, identified by the ·̂95

notation, satisfy

∇ · N̂ = 0,
∂2ζ̂

∂t2 + 1

3
∇4ζ̂ = ∇ · (Nb ·∇ζ̂ ) + ∇ · (N̂ ·∇ζ̂ ), (12)

with the perturbed stresses and strains obeying (6). The clamped boundary conditions become

ξ̂ = η̂ = ζ̂ = ∂ζ̂

∂Y
= 0 at Y = ±1. (13)
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3. Linear stability analysis

To determine when the flat base state becomes unstable to infinitesimal perturbations, we linearize
(12b) and decompose the displacement into normal modes, ζ̂ = Z(Y ) exp(ikX − iωt) + c.c.,100

obtaining the eigenvalue problem

d4 Z

dY 4 − (2k2 + 3GY sin θ + 3T )
d2 Z

dY
+ 3(2ikYG cos θ − ikS − G sin θ)

d Z

dY
+ [k4 + 3k2ν(T + GY sin θ) + 3ikG cos θ ]Z = 3ω2 Z , (14)

subject to

Z = d Z

dY
= 0 at Y = ±1.

Here, c.c. denotes the complex conjugate, k is the wave number (an integer multiple of 2π/L in our
periodic domain) and ω is the frequency. Due to the self-adjoint character of the linearized form of
(12b), ω2 is real (2). Thus, if ω2 < 0 the mode grows exponentially; we solve (14) numerically to105

detect any such instabilities, varying k and the four parameters S,G, θ and T but fixing ν = 0·46.
We first extend Southwell and Skan’s results for the case of pure shear. Contours of the largest

values of ω2 over all normal modes are shown on the (k,S)-plane in Fig. 2a. Above the bold neutral
stability curve, normal modes are unstable. Onset occurs at S = Sc = 14·8 and k = kc = 1·9.
For shear values above Sc, there is an increasingly wide window of unstable modes at intermediate110

wave numbers. Contours of the out-of-plane displacement are plotted at four values of S for the
most unstable wave number in Fig. 2(b) to (e).

Analogous results for the purely gravitational case are shown in Fig. 3; in this example θ = 0
and the edges of the plate are purely vertical. Gravity then pulls the plate downwards, inducing a
shear profile across the sheet that causes buckling at sufficiently large G. Onset occurs for G =115

Gc = 29·2 and k = kc = 2·1. Displacement profiles take the form of downward-directed chevrons.
Close to onset the maximum displacement occurs at Y = 0, but as G is increased and the wave-
length decreased, the maximum displacement shifts towards the clamped edges where there is most
shear.

The stability boundaries shown in Figs 2 and 3 have asymptotes for large and small wave numbers120

that can be calculated analytically. For k �1, a local analysis can be performed in which derivatives
are replaced by local wave numbers, treating spatially dependent coefficients as constants, and then
maximizing the resulting growth rate over that wave number. For k � 1, a standard long-wave
expansion furnishes the result.

When the plate is inclined with respect to gravity, so that its edges are no longer vertical (θ �= 0),125

onset occurs at Gc = Gc(θ) and kc = kc(θ), as shown in Fig. 4. Inclining the plate generates
compression against the lower edge promoting buckling at lower values of Gc. Purely compressive
buckling against the lower edge is ultimately favoured once θ becomes sufficiently large. Indeed,
the critical wave number passes to zero at a critical inclination of about 60◦, at which point the
problem reduces to a version of the Euler column with clamped edges, and Gc sin θ ≈ 14·73. Thus,130

as we incline the plate, we proceed from a situation in which gravitationally induced shear drives
buckling (at θ = 0) to a purely compressive buckling (when θ > 60◦). Since the former is the more
novel, from hereon we focus on non-inclined plates with θ = 0.

Figure 5 illustrates the effect of combining shear- or gravity-driven buckling with either compres-
sion or tension. In tension, greater forces are required to instigate buckling, whereas in compression,135

less force is required. Where the critical curves intersect the Sc = kc = 0 or Gc = kc = 0 axes in
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Fig. 2 Uniform shear-induced buckling (T = 0). (a) Contours of constant ω2 with values ±10 j , j = 1, . . . , 7,
on the (k,S)-plane. The bold solid curve indicates the stability boundary; dotted lines show the low- and
high-wave number approximations S ≈ 16·4/k and S ≈ 8k2/3. The dashed curve indicates the wave num-
ber having minimum ω2 for given S; as shown by the dashed-dotted line, this curve is approximately
S ≈ 16

√
3k2/27 for large k. Right-hand panels: out-of-plane displacement profiles on the (X, Y )-plane for

the most unstable modes at (b) S = 14·8, (c) 25, (d) 50 and (e) 100. Contours are equally spaced in increments
of 0·2 of the maximum amplitude

Fig. 5(a) and (c), compression alone produces instability according to the usual Euler beam thresh-
old (here given by T = −π2/3).

4. The onset of buckling

4.1 Buckling is supercritical140

Multiplying (12a,b) by ξ̂t and ζ̂t , respectively, and then integrating over the domain, we obtain the
conservation law

dE
dt

= d

dt
(〈ζ̂ 2

t 〉 + EL + EN ) = 0, (15)

where

EL =
〈

1

3
(∇2ζ̂ )2 +∇ζ̂ · Nb ·∇ζ̂

〉
, EN =

〈
(1 − ν)

∑
i, j

(êi j )
2 + ν tr(ê)2

〉
(16)
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Fig. 3 Gravity-induced buckling (T = θ = 0). (a) Contours of constant ω2 with values ±10 j , j = 1, . . . , 7,
on the (k,S)-plane. The bold solid curve indicates the stability boundary; dotted lines show the low- and
high-wave number approximations G ≈ 35·6/k and G ≈ 4k2/3. The dashed curve indicates the wave num-
ber having minimum ω2 for given S; as shown by the dashed-dotted line, this curve is approximately
G ≈ 8

√
3k2/27 for large k. Right-hand panels: out-of-plane displacements on the (X, Y )-plane for the most

unstable modes at (b) G = 29·2, (b) 50, (c) 100 and (d) 200. Contours are equally spaced by increments of 0·2
of the maximum amplitude

and

〈·〉 = 1

2L

∫ 1

−1

∫ L

0
·d XdY. (17)

If all the constituents of E are positive definite, a perturbation cannot grow beyond some value145

specified by its initial condition. For a non-dissipative system such as the one we consider, this is
equivalent to saying that the system is nonlinearly (neutrally) stable.

In (15), the kinetic energy term, 〈ζ̂ 2
t 〉, and the term arising from nonlinear contributions, EN , are

both positive definite; only the term arising from linear contributions, EL , is sign indefinite. Thus,
the system is nonlinearly stable whenever EL > 0. This leads us to consider the variational problem150

of determining the minimum of the functional

F =
〈

1

3
(∇2ζ̂ )2 +∇ζ̂ · Nb ·∇ζ̂

〉
− 
(〈ζ̂ 2〉 − 1), (18)

over all possible ζ̂ that satisfy the boundary conditions. Because EL is purely quadratic, the varia-
tional problem is homogeneous and has a unique solution only once we include the normalization
〈ζ̂ 2〉 = 1 via the Lagrange multiplier 
 (in other words, one must remove the arbitrary scaling of ζ̂ ).
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Fig. 4 Gc and kc for varying inclinations of the plate with respect to gravity θ for ν = 0·46 and T = 0. Two
out-of-plane displacements are shown in the right two panels and correspond to the positions on the neutral
curves of the first panel indicated by circles

Fig. 5 Critical k and (a) S or (d) G with θ = 0, for varying tension or compression T with ν = 0·46. Four
out-of-plane displacement profiles are shown on the right in panels (b), (c), (d) and (e) and correspond to the
points shown by circles in the left-hand panels
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The Euler–Lagrange equation associated with the minimization of F is155

−
ζ̂ + 1

3
∇4ζ̂ = ∇ · (Nb ·∇ζ̂ ), (19)

and the minimum value of F is 
. Hence, provided 
 > 0, the system is nonlinearly stable.
But (19) is precisely the linear stability equation (14) with 
 ≡ ω2. Thus, linear stability implies
nonlinear stability, and buckled states cannot exist below the linear onset, ruling out subcritical
bifurcations.

4.2 Weakly nonlinear analysis160

To find the slightly buckled (supercritical) states that appear just above the linear onset, we turn to
weakly nonlinear theory. The overall vision is that we may tune the system to be on the brink of
instability, with the domain size chosen so that there is a normal mode with wave number kc and the
shear or gravity parameter selected close to the relevant critical value, Sc or Gc. A slight increase in
that parameter then places the system in the unstable regime where the distinguished normal mode165

becomes unstable and grows to finite, but low amplitude. The calculation is a standard one (for
example (15, 16)) and is formalized as an asymptotic expansion, using a small parameter ε � 1.
We set

Nb = N(0)
b + ε2N(2)

b ,
∂

∂t
= ε

∂

∂T
+ · · · , ζ̂ = εζ̂ (1) + ε3ζ̂ (3) + · · · ,

ξ̂ = ε2ξ̂(2) + · · · , N̂ = ε2N̂(2) + · · · , ê = ε2ê(2) + · · · . (20)

The expansion of the base state stresses, Nb = N(0)
b + ε2N(2)

b , reflects the development of either S
or G as Sc + ε2 or G = Gc + ε2, respectively.170

By substituting (20) into (12) and equating terms of equal order in ε, we find that, at leading order
ε, the out-of-plane equation becomes

Lζ̂ (1) ≡ 1

3
∇4ζ̂ (1) − ∇ · (N(0)

b ·∇ζ̂ (1)) = 0, (21)

with solution

ζ̂ (1) = A(T )eikc X Z(Y ) + c.c., (22)

where A(T ) is the currently undetermined amplitude and Z(Y ) is the eigenfunction of the marginally
stable normal mode. To remove any ambiguity in these definitions, we scale the eigenfunction so175

that max(|Z(Y )|) = 1/2 or, equivalently, max(|ζ (1)|) = |A|.
At order ε3, the in-plane equation yields

∇ · N̂(2) = 0, (23)

which can be decomposed into linear differential equations for ξ̂ (2) and η̂(2), forced by quadratic
nonlinearities in ζ̂ (1). Because of the form of ζ̂ (1), the solutions can be written formally as

ξ̂(2) = [A2e2ikc X ξ̂
(2)
2 (Y ) + c.c.] + |A|2ξ̂(0)

2 (Y ), (24)

where thevector ξ̂(0,2)
2 = (ξ̂

(0,2)
2 , η̂

(0,2)
2 ).
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At the same order, the out-of-plane equation gives

Lζ̂ (3) = −∂2ζ̂ (1)

∂T 2 + ∇ · (N(2)
b ·∇ζ̂ (1)) + ∇ · (N̂(2) ·∇ζ̂ (1)). (25)

Multiplying (25) by Z∗e−ikc X , where superscript ∗ indicates complex conjugate, and integrating
over the domain, leads us to a solvability condition which demands that A(T ) satisfy the amplitude
equation

�
∂2 A

∂T 2 = κ A − |A|2 A, (26)

where185

� = 1

I
〈|Z |2〉, I = 1

|A|4
〈

(1 − ν)
∑
i, j

(ê(2)
i j )2 + ν tr(ê(2))2

〉
(27)

and

κ = 1

I

〈
ikc N (2)

bXY

(
d Z

dY
Z∗ − Z

d Z∗

dY

)
− k2

c N (2)
bX X |Z |2 − N (2)

bY Y

∣∣∣∣d Z

dY

∣∣∣∣
2
〉

. (28)

Equation (26) has the form of a conservative nonlinear oscillator and solutions for a general
initial condition are limit cycles. The non-dissipative form results from the neglect of damping in
the Föppl–von Kármán equations and is not realistic in any practical application. The introduction
of small dissipation into the problem generically causes the solutions of (26) to decay towards the190

fixed point |A| = √
κ . This solution is also that expected if the conservative system was slowly

brought into the unstable regime by gradually increasing the shear or introducing the body force
(in the manner of a slow passage through a supercritical bifurcation). Whence, we argue that the
relevant solution is the steady state, |A| = √

κ (a tighter argument requires a dissipative extension
of the Föppl–von Kármán equations, which we do not attempt here; related arguments are made195

in (15)). Thus, κ , which is plotted against Poisson ratio in Fig. 6 for the uniform shear and gravity

Fig. 6 The coefficient, κ , of the weakly nonlinear amplitude equation (26), against Poisson ratio, for the two
cases of pure shear and gravity (with no inclination, θ = 0 and T = 0)
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cases, determines how the buckle amplitude bifurcates from the base state with increasing S or G:
ε|A| ≡ √

κ(S − Sc) or
√

κ(G − Gc).

5. Steady nonlinear solutions

5.1 Amplitude and shape200

The weakly nonlinear solutions remain valid only in a small window of parameter space near onset.
To continue those solutions into the fully nonlinear regime, we return to the Föppl–von Kármán
equations and compute steady solutions numerically in domains of length 2π/kc. To accomplish the
task, we reduce the problem to an algebraic one by using pseudospectral collocation and spectral
differentiation matrices (17) with a periodic Fourier grid in X and a Chebyshev basis in Y , and205

then using Newton–Raphson iteration to find the function values at the gridpoints. Solutions are
constructed first near linear onset, where the weakly nonlinear prediction provides an accurate initial
guess, and continuation then maps out the solution branches beyond.

By analogy with weakly nonlinear theory, we define the buckle amplitude as the maximum value
of the out-of-plane displacement over the spatial domain: ε A = max(|ζ̂ |). Figures 7 and 8 show210

computed buckle amplitudes for the pure shear- and gravity-driven cases, respectively. Also shown
in the figures are sample displacement fields, which are not qualitatively different from the shapes
predicted by weakly nonlinear theory over the parameter regime computed. In fact, the out-of-plane
displacement is relatively close to the linear normal mode shape.

Figures 7 and 8 display the nonlinear states which appear when the plate first becomes unstable.215

However, an increase in S or G also leads to the appearance of additional finite-amplitude solutions
with more wavelengths in the periodic domain. The new solutions appear when the normal modes
of the base state with higher wave number, k = Jkc with J = 2, 3, . . ., become unstable; we refer
to the new solutions as the ‘J th’ buckling states (for example, in the shear-driven case, the 2kc and

Fig. 7 Pure shear-induced buckling (G = T = 0) with ν = 0 ·46. Panel (a) shows the amplitude of the weakly
nonlinear solution (dotted) versus that from the full numerics (solid) for the gravest (J = 1) buckling state.
Panels (b)–(d) show (ξ̂ , η̂, ζ̂ ) on the (X, Y )-plane for the S-value indicated by the circle in panel (a). Contours
are spaced by equal increments of 0·2 of the maximum values in each case (12, 8·7, 4·9), respectively; the
lighter contours indicate negative values
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Fig. 8 Pure gravitationally induced buckling (S = T = θ = 0) with ν = 0·46. Panel (a) shows the amplitude
of the weakly nonlinear solution (dotted) versus that from the full numerics (solid) for the gravest (J = 1)
buckling state. Panels (b)–(d) show (ξ̂ , η̂, ζ̂ ) on the (X, Y )-plane for the G-value indicated by the circle in
panel (a). Contours are spaced by equal increments of 0·2 of the maximum values in each case (18·4, 4·8, 3·5),
respectively; the lighter contours indicate negative values

Fig. 9 The amplitudes of the first three, shear-driven buckling states (J = 1, 2 and 3) versus S with ν = 0·46.
The stable portions of these curves are shown by solid lines, and dashed lines where they are unstable. The
crosses indicate secondary bifurcations. Two unstable connecting states with mixed character are also shown
(one mixing the J = 1 and J = 2 states, the other mixing J = 1 and J = 3) and labelled MM. The inset
illustrates the out-of-plane displacement of one of the mixed states (the J = 1 and J = 3 states) at the S-value
marked by the circle

3kc normal modes develop from the flat base state at S ≈ 23 and S ≈ 40, respectively, leading220

to the J = 2 and 3 finite-amplitude branches). The amplitudes along the J = 2 and 3 branches of
the shear-driven case are compared to the primary (J = 1) branch in Fig. 9. Buckling states with
more wavelengths in the Y -direction are also possible, but these appear at even higher values of the
instability parameters.
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Fig. 10 Envelopes of ζ̂ , with ν = 0·46 and T = 0, for (a) pure shear-induced buckling for Sc + 1 up in steps
of 20 and (b) pure gravitationally induced buckling for Gc + 1/2 up in steps of 10

At larger S or G, the nonlinear solutions develop features that point to a limiting behaviour.225

This is illustrated in Fig. 10, which shows the envelopes of the out-of-plane displacement, that is,
the maximum values of ζ̂ (X, Y ) over all X , for each Y (the silhouette of the buckling pattern when
viewed in the X -direction). Displayed are the J = 1 envelopes for our two representative cases (pure
shear and gravity). For uniform shear, the mode amplitude grows without appreciably changing
shape. In the gravity case, the envelope widens with increasing G and eventually a double maximum230

develops. In either case, a scaling of the envelopes by S1/2 or G1/2, respectively, conveniently
collapses the envelopes of the higher amplitude solutions onto a common curve. This rescaling
implies that the bending stiffness terms are becoming negligible over the interior of the plate, and
the common curve is the envelope of a nonlinear membrane solution.

Further details of a large-amplitude shear-driven buckle are shown in Fig. 11. This solution235

lies along the branch of the J = 3 buckle state and illustrates how ζ converges to the product
of a Y -dependent envelope with a sinusoidal function of a variable X − Y inclined at 45◦ to the
coordinate axes. This observation is key to the large-S asymptotic analysis performed in section
6. For the gravity-driven case, a similar structure develops. Moreover, the higher J states become
localized to the sheared regions at the edges of the plate, where the pattern increasingly resembles240

the uniform shear solutions. In other words, at large G and J , the gravitationally induced buckles
develop in largely the same way as the shear-driven buckles, leading us to focus on the latter in the
later developments.

5.2 Secondary instabilities for uniform shear

Because the nonlinear states described above bifurcate from the flat base state when that equilib-245

rium first loses stability, those buckled states acquire the original stability of the base state. However,
there is no guarantee that the nonlinear solutions remain stable as the instability parameter (namely,
S or G) is raised yet further. To complicate matters still more, although the higher order (J > 1)
buckling states are unstable when they initially bifurcate, these states can become stable further
along the solution branches as a result of secondary bifurcations. Consequently, it becomes neces-250

sary to consider the stability of the various solution branches in order to determine which are most
likely to be observed.
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Fig. 11 The displacements for large S: S = 1000 and 3kc. Panel (a) shows the out-of-plane displacement field.
Panel (b) shows the cut through the midsection (Y = 0) of the plate; the numerical solution is shown by the
dots, a sinusoid fitted to the maxima is shown by the solid curve and the dotted curve shows the large-S theory.
Panel (c) shows the envelopes of ξ/S, η/S and ζ/

√
S (labelled as ξ, η and ζ , respectively) for S = 600–1000

in steps of 100

To assist in the exercise, it is useful to notice that, by judicious organization of the algebraic
equations solved for the steady states, the eigenvalues of the Jacobian matrix required for the
Newton–Raphson iteration determine the stability of the nonlinear solutions towards perturbations255

with the same periodicity. That is, the eigenvalues provide information regarding the stability of
the buckled state with respect to perturbations described by Fourier sums over the wave numbers
mkc, m = 0, 1, 2, . . .. Typically, one finds instabilities to be dominated by a certain wave number
Mkc, leading us to identify that instability as the ‘M th’ mode (a fully fledged Floquet calculation is
needed to explore stability with respect to arbitrary wave number; we opt for the simpler approach260

with the periodic domain).
For brevity, we focus on the shear-driven case, noting that the picture of stability for the gravity-

driven buckles turns out to be qualitatively the same. The stability of the solution branches for
J = 1, 2 and 3 is indicated by the line style in Fig. 9. The gravest (J = 1) buckling state remains
stable upto S ≈ 140, where it loses stability to M = 2 modes of instability. The second buckling265

state is initially unstable to modes with M = 1 structure. At S ≈ 42, however, this state gains
stability. At yet higher shears, we suspect that the J = 2 state loses stability again, this time
towards M = 3 modes, but we have been unable to detect reliably this secondary bifurcation. The
third (J = 3) branch is unstable towards M = 1 and M = 2 modes when it first appears. Successive
bifurcations stabilize those modes, however, leaving the state stable for S � 244.270

The changes of stability along the branches correspond to the appearance of secondary buckling
states with mixed character, that is, states described by combinations of wave numbers. We have
not traced all these secondary states required to complete the bifurcation diagram (two of the mixed
branches are shown in Fig. 9 for illustration). It is clear from Fig. 9 that the higher J states gain
stability before the lower branches lose stability, leading to a multiplicity of stable states at a given275

shear. Nevertheless, one of the key implications is that there is a pattern of bifurcations in which
stability is transferred from the gravest mode to buckling states with higher and higher wave number.
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A further significance of the bifurcation diagram is that, were one to gradually increase the degree
of shear, there would be sudden decreases in the wavelength of the observed buckles as one tracks
through the points of instability. Moreover, these transitions are hysteretic in the sense that, if one280

were to subsequently reduce the shear, then the shorter wavelength states would persist to smaller
shears than they first appeared; eventually, they disappear in sudden lengthenings of the pattern.
Note that the discontinuous changes in pattern wavelength partly result from the fixed periodic
setting in which we solve the Föppl–von Kármán equations; different boundary conditions may
allow smoother changes in wavelength and a more gradual shortening of the pattern with S or G.285

6. Strongly sheared buckles

At large shear (S), we anticipate that the stable buckling patterns develop short wavelength in X
and take an asymptotic form

ξ̂ = S�(Y ) + S
k

ξ̌ (U, Y ), η̂ = SN (Y ) + S
k

η̌(U, Y ), ζ̂ =
√
S

k
ζ̌ (U, Y ), (29)

where U = k(X − Y ) and k �1, with ξ̌ ∼ sin 2U , η̌ ∼ sin 2U and ζ̌ ∼ sin U . Because gravitation-
ally induced buckling at large G also resembles these forms, but in localized regions near the plate290

edges, we consider only the shear-driven case. The connection between the two large parameters S
and k will be made explicit later in a particular distinguished limit.

In view of (29), the stresses also scale with S, N̂I J = S ŇI J , and the in-plane equations become

ŇX X = ν
∂N
∂Y

+ ∂ξ̌

∂U
− ν

∂η̌

∂U
+ 1 + ν

2

(
∂ζ̌

∂U

)2

+O
(

1

k

)
, (30a)

ŇY Y = ∂N
∂Y

+ ν
∂ξ̌

∂U
− ∂η̌

∂U
+ 1 + ν

2

(
∂ζ̌

∂U

)2

+O
(

1

k

)
, (30b)

ŇXY = 1 − ν

2

⎡
⎣∂�

∂Y
− ∂ξ̌

∂U
+ ∂η̌

∂U
−
(

∂ζ̌

∂U

)2
⎤
⎦+O

(
1

k

)
(30c)

and

∂

∂U
(ŇX X − ŇXY ) = −1

k

∂ ŇXY

∂Y
,

∂

∂U
(ŇXY − ŇY Y ) = −1

k

∂ ŇY Y

∂Y
. (31)

Averaging the in-plane equations over a wavelength in U yields295

ŇXY = α, ŇY Y = β, (32)

where an overbar indicates a U -averaged quantity and α and β are constants. Consequently,

ŇX X − ŇXY = ŇX X − ŇXY − 1

k

∫
∂ ŇXY

∂Y
dU, (33a)

ŇXY − ŇY Y = ŇXY − ŇY Y − 1

k

∫
∂ ŇY Y

∂Y
dU. (33b)
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To leading order, (33) in conjunction with (30) implies that the U -dependent part of the displace-
ments must satisfy

∂ξ̌

∂U
= − ∂η̌

∂U
+O
(

1

k

)
= 1

2

⎡
⎣
(

∂ζ̌

∂U

)2

−
(

∂ζ̌

∂U

)2
⎤
⎦+O

(
1

k

)
(34)

and the mean stress components are

ŇX X ≈ ν
∂N
∂Y

+ 1

2
(1 + ν)

(
∂ζ̌

∂U

)2

, β = ŇY Y ≈ ∂N
∂Y

+ 1

2
(1 + ν)

(
∂ζ̌

∂U

)2

, (35)

α = ŇXY ≈ 1

2
(1 − ν)

⎡
⎣∂�

∂Y
−
(

∂ζ̌

∂U

)2
⎤
⎦ . (36)

Moreover, since N and � vanish on the plate’s edges, the latter conditions can be integrated over300

Y to find the formulae

α ≈ −1

2
(1 − ν)

〈(
∂ζ̌

∂U

)2〉
, β ≈ 1

2
(1 + ν)

〈(
∂ζ̌

∂U

)2〉
. (37)

At this stage, it is now clear that

ŇXY − ŇY Y = α − β +O
(

1

k2

)
, (38)

ŇX X − 2ŇXY + ŇY Y = 1

2
(1 − ν2)

(
∂ζ̌

∂U

)2

+ (1 + ν)β − 2α +O
(

1

k3

)
. (39)

These relations can be introduced into the leading-order out-of-plane equation

k2(ŇX X − 2ŇXY + ŇY Y − 1)
∂2ζ̌

∂U 2 + k[2(ŇXY − ŇY Y ) + 1]
∂2ζ̌

∂U∂Y
+ ŇY Y

∂2ζ̌

∂Y 2

= 1

S
∂2ζ̌

∂t2 + 4k4

3S
∂4ζ̌

∂U 4 +O
(

k3

S

)
. (40)

The right-hand side of (40) incorporates the leading-order time derivatives and bending stiffness
terms. The former term implies that the important timescale is O(S−1/2), and an appropriate change305

of variable then keeps this term O(1). If k4/S � 1, the latter disappears from the problem, leaving
the membrane limit. For k4/S � 1, on the other hand, the bending stiffness dominates and stabilizes
buckling. In the distinguished limit, k4/S = O(1), both buckling and bending stiffness enter the
problem, and we consider this case in detail. Though our main focus is the steady buckled states,
we leave the time derivatives in (40) to facilitate a brief discussion of stability.310

For the steady states, in order that the solution takes the sinusoidal-in-U form observed, the
middle term on the left of (40) must cancel. Thus, we find a separable solution ζ̌ = Z(Y ) sin U
along with

α ≈ −1

4
(1 − ν), β ≈ 1

4
(1 + ν),

〈(
∂ζ̌

∂U

)2〉
= 1

2
〈Z2〉 ≈ 1

2
(41)
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and

d2Z
dY

+
[
(1 − ν)k2(1 − Z2) − 16k4

3S(1 + ν)

]
Z = O(k−1). (42)

The left-hand side of (42) contains terms of order k2 and unity, and a formal asymptotic procedure315

would then demand that we deal with them separately, giving Z2 = 1 everywhere. However, this
solution cannot satisfy the boundary conditions at the edges of the plate. The implication is that this
solution holds in the bulk of the domain and that there are boundary layers adjacent to the edges,
of width k−1, that have not been taken into account. Indeed, the numerical solutions reported in
Fig. 11 and below support this conclusion.320

To avoid dealing with these boundary layers, we take a different tack hereon. Equation (42) is
formally accurate to O(k−1); the trouble is in dealing with the left-hand side asymptotically. Instead,
we follow a more qualitative approach in which we discard the error terms and solve that equation in
its entirety. This is a nonlinear oscillator equation on which we impose zero displacement conditions
Z(±1) = 0. Unfortunately, because not all the bending stiffness terms have been incorporated325

into the scheme, we cannot impose all the clamped boundary conditions. Moreover, the resulting
solutions cannot satisfy the constraint 〈Z2〉 = 1 exactly, but only to O(1/k).

Sample solutions to (42) are shown in Fig. 12, for the wave numbers k = 3kc = 5·7 and k =
5kc = 9·5. These profiles are compared with the envelopes of the out-of-plane displacement of the
full numerical solution in the figure. Despite the relatively small values of k used in the comparison,330

the theory compares favourably with the numerical data.
Note that the asymptotic theory predicts that a solution can be found only when

S > Sc = 16k4

3(1 + ν)

[
(1 − ν)k2 − π2

4

]−1

, (43)

which is a crude estimate of the stability boundary that can be compared with more accurate results
given in section 3 (this estimate erroneously depends upon ν, but since this is a large-amplitude
theory, it cannot be expected to remain good for the small amplitudes at onset). It also incorrectly335

predicts that the J = 1 branch does not exist, which is not surprising given that k = kc = 1·9 is not
large.

It is straightforward to show that the membrane solutions, with k4/S → 0 in (42), are unsta-
ble: small perturbations to the buckled state with normal-mode form, z(Y ) exp(imkX − iωt), and

Fig. 12 Envelopes of the out-of-plane displacement for (a) J = 3 and (b) J = 5. The dotted line shows the
solution of (42), and the solid curve shows the full numerical solution (for S = 2000 in (a) and S = 5000 in
(b) with ν = 0·46 in both)
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different wave number (m �= 1, implying that ζ̌ 2
U → Z2), satisfy340

d2 Z

dY
+ [M(1 − ν)(1 − Z2) − l]z = 0, (44)

whereM = m2k2 and l = −4ω2/(1+ν). For a given l > 0 (ω imaginary), Sturmian oscillation the-
ory of ordinary differential equations (18) establishes that there is an infinite sequence of solutions
with ascending values ofM. That is, for a given growth rate, one can always find a sufficiently large
wave number solution, thus proving instability. Numerical solution of the linear stability problem
(44) including the stiffness term (which modifies l to l = 4/(1 + ν)[−ω2 + 4m4k4/3S]) establishes345

further that one can stabilize these instabilities for k−4S ∼ O(1). In other words, one expects the
stable large-S solutions to be characterized by wavelengths k ∼ S1/4 and displacements ζ ∼ S1/4,
which are the dimensionless counterparts of the scalings used by Wong and Pellegrino (6).

7. Uniform shear experiments

The set-up for our experimental investigation of shear-induced buckling is shown in Fig. 13. A long,350

slender sheet of Neoprene (polychloroprene) rubber was clamped along its longer edges (the top and
bottom in Fig. 13) to aluminium slats that were held on a frame and which could be controllably
sheared by turning a screw; the shorter edges of the sheet were left free (to the left and right in Fig.
13). When the sheet was initially inserted, we attempted to avoid introducing any lateral slack or
tension in the sheet and clamped the edges as uniformly as was possible. To investigate a range of355

physical parameters, we varied the width (2Y0) and thickness (2d) of the sheet, as well as the type
of Neoprene (as measured by its durometer ‘hardness’ (19), a monotonically increasing function of
the Young’s modulus). The precise parameters for each experiment are listed in Table 1.

The photograph in Fig. 13 also illustrates a typical pattern obtained after sufficiently shearing the
sheet. For such patterns, we estimated wavelengths along the sheet (taking the mean of several crest-360

to-crest distances) and measured the amplitude of the out-of-plane displacement (by using vernier
calipers to gauge the crest-to-trough distance for several different buckles). In all the experiments
conducted, the sheet was at least five wavelengths long, and we performed measurements in the
central regions. For comparison with theory, we assume ν = 0·46. As for most elastomers, the
Poisson ratio of Neoprene is close to 0·5; errors associated with our choice are small compared to365

experimental errors.
By varying the edge displacement (imposed shear), we tracked both wavelength and amplitude

as the pattern developed from its onset. For most of the experiments, the wavelength did not change

Fig. 13 A plan-view photograph of the apparatus (for Experiment 8) for shear-induced buckling. The Neoprene
sheet is clamped between parallel aluminium slats mounted on a frame. The slats are at least 6 mm thick to
distribute the force from each clamp. The upper support slides from left to right; visible on the left is a screw
which controls the displacement
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Table 1 Shear-induced buckling experiments: the experimental parameters and the symbol used in
subsequent plots. The error in the half thickness, d, is ±0·05 mm, in the half width, Y0, is ±0·5 mm
and in the durometer is ±5

Experiment d/mm Y0/mm Durometer Symbol

1 0·85 47·0 50 •
2 0·85 30·7 50 +
3 0·85 23·5 50 �
4 0·85 15·1 50 �
5 0·85 28·5 50 �
6 0·88 28·5 70 �
7 1·53 24·8 70 �
8 0·85 25·2 50 3

9 0·85 25·0 50 �
10 1·53 25·2 70 ◦
11 0·85 48·3 50 �
12 0·85 50·0 50 ×
12∗ 0·85 50·0 50 ⊗
∗Experiment 12 after enforced wave number doubling at large S.

Fig. 14 The observed wavelength λ versus the width of the sheared sheet. The symbols indicate experimental
data, the solid curve is the linear stability prediction of the critical wavelength at onset for T = 0 and the
dashed curve is that for T = −2. Experimental error bars are included for a single data point

appreciably once the pattern appeared (except for Experiment 12, where we forced a wave number
doubling at large shear to yield the series 12∗). A collection of the results is shown in Fig. 14, which370

also displays the most unstable buckle wavelength expected from linear stability theory (2π/kc). A
significant limitation of the apparatus was that it was difficult to eliminate all initial slack, with the
result that there was always a slight amount of pre-compression present which could influence the
buckling. For example, an inwards displacement of the edges of just 0·1 mm (almost impossible to
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Fig. 15 The non-dimensional average amplitude of buckling versus the shear parameter S. The curve is the
prediction from weakly nonlinear theory and the solid curve that from the full numerics for the kc mode;
the dotted curve is the prediction from the full numerics for the 2kc mode. The inset shows the dimensional
amplitudes versus the edge displacement

eliminate) corresponds to a dimensionless compression parameter of T ≈ −2, which significantly375

shifts the critical wave number at onset, as illustrated in Fig. 14. Given this drawback, the agreement
is tolerable between theory and experiment.

The observed out-of-plane buckle amplitudes are shown against edge displacement 2ξ0 in Fig. 15.
The inset shows the spread of the original dimensional amplitudes; the main panel takes these data
and uses theory to express the measurements in dimensionless form. Also included in the figure380

are the predictions of the weakly and fully nonlinear theories (with T = 0). Another comparison
of the observed buckling pattern with theory is shown in Fig. 16, which shows the envelope of the
out-of-plane displacement for one example during Experiment 2.

Theory consistently overpredicts the onset and underpredicts the amplitude, but if one again
allows for a small amount of pre-compression, the comparison is improved. Alternative explanations385

for the discrepancy are imperfections in the material (3, 20) or imperfect clamping. The importance
of the latter can be estimated by comparing the prediction for onset with clamped boundaries to
those with simply supported boundaries (Sc = 8·8) or hinged boundaries (Sc = 9·1). However, we
believe that the discrepancy is most likely due to initial slack.

Another disagreement between theory and experiment is that there are no sudden changes in390

wavelength as the shear is raised, unlike the predictions regarding secondary instability in section
5.2. However, the experimental shears are not sufficiently large to precipitate that instability ac-
cording to Fig. 9, and the experiment is not periodic in X . A gradual decrease in wavelength was
observed in Experiment 11, which achieved the highest shear values of S ≈ 230, with new crests
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Fig. 16 The dimensionless envelope of the profile as a function of the dimensionless cross-sheet coordinate,
Y , for Experiment 2 at S = 72. The dotted curve gives the weakly nonlinear prediction and the solid curve is
from the full numerics

and troughs developing at the free edges and moving inwards. To test further the ideas about sec-395

ondary instability, at large S in Experiment 12 we looked for multiple buckle states by pressing onto
the crests of the existing buckles and forcing the rubber sheet to double its wavelength (series 12∗).
This new pattern persisted on reduction of the shear, with the measured amplitude in tolerable
agreement with that predicted for the 2kc mode by the full numerics (Fig. 15). These observations
resonate with the theoretical predictions, although the pattern did not revert to the kc mode at small400

shear.
A final disagreement hidden in Fig. 15 is that often the path followed by the experimental ampli-

tudes was different on ramping up in shear, compared to when the shear was ramped down, giving
more than one amplitude value at each S. Some of the hysteresis could have arisen from the appa-
ratus ‘slipping’ during the increase of shear, although no such problems were evident. More likely405

is that some degree of permanent deformation was occurring because of the non-Hookean nature of
Neoprene. Indeed, a residual pattern was often observed after running the experiment and declamp-
ing the sheet. To minimize this problem, we used a fresh piece of Neoprene for each experiment
whenever possible.

8. Conclusions410

Our goal in this article has been to build a picture of how nonlinear buckling patterns appear when a
clamped flat plate is either sheared at its edges or subjected to a body force like gravity. To this end,
we have presented linear and weakly nonlinear analyses in tandem with nonlinear computations
of steady equilibria within the framework of the Föppl–von Kármán equations. We compared the
theory with a simple shear experiment, finding some level of agreement. A similar comparison for415

gravitationally driven buckles was less successful: the gravity case requires a very large system
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to observe buckling (for the Neoprene, the sheet must have a width of order 1 m and a length of
the order of several metres). Though we were able to set up a large-scale experiment in which
we observed folds and wrinkles in the sheet, it was impossible to avoid significant slack and non-
uniformity in the initial clamping. The experimental data showed some consistency with the theory420

(in the way in which the buckle wavelengths scaled with the width, for example), but these were not
sufficiently satisfactory to warrant its inclusion here.

The most severe drawbacks of the theory are that it is based on the Föppl–von Kármán equa-
tions. These equations have the advantage of capturing the dynamics of low-amplitude perturba-
tions to a flat plate while retaining a relatively simple form and have been asymptotically derived425

from the governing equations of elasticity, incorporating geometric nonlinearity into the strains
but retaining a linear constitutive model (21). However, the system is non-dissipative and isQ1

limited to out-of-plane displacements that must be of order the plate thickness, with the in-plane
displacements smaller still. By contrast, in the experiments, perturbations to the Neoprene sheet
were clearly damped relatively quickly, and the lateral shears that we imposed in order to buckle430

the sheet reached a similar magnitude to the out-of-plane displacement. Despite this, the theory
and experiments are in tolerable agreement, leading us to believe that the theory is qualitatively
applicable. In principle, one might avoid issues of this sort by attacking the problem using the full
governing equations of nonlinear viscoelasticity. However, the relative simplicity of the Föppl–von
Kármán equations allows one to make substantial headway in the theory, justifying the approach.435
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