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We consider an inclined rectangular duct of constant cross-section conveying
Newtonian fluid and covered by a thin, Hookean isotropic elastic solid. The elastic
plate is described by the Föppl–von Kármán equations, and the fluid by the Stokes
equations. The equations admit an equilibrium solution in which the plate is flat
and fluid flows underneath due to gravity. This base flow induces a varying traction
across the elastic plate, which opens up the possibility of out-of-plane buckling due
to the associated in-plane shear. A linear stability analysis demonstrates that buck-
ling occurs for sufficiently thin plates on steep slopes and deep channels. The most
unstable modes take the form of either symmetric or antisymmetric downslope-
directed chevrons that travel downstream at a fraction of the average speed of the
base flow. An analogous analysis shows that similar buckling also occurs if the elas-
tic plate is replaced by a thin skin of very viscous fluid. Our description provides a
simple model for the formation of ropy pahoehoe lava.
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1. Introduction

The interaction of a fluid with an overlying elastic “skin” (or, indeed, any rheologi-
cally distinct and thin superficial layer), can generate a variety of buckling patterns.
Common examples include the wrinkling of the thin skins that form atop hot milk,
wax or crème anglais when disturbed. Likewise, it has been suggested that motion
of the molten interior of a lava flow can buckle the overlying solidified crust, cre-
ating a characteristic “ropy” appearance (Fink & Fletcher, 1978); see figure 1. In
these examples, the fluid flow plays an essential role in promoting the buckling of
the skin, for example, by advecting it towards a boundary and thus compressing
it. However, the fluid can also play a more passive role, such as in semiconductor
manufacturing where an elastic plate floating on a viscous layer is compressed by
external forces with the fluid acting merely to control the timescale of buckling
(Huang & Suo, 2002).

Our goal is to explore a model problem in which fluid flow directly induces buck-
ling. We consider the gravity-driven flow of a viscous fluid through a rectangular
duct overlain by a thin elastic plate. Because the flow is driven by gravity alone,
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Figure 1. A solidified lava flow at Kealakomo, Hawaii courtesy of Dr. Ron Schott.

without a pressure gradient, an equilibrium state can be established in which the
surface skin remains flat. This equilibrium and its linear perturbations can be de-
scribed with relative mathematical simplicity, in contrast to pressure-driven flows
which necessarily differentially deform the overlying skin in the downstream di-
rection. The fluid traction acting on the base of the skin varies across the duct
and thus generates shear within it, potentially inducing out-of-plane buckling when
tractions are sufficient strong. This configuration is one of the simplest idealiza-
tions of the particular fluid-structure interaction problem in question, and bears
similarities with the buckling of an isolated elastic plate either under gravity or
shear (Balmforth et al., 2008).

More technically, we treat the viscous fluid with the Stokes approximation,
restricting our attention to relatively slow viscous flows. We model the elastic plate
as a thin, Hookean isotropic elastic solid satisfying the Föppl–von Kármán equations
(Love, 1944). These are the simplest plate equations that incorporate both the
bending and compressional terms necessary to account for out-of-plane buckling.
The choice of this model for the skin is not essential, and we supplement our study
of the elastically-plated duct with an exploration of a related problem in which the
skin is composed of a yet-more-viscous, thin immiscible fluid.

Despite the common occurrence of fluid-induced buckling of a superficial skin,
relatively few preceding studies exist on the problem. Perhaps the closest earlier
work to our current study is by Luo & Pozrikidis (2006, 2007). They considered
the buckling of an arbitrarily-shaped elastic section in an otherwise rigid plate
suspended in flowing fluid. Both a compressive stress against the upstream rigid
boundary and a shear stress are induced in the elastic section by the flow, resulting
in a complicated buckling instability. However, although the elastic portion of the
plate deforms out of its plane on buckling, these authors do not incorporate the
resulting feedback on the fluid dynamics with the result that there are no induced
pressure variations on either side of the plate. This simplifies the analysis, but alters
the nature of the instability since fluid pressure cannot provide a restoring force.

The paper is structured as follows. In §2 we formulate the problem and note the
assumptions required. In §3 we present the flat base state profile that we perturb
about. We analyze the linear stability numerically in §4. A brief comparison of
this theory with a qualitative experiment is presented in §5. In §6, we consider the
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Figure 2. An inclined rectangular duct with rigid base and sides and a thin elastic plate
as the top surface. Fluid supplied far upslope fills the channel and flows downslope under
the influence of gravity alone.

particular geological application of ropy pahoehoe lava. Finally in §7 we present
our most significant findings. Appendix A furnishes the derivation of the Föppl–
von Kármán equations in the present context and outlines their limits of validity.
Appendix B briefly discusses the supplementary problem in which the elastic skin
is replaced by a very viscous fluid one.

2. Formulation

As illustrated in figure 2, we consider a duct of infinite length and rectangular cross-
section (having width 2y0 and depth 2αy0, where α is the aspect ratio) inclined at
angle θ to the horizontal. The duct is described by a Cartesian coordinate system
with x̂ directed downslope, ŷ across the slope and ẑ perpendicular to the slope; the
origin is located on the centre-line. The bottom, ẑ = −αy0, and sides, ŷ = ±y0,
are rigid; the top, ẑ = αy0 + ζ̂(x̂, ŷ, t̂), is an isotropic Hookean elastic plate of

thickness 2d � 2y0, Young’s modulus E and Poisson ratio ν, where ζ̂ is the out-
of-plane displacement of the preferentially flat plate. An incompressible, inertialess
Newtonian fluid of density ρ and viscosity µ fills the duct and flows downslope
under gravity.

The fluid motion is described by Stokes’ equations

∇̂ · σ̂ = ρg(− sin θ, 0, cos θ), σ̂ = −p̂I + µ
(

∇̂û + ∇̂û
†
)

, ∇̂ · û = 0, (2.1)

where ∇̂ = (∂/∂x̂, ∂/∂ŷ, ∂/∂ẑ), σ̂ is the stress tensor, g the acceleration due to
gravity, p̂ the pressure, û the velocity, I the identity tensor and † denotes the
transpose. On the rigid lower and side surfaces of the duct we impose no-slip

û = 0 on ŷ = ±y0, ẑ = −αy0. (2.2)

The displacement gradients in the elastic plate are assumed to be small so that
it may be described by the Föppl–von Kármán equations in Eulerian coordinates.
In Appendix A we give a discussion of the underlying assumptions that are required
for these equations to apply. We also assume that the weight of the plate is negligible
compared to fluid tractions acting upon it and that elastic waves are much faster
than the adjustment time scale of the coupled elastic-fluid system so that the plate
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can be assumed in instantaneous equilibrium. Thus the in-plane and out-of-plane
force balances are given by

∇̂h · N̂ = τ̂ h,
2d3E

3(1 − ν2)
∇̂4

hζ̂ = −τ̂z + ∇̂h ·
(

N̂ · ∇̂hζ̂
)

, (2.3)

respectively, where the subscript h denotes in-plane (x̂ and ŷ) components, ∇̂4
h =

(∂2/∂x̂2 + ∂2/∂ŷ2)2 and τ̂ = (τ̂ h, τ̂z) is the fluid traction acting on the base of the
plate. Here the in-plane stresses (integrated over the thickness) and strains are

N̂ =
2dE

1 − ν2
[ν tr(ê)Ih + (1 − ν)ê] , ê =

1

2

(

∇̂hξ̂ + ∇̂hξ̂
†
+ ∇̂hζ̂∇̂hζ̂

)

, (2.4)

respectively, where ξ̂ = (ξ̂, η̂) is the in-plane displacement and tr(·) is the trace.
The plate is clamped along its lateral edges

ξ̂ = η̂ = ζ̂ =
∂ζ̂

∂ŷ
= 0 on ŷ = ±y0. (2.5)

The plate displacement and fluid velocities are connected through the kinematic
boundary condition

û = v̂ = 0, ŵ =
∂ζ̂

∂t̂
on ẑ = αy0 + ζ̂ , (2.6)

where t̂ is time and we have neglected the û ·∇̂(ξ̂, η̂, ζ̂) and time-derivative terms in
the in-plane equations for consistency with the required scalings for the Föppl–von
Kármán equations. The traction on the plate τ̂ is exerted by fluid shear stresses

τ̂ = σ̂ · n̂ on ẑ = αy0 + ζ̂, (2.7)

where n̂ is the normal to the plate.

(a) Non-dimensionalization

We non-dimensionalize the governing equations based on the half-width of the
channel and the gravitational driving force as follows:

û = u ρgy2
0/µ, p̂ = p ρgy0, σ̂ = σρgy0, τ̂ = τρgy0,

ξ̂ = ξ y0, ζ̂ = ζ y0, N̂ = N ρgy2
0, ê = e, x̂ = x y0, t̂ = t µ/ρgy0. (2.8)

Substituting (2.8) into (2.1)–(2.7) we obtain

∇ · σ = (− sin θ, 0, cos θ), σ = −pI + ∇u + ∇u
†, ∇ · u = 0, (2.9)

subject to

u = 0 on y = ±1, z = −α, (2.10)

u = v = 0, w =
∂ζ

∂t
on z = α + ζ. (2.11)
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This flow field is coupled to the plate through

∇h · N = τ h,
1

G
∇4

hζ = −τz + ∇h · (N · ∇hζ) , (2.12)

with

GN = ν tr(e)Ih + (1− ν)e, e =
1

2

(

∇ξ + ∇ξ† + ∇ζ∇ζ
)

, τ = σ|z=α+ζ · n, (2.13)

subject to

ξ = η = ζ =
∂ζ

∂y
= 0 on y = ±1. (2.14)

The dimensionless parameters remaining are the inclination of the duct θ, aspect
ratio of the duct α, Poisson ratio of the plate ν,

G =
3(1 − ν2)ρgy4

0

2d3E
(2.15)

measuring the relative importance of fluid forcing to bending stiffness and G =
Gd2/3y2

0. Only G, θ and α appear in the linear stability analysis.

3. Base state

Our base state (denoted by subscript 0) is driven by gravity alone; the plate is flat
and the flow is steady and unidirectional. The flow profile is decoupled from the
in-plane distortion of the plate and is precisely that for a rigid rectangular duct
(Rosenhead, 1963):

2

sin θ
u0(y, z) = α2−z2−4α2

(

2

π

)3 ∞
∑

n=0

(−1)n

(2n + 1)3
cosh (2n+1)πy

2α

cosh (2n+1)π
2α

cos (2n+1)πz
2α , (3.1)

with v0 = w0 = 0 and p0 = (α − z) cos θ.
The fluid flow imposes a traction on the base of the plate, causing downstream

stretching according to

(1 − ν)

G sin θ
ξ0(y) = α(1 − y2) −

2

3
α3 +

(

2

π

)4 ∞
∑

n=0

4α3

(2n + 1)4
cosh (2n+1)πy

2α

cosh (2n+1)π
2α

, (3.2)

with η0 = ζ0 = 0. For convenience we define a scaled shear stress in the plate as

S(y, α) =
(1 − ν)

G sin θ

∂ξ0

∂y
= −2αy +

(

2

π

)3 ∞
∑

n=0

4α2

(2n + 1)3
sinh (2n+1)πy

2α

cosh (2n+1)π
2α

. (3.3)

Sample base state velocity profiles and displacements are shown in figure 3.

4. Linear stability

To examine the stability of the base state, we perturb each of the variables about
it, f = f0+f1, where f denotes any of u, v, w, p and ζ, and the subscript 1 refers to
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Figure 3. The base state (a) downslope velocity profile 2u0/ sin θ for α = 1 (contours at
intervals of 0.1 from 0.1) and (b) downslope plate displacement profile (1 − ν)ξ0/G sin θ
for α = 0.1, 0.5, 1, 2 and 10.

the perturbation. We then linearize in the perturbation amplitudes f1 and calculate
the growth rate, ω = ωr + iωi, of infinitesimal normal mode perturbations with
downstream wavenumber k: f1 = f̂1(y, z)eikx−iωt. This furnishes the eigenvalue
problem:

−k2u1 +
∂2u1

∂y2
+

∂2u1

∂z2
= ikp1, (4.1)

−k2v1 +
∂2v1

∂y2
+

∂2v1

∂z2
=

∂p1

∂y
, (4.2)

−k2w1 +
∂2w1

∂y2
+

∂2w1

∂z2
=

∂p1

∂z
, (4.3)

iku1 +
∂v1

∂y
+

∂w1

∂z
= 0, (4.4)

with boundary conditions

u1 = v1 = w1 = 0 on y = ±1, z = −α, (4.5)

u1 +
1

2

∂S

∂y
ζ1 sin θ = v1 = w1 + iωζ1 = 0 on z = α, (4.6)

where
1

G

(

∂4ζ1

∂y4
− 2k2 ∂2ζ1

∂y2
+ k4ζ1

)

= p1 − ζ1 cos θ + ikS
∂ζ1

∂y
sin θ, (4.7)

and

ζ1 =
∂ζ1

∂y
= 0 on y = ±1. (4.8)

Here the in-plane displacement equations are omitted because they decouple from
the remainder of the linearized system.

We solved the system (4.1)–(4.8) numerically using a Chebyshev collocation
scheme (Trefethen, 2000) with the boundary conditions imposed explicitly (Weide-
man & Reddy, 2000) and u1 and p1 eliminated. The resulting generalized eigenvalue
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Figure 4. (a) Growth rate and (b) wavespeed for the four least stable modes with
α = tan θ = 1 and G = 1000. Here E denotes an even mode and O an odd mode.
The dotted lines in (b) indicate the centre-line velocity and the average velocity of the
base flow.

problem was solved using the QZ-algorithm. We found that employing an equal
number of collocation points in each direction yielded reasonably fast convergence
rates for most values of α (presumably because the boundary layers in both y and z
are important). The method required prohibitively many points for large k resulting
in some incomplete curves in the data shown in figures 5 and 7.

The dispersion relations for the four least-stable modes with α = tan θ = 1 and
G = 1000 are plotted in figure 4. For k → 0, the dominant mode E2 corresponds
to uniformly over- or underfilling the channel and travels faster than the base-state
flow. At intermediate and large wavenumbers, an even E1 and odd O1 pair of modes
dominate, and for a range of intermediate wavenumbers are unstable. These modes
are destabilized by the traction exerted by the fluid on the base of the plate. They
are stabilized at large wavenumber by bending stiffness and at small wavenumber
by a combination of bending stiffness and the restoring pressure force of the fluid.
The odd mode is more unstable at small k, but the even mode becomes dominant at
intermediate k. This competition reflects the delicate balance between cross-slope
and downslope bending; the former favours the odd mode while the latter favours
the even mode. At large wavenumber, the eigenfunctions become concentrated near
the sidewalls where there is maximum shear and there is little deflection near the
centre-line, with the result that the modal growth rates become indistinguishable.
The unstable waves propagate downslope at a fraction of the average base state
velocity. A multitude of other modes exist with decreasing growth rate, as illustrated
by the additional odd mode O2 in figure 4.

The growth rates and phase speed of the most unstable mode are shown on the
(k,G)-plane for α = tan θ = 1 in figure 5. The flat base state becomes unstable
above a critical value, G = Gc, over an increasingly wide window of wavenumbers.
The most unstable modes are found at increasingly shorter wavelengths and have
slowly decreasing wavespeeds. A selection of neutral stability curves for different
slope angles and aspect ratios is shown in figure 6. For steeper slopes, onset occurs
for smaller driving forces and for longer waves because the component of gravity
driving the underlying shear flow is increased and the stabilizing hydrostatic pres-
sure reduced. As the channel becomes deeper, onset occurs at smaller driving force
and longer waves because larger shear stresses can be generated on the plate. How-
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Figure 5. Dispersion relation for the least stable mode in (k,G) for α = tan θ = 1. (a) Prop-
erties of the growth rate: thin solid curves are contours of ωi drawn at −500, −50, −5, −0.5,
−0.05, 0.05, 0.5 and 5; the bold curve indicates neutral stability. The dashed bold curve
locates the least stable wavenumber for given G. Dotted lines are local analysis approxi-
mations for the long- and short-wave cut-offs and least-stable wavenumber. (b) Properties
of the wave speed: thin curves are contours of c = ωr/k drawn at intervals of 0.02 from
0.01. The dash-dotted curves give the approximate locations of a change in the domi-
nant mode, where the wavespeed is discontinuous (this jump is not indicated where it is
relatively small).
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Figure 6. Neutral stability curves (solid) for (a) tan θ = 1 and α = 0.1, 0.5, 1 and 2; (b)
α = 1 and tan θ = 0.1, 0.5, 1, 2 and 10. Dotted curves are the corresponding local analysis
approximations.

ever, the behaviour becomes independent of the aspect ratio once α exceeds two or
so.

The behaviour of the critical value Gc as a function of slope angle and aspect
ratio is illustrated in figure 7. Panel (a) also displays contours of growth rate, phase
speed and wavenumber for the most unstable mode above onset with α = 1.
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Figure 7. (a) Properties of the least stable mode in (θ,G)-space for α = 1. Solid curves
are contours of growth rate, drawn at 0.1 × 2j , j = 0,. . . ,4; the bold curve is the neutral
stability curve below which the pressure mode with k = 0 dominates. Long-dashed curves
are contours of wavespeed, drawn at 0.0001×2j , j = 2,. . . ,8. Short-dashed curves are con-
tours of wavenumber, drawn at intervals of 2 from k = 6. Insufficient numerical accuracy
prevented further details for large θ and G. (b) Neutral stability curves in (θ,G) space for
α = 0.1, 0.5, 1, 2 and 5.

Finally, figures 8 and 9 present mode profiles for the two most unstable modes
(here E1 and O1) at the G-values marked in figure 5 (α = tan θ = 1). The out-of-
plane displacement takes the form of downslope-directed chevrons with the crests
having an appreciable angle to the axis of the channel, despite the base displacement
being small [c.f. the shear-induced buckles of an isolated elastic plate (Mansfield,
1964; Wong & Pellegrino, 2006; Balmforth et al., 2008)]. The figure also highlights
the increasing concentration of the eigenfunctions to the regions near the sidewalls
with increasing G and k. At onset, the perturbation to the velocity field is appre-
ciable throughout the depth of the channel but with larger growth rates only the
uppermost fluid layer responds to the plate motion.

(a) Local analysis

A crude short-wavelength-style analysis in which we assume that perturbations
vary rapidly in y compared to the variation of the background state provides an-
alytical estimates to complement the numerical stability theory. Decomposing the
perturbations as f1 = f̌1(z)eikx+imy−iωt, we integrate the fluid equations through
the depth of the flow and impose the boundary conditions at z = ±α to obtain a
“dispersion relation”,

ω =
−k sinh2(2ακ)∂S

∂y sin θ + i[4α2κ2 − sinh2(2ακ)]χ

4ακ + sinh(4ακ)
, (4.9)
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Figure 8. Lower panels: out-of-plane displacement profiles with contours at intervals of
0.2 of the maximum. Lighter (darker) curves indicate positive (negative) displacements.
Upper panels: cross-slope velocity profiles (v, w) in the upper half of the channel and
out-of-plane displacements at x = 0 in the corresponding lower panel. Plots are for the
most unstable mode E1 at (a) approximate onset, G = 337, (b) G = 1000 and (c) G = 2000
with α = tan θ = 1 and correspond to the discs in figure 5.

(aii)

(ai) (bi)

(bii) (cii)

(ci)

x x x

zzz

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

2
-1 -0.5 0 0.5 1

y

0

0.5

1

1.5

2
-1 -0.5 0 0.5 1

y

0

0.5

1

1.5

2
-1 -0.5 0 0.5 1

y

Figure 9. Plots for the odd mode O1 corresponding to figure 8.

where κ2 = k2 + m2 and χ = κ4/G + cos θ + kmSsin θ. Because S is a function of
y this relation can only be viewed as a short-wavelength approximation, suitable
when the lengthscale m−1 is much shorter than the plate width.

To estimate the neutral stability curves, we look for the smallest value of G that
gives ωi = 0 over all possible m and y. This minimization requires the value of
Sm(α) = maxy |S(y, α)|, which is plotted in figure 10. Solutions of this algebraic
problem are included in figures 5 and 6 for comparison with the numerical data. The
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Figure 10. Maximum magnitude of the shear S over y as a function of α.

local approximation gives what appears to be a crude lower bound on the neutral
stability curves, and performs best at the lowest and the highest wavenumbers
where the eigenfunction possesses short-wavelength structure in y (as demanded by
the local theory). For small k and large G, m ∼ k−1 and the approximate long-wave
cut-off is

k ≈
4(cos θ/3)3/4

Sm(α) sin θ
G−1/4.

At large k, m ∼ k and the short-wave cut-off is given by

k ≈ (3/4)3/4 [GSm(α) sin θ/2]
1/2

.

The critical value of G is poorly predicted by the local analysis because neither m
nor k is large there.

The local analysis also predicts that the maximum growth rate occurs for m =
−k signS (i.e. wavy perturbations with crests aligned at 45◦ and orientated to take
advantage of the destabilizing effect of the local shear), implying a most unstable
wavenumber,

k ≈ [GSm(α) sin θ/8]
1/2

,

which is also included in figure 5. Overall, the local analysis offers a useful guide to
the stability characteristics, but is only quantitatively accurate at large k.

5. Qualitative experiments

To provide qualitative verification of the theoretical predictions, we performed
a suite of experiments. A 7.6 cm wide, 2.6 cm deep and 1.2 m long channel was
mounted on an inclinable table [the achievable fluid flux effectively limited us to
an operating range of (0◦, 35◦)]. Thera-Band latex exercise bands were placed on
top of the channel to form an elastic skin. Four bands of different thickness were
used and were clamped into place using slats. An elongation test indicated that
the Young’s modulus for all bands was in the range 2 ± 0.4 GPa. The sheets used
were colour-coded: tan (2d = 0.12 ± 0.02 mm), yellow (2d = 0.15 ± 0.02 mm), red
(2d = 0.20 ± 0.02 mm) and green (2d = 0.25 ± 0.02 mm). At the upper end of the
channel a reservoir and solid top plate were inserted (the latter to generate the de-
sired base state). Golden syrup (ρ = 1.4 g cm−3; µ = 2.6± 0.2 and 3.4± 0.2 Pa s at
20 ◦C) was supplied to the reservoir, and the flux through the duct was controlled

Article submitted to Royal Society



12 A.C. Slim, N. J. Balmforth, R. V.Craster and J. C. Miller

10 cm

(b)(a)

inclinable table
channel

slats

latex sheet
reservoir

Figure 11. (a) Experimental set-up and (b) mode shape for the yellow sheet at θ = 22◦.

manually and made as constant as possible using a valve. For θ . 10◦, experiments
could be maintained for several minutes with the help of a pump; for θ > 10◦

experiments could be maintained for at least 30 s. Still images of a deflected laser
beam at 1/3 s intervals permitted measurements of the wavelength and wavespeed.
The experimental set-up is shown in figure 11(a).

With this arrangement, we successfully observed wrinkling of the latex sheet due
to the underlying fluid flow: a sample pattern is shown in figure 11(b). Moreover, the
wrinkles propagated downstream at speeds that were a small fraction of the average
fluid speed. Overall, the observed properties of the wrinkling patterns and the trends
on varying the inclination and the thickness of the latex sheet were consistent with
the theoretical predictions: for experiments performed at angles below a critical
value, the sheet appeared flat; at higher inclination, buckles were observed. As
expected from theory, the critical value was order tens of degrees and increased
with increasing thickness of the elastic sheet. Similarly, the observed wavelengths
were order of centimetres, and decreased with increasing slope and with decreasing
thickness of the elastic sheet, whereas the wavespeed increased with slope. Distinct
chevron patterns much like the linear eigenfunctions were observed, although the
maxima were generally located near the edges, and rarely along the centre-line.
Frequently, the maxima on either side were not in phase suggesting a competition
between even and odd modes of instability, exactly as in the theory.

Despite this qualitative success, we were unable to provide a quantitative valida-
tion of the theory because we found significant problems regarding reproducibility:
experiments with apparently identical set-up had variations of as much as 10◦ in
onset angle. We believe that the problem originates from some initial compression
or tension of the sheet, which is almost impossible to avoid and is unquantifiable.
A similar, although less serious, issue arose in our previous experiments with an
isolated, sheared elastic sheet (Balmforth et al., 2008). There theory predicted that
displacements of the plate in y by fractions of a millimetre could appreciably shift
onset. As for that problem, here we anticipate that the presence of tiny amounts of
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compression or tension can swamp the shear instability, with compression accentu-
ating it and tension eliminating it.

6. Geological application

The surface of “ropy pahoehoe” lava flows has a characteristic corrugated appear-
ance consisting of folds a few centimetres in amplitude and a few centimetres to
tens of centimetres in wavelength (Fink & Fletcher, 1978), resulting from some
mechanism of compression of the cooled, rheologically distinct upper crust. Based
on field studies of solidified flows and movies of active ones, Fink & Fletcher (1978)
suggest that wrinkles are formed where a flow encounters a constriction or a sud-
den change in slope, and the faster moving lava advects upstream crust into crust
near the obstacle to compress and buckle it. Beyond the generation point, the flow
rotates the wrinkles into their characteristic parabolic shape.

A possible alternative mechanism is suggested by the current study: the corru-
gations are a manifestation of shear-induced wrinkling. Although our model is a
crude approximation of a real lava flow, it does capture the most fundamental fea-
tures. Particularly regular wrinkles are formed on channelized lava flows bordered
by “levees” (Fink & Fletcher, 1978; Garry et al., 2006), providing some justification
for our geometry. From a rheological perspective, although lava is a heterogeneous
fluid with significant non-Newtonian, temperature-dependent rheology (Griffiths,
2000), a number of observations indicate that our approximation is reasonable at
leading order. First, the formation of the upper boundary layer (solid or otherwise)
insulates the underlying flow and the temperature in the interior is essentially con-
stant and uniform (Hon et al., 1994). Second, ropes form preferentially relatively
close to the vent where the bubble and crystal contents are comparatively low, and
so the interior fluid may be approximated as Newtonian. The overlying crust is
observed to be a visco-elastic shell, with a brittle upper casing and a high-viscosity
lower cushion (Hon et al., 1994). Our elastic plate formulation provides one possible
idealization of this crust (c.f. Iverson, 1990); we also provide a corresponding anal-
ysis for a very viscous fluid plate in Appendix B (c.f. Biot, 1961; Fink & Fletcher,
1978). The two models share many common features and we concentrate on the
former here. We note that the most immediate short-coming of the model is that it
enforces conservation of crust material, whereas stretching and fracture in conjunc-
tion with solidification of freshly exposed lava can generate new crust in response
to shear.

For the lava flows observed by Fink & Fletcher (1978), θ = 5◦, 2y0 & 2.5 m,
2d . 5 cm and the wavelength is of order 10 cm. Taking representative values
α = 0.5 (Calvari et al., 1994), E = 95 GPa, ν = 0.27 (Schilling et al., 2003)
and ρ = 3000 kgm−3, we predict that a least-stable wavelength of 10 cm requires
a skin thickness of order 0.2 mm. This prediction is appreciably thinner than esti-
mated for the actual flow, but nevertheless is geologically reasonable (Hon et al.,
1994). Thus buckling by shear alone is a possible explanation for ropy pahoehoe
formation, although the theoretically predicted requirements are at the limits of
what is observed. The mode shapes are also in qualitative agreement with the field
observations (compare figures 1 and 8).

It is also worth noting that there is a considerable experimental literature on
laboratory analogue flows utilizing cooling PEG wax (Griffiths et al., 2003; Garry
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et al., 2006, and the references therein). Qualitatively the features produced by
these extruded, cooling flows of wax mimic those of real lava flows: they form levees,
become channelized and once a solidified skin forms may develop surface texture
and regular folding. Our predicted mode shapes are also in qualitative agreement
with these laboratory flows.

7. Conclusions

In this article we have demonstrated that an elastic plate can be buckled through
traction exerted by an underlying fluid shear flow. More precisely, we have explored
linear buckling instabilities in an elastic plate clamped over an inclined duct filled
with fluid flowing under gravity alone. The varying fluid traction across the top of
the duct leads to a destabilizing in-plane shear in the plate, and we have mapped out
the conditions under which this effect drives buckling and classified its character.
Instability is most readily observed for thin sheets on steep slopes and deep channels,
and the most unstable modes take the form of downslope-directed chevron patterns.
These patterns resemble the structures seen on the crusts of pahoehoe lava flows,
leading us to explore whether crustal shear due to underlying lava flow could be
responsible for their formation.

We also successfully conducted a suite of simple experiments to confirm the the-
ory qualitatively. Unfortunately, the experiments were plagued by technical com-
plications. In particular, an uncontrollable amount of slack or tension was probably
introduced in the elastic plate when it was initially clamped into place. The re-
sulting lateral compression swamps the shear-induced instability and prevents any
quantitative comparison with theory. To surmount this issue, a more sophisticated
experiment is needed, which we leave for future work.

Although our main focus has been the buckling of an elastic plate, we have
also given a brief discussion of the corresponding problem when the fluid is coated
by a thin film of much more viscous fluid. Such a skin can also be buckled by
an underlying fluid shear flow, giving another example of G. I. Taylor’s analogy
between an elastic plate and a viscous sheet. Our formulation of this second problem
(containing the fluid equivalents of the Föppl–von Kármán equations) is relatively
novel, and we hope that it proves useful in a variety of other physical problems and
prompts innovative mathematical analysis.
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Appendix A. Derivation of the Föppl–von Kármán equations

This appendix provides an asymptotic derivation of the Föppl–von Kármán equa-
tions for the elastic plate from the three-dimensional equilibrium equations. The
analysis is essentially identical to that of Ciarlet (1979) (see also Antman, 1995)
and we omit details for brevity; novelties are the inclusion of non-dead loads and
the discussion of larger displacements.

We return to dimensional variables. The plate is described by Lagrangian co-
ordinates X̂ for the unstressed reference configuration and Eulerian coordinates
x̂ = X̂ + [ξ̂(X̂), ζ̂(X̂)] for the deformed configuration. The equations are derived in
Lagrangian coordinates before being converted into Eulerian.

Conservation of momentum is given by

∇
X̂
· Ŝ = 0, (A 1)

where subscript X̂ denotes Lagrangian derivatives, Ŝ = Σ̂F̂† is the first Piola–
Kirchoff stress tensor, F̂ = ∇

X̂
x̂
† is the deformation gradient tensor and Σ̂ is the

second Piola–Kirchoff stress tensor. We assume that the material is Hookean, with
linear, isotropic constitutive relation

Σ̂ = 2µ̂Ê + λ̂ tr(Ê)I, (A 2)

where µ̂ and λ̂ are Lamé constants and Ê = (F̂†F̂ − I)/2 is the strain tensor.
Boundary conditions describing fluid forcing of the lower surface and a free

upper surface are

Ŝ
† · N =

{

0 Ẑ = d,

τ̂ (x̂) ds
dS Ẑ = −d,

(A 3)

where ds/dS = |(F̂−1)† · N | and N = (0, 0, 1) is the normal to the plate in its
undeformed configuration.

We pose the following non-dimensionalizations and scalings (emphasizing that
the new unhatted variables are distinct from those in the article proper):

(X̂, Ŷ , Ẑ) = (LX, LY, dZ), (ξ̂, ζ̂) = L′(δξ, ζ), (τ̂h, τ̂z) = µ̂δ3(τ h, δτz), (A 4)

(Σ̂XX , Σ̂XY , Σ̂Y Y , Σ̂XZ , Σ̂Y Z , Σ̂ZZ) = µ̂δ2(ΣXX , ΣXY , ΣY Y , δΣXZ , δΣY Z , δ2ΣZZ),

where δ = L′/L � 1, L′ is a typical out-of-plane displacement and L is a character-

istic cross-stream length scale. The scalings for components of Σ̂ are forced by the
governing equations and boundary conditions; we also scale and non-dimensionalize
Ŝ in the same way. We approximate the equations to leading order in δ, assuming
∆ = d/L′ is order unity.

From (A 2) and the scalings for Σ̂ we find at leading order

ξ = −∆Z∇Hζ + ξ̄(X, Y ), ∂ζ/∂Z = 0, (A 5)
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where ξ̄ is the in-plane displacement of the centre-plane (Z = 0) and subscript H
denotes components in the (X, Y ) plane, and

ΣXX =
2(λ̂ + µ̂)

λ̂ + 2µ̂

(

2
∂ξ

∂X
+

[

∂ζ

∂X

]2
)

+
λ̂

λ̂ + 2µ̂

(

2
∂η

∂Y
+

[

∂ζ

∂Y

]2
)

, (A 6)

ΣXY = 2

(

∂ξ

∂Y
+

∂η

∂X
+

∂ζ

∂X

∂ζ

∂Y

)

, (A 7)

ΣY Y =
λ̂

λ̂ + 2µ̂

(

2
∂ξ

∂X
+

[

∂ζ

∂X

]2
)

+
2(λ̂ + µ̂)

λ̂ + 2µ̂

(

2
∂η

∂Y
+

[

∂ζ

∂Y

]2
)

. (A 8)

Substituting (A 4) into (A 1) and (A 3) we obtain

∂ΣXX

∂X
+

∂ΣXY

∂Y
+

1

∆

∂ΣXZ

∂Z
= 0, (A 9)

∂ΣXY

∂X
+

∂ΣY Y

∂Y
+

1

∆

∂ΣY Z

∂Z
= 0, (A 10)

∂SXZ

∂X
+

∂SY Z

∂Y
+

1

∆

∂SZZ

∂Z
= 0, (A 11)

subject to

(ΣXZ , ΣY Z) =

{

0 Z = 1,

τ h Z = −1,
, SZZ =

{

0 Z = 1,

τZ Z = −1,
(A 12)

at leading order. Integrating (A 9)–(A 11) across the thickness of the plate, we obtain
the non-dimensional Föppl–von Kármán equations in Lagrangian coordinates as

τh = ∇H · N,
8

3
∆3 λ̂ + µ̂

λ̂ + 2µ̂
∇4

Hζ = −τz + ∆∇H · τ h + ∇H · (N · ∇Hζ) , (A 13)

where N = 4∆e + 4∆λ̂ tr(e)IH/(λ̂ + 2µ̂) and 2e = ∇H ξ̄ + ∇H ξ̄
†

+ ∇Hζ∇Hζ.
The term ∆∇H · τh in (A 13) can be omitted on the grounds that if the pressure
perturbation scales as µ̂δ4, then the in-plane traction perturbations also scale as
µ̂δ4 but our choice in (A 4) is one order lower (to accommodate larger in-plane
tractions in the base state, but for which ∆∇H · τ h = 0).

Finally, we convert to Eulerian coordinates by noting that ∇H = ∇h + O(δ2)
and the leading order equations remain valid. The system (A 13) is now equivalent

to the system (2.3) on redimensionalizing and identifying ν = λ̂/2(λ̂ + µ̂) and

E = µ̂(3λ̂ + µ̂)/(λ̂ + µ̂).
The terms in (A 13) all remain at the same leading order provided δ1/3 � ∆ �

δ−1/3, which limits the magnitude of ∆. In turn, this limits how large we may take
G to become in order for the plate equations to remain valid. Specifically, we find
G � y0/d, which allows for relatively large numerical values of G provided the plate
is thin enough.

Appendix B. A viscous fluid plate

In this appendix, we present complementary results for the buckling of a thin, very
viscous fluid overlying the channel. Such skins have similar behaviour in compression
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to elastic beams (c.f. the beam analogy of Ribe, 2004) and we find a similar shear
instability to that explored in the main text.

We derive the fluid equivalent of the Föppl–von Kármán equations; the approach
is similar to that given in Appendix A except we remain in Eulerian coordinates.
We commence with a dimensional formulation. The skin is initially uniform, flat
and is contained between αy0 − d ≤ ẑ ≤ αy0 + d. At later times it is contained
between ĥ−(x̂, ŷ, t̂) ≤ ẑ ≤ ĥ+(x̂, ŷ, t̂).

Conservation of momentum (ignoring gravity) and mass in the three-dimensional
skin are given by

∇̂ · σ̂p = 0, ∇̂ · ûp = 0, σ̂p = −p̂pI + µp

(

∇̂ûp + ∇̂û
†
p

)

, (B 1)

where subscript p denotes quantities pertaining to the plate fluid. Boundary condi-
tions are

σ̂p · n̂ =

{

0 ẑ = ĥ+

τ̂ ẑ = ĥ−
, ûp = û on ẑ = ĥ−,

∂ĥ±

∂t̂
+ ûp

∂ĥ±

∂x̂
+ v̂p

∂ĥ±

∂ŷ
= ŵp on ẑ = ĥ±. (B 2)

We non-dimensionalize and scale these equations similarly to (A 4):

(x̂, ŷ, ẑ − αy0, ĥ
±) = (Lx, Ly, dz, dh±), p̂p = µp

U

L
ε2pp,

ûp = Uε(εup, εvp, wp), (τ̂ h, τ̂z) = µp
U

L
ε3(τ h, ετz), (B 3)

(σ̂pxx, σ̂pxy, σ̂pyy, σ̂pxz , σ̂pyz, σ̂pzz) = µp
U

L
ε2(σpxx, σpxy, σpyy, εσpxz, εσpyz, ε

2σpzz),

where L is the length-scale of horizontal variation, ε = d/L � 1 and the velocity
scale U is assumed order unity, which must be verified a posteriori. We approximate
the equations to leading order in ε.

From (B 1) and the scalings of σ̂p we find to leading order

up = −z
∂wp

∂x
+ ūp(x, y), vp = −z

∂wp

∂y
+ v̄p(x, y),

∂wp

∂z
= 0, (B 4)

and

σpxx = 4
∂up

∂x
+ 2

∂vp

∂y
, σpxy =

∂up

∂y
+

∂vp

∂x
, σpyy = 2

∂up

∂x
+ 4

∂vp

∂y
, (B 5)

where the barred velocities are the analogues of the centre-plane displacement for
the elastic plate. The governing equations become

∂σpjx

∂x
+

∂σpjy

∂y
+

∂σpjz

∂z
= 0, (B 6)

subject to

σpjz −
∂h±

∂x
σpjx −

∂h±

∂y
σpjy =

{

0 z = h+,

τj z = h−,
(B 7)

Article submitted to Royal Society



18 A.C. Slim, N. J. Balmforth, R. V.Craster and J. C. Miller

c ↑

ωi ↑

1

10

100

0.1 1 10 100
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
ωr k

ωi G

Figure 12. The fluid plate. (a) The spectrum of ω for G = 50, α = tan θ = 1 and k = 1.
Modes are converged except very close to the origin. (b) The growth rate (solid contours
at intervals of 0.02 from 0.01) and wavespeed (dashed contours at intervals of 0.002 from
0.001) of the most unstable mode in (k,G)-space for α = tan θ = 1.

where j denotes x, y or z. The kinematic conditions imply

∂h+

∂t
=

∂h−

∂t
= wp(x, y, t), (B 8)

and we have h+ − h− = 2 at leading order. We define 2h = h+ + h−.
Now integrating (B 6) across the plate and imposing (B 7), we obtain the fluid

equivalents of the Föppl–von Kármán equations

τh = ∇h · N,
8

3
∇4

hwp = −τz + ∇h · τh + ∇h · (N · ∇hh) , (B 9)

where N = 4[e + tr(e)Ih] with 2e = ∇h(ūp, v̄p) + ∇h(ūp, v̄p)
† − 2h∇h∇hwp. As for

the elastic case, we neglect ∇h · τh.
Re-dimensionalizing we obtain the governing equations

τ̂h = ∇h · N̂,
8

3
µpd

3∇4
hŵp = −τ̂z + ∇h ·

(

N̂ · ∇hĥ
)

, (B 10)

where N̂ = 4µpd[ê+tr(ê)Ih] and 2ê = ∇̂h(ˆ̄up, ˆ̄vp)+∇̂h(ˆ̄up, ˆ̄vp)
†−2h∇̂∇̂hŵp. At the

side-walls, ŷ = ±y0, we have the equivalent of the clamped boundary conditions,
ˆ̄up = ˆ̄vp = ŵp = ∂ŵ/∂ŷ = 0. The kinematic conditions and continuity of velocity

imply ∂ĥ/∂t̂ = ŵp = ŵ and ûp = v̂p = 0 on the base of the plate.
Using (B 10) and the associated boundary conditions in place of (2.3) in the

governing equations (2.1)–(2.7), we obtain the equivalent system for a viscous
plate (identifying ζ with h). On non-dimensionalizing according to (2.8) with ˆ̄u =
ūρgy3

0/µpd, we arrive at essentially identical stability equations to (4.1)–(4.8) ex-
cept that the biharmonic operator acts on w rather than ζ and

G =
3µy3

0

8µpd3
.

We note that
for the viscous plate equation (B 10) to be valid, the base state velocity within

the plate must scale according to (B3) and so µpd
3 . ρgy5

0.
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Sample stability results for this model are shown in figure 12. Panel (a) plots
the eigenvalue spectrum for a particular set of parameter values. The two distinctly
unstable modes have a similar perturbation profile to those plotted in figures 8
and 9 with even and odd chevrons directed downslope. The origin of the complex
plane forms a limit point of the spectrum; for modes closer and closer to it, more
and more cross-slope oscillations are accommodated. The dispersion relation for
the most unstable mode is plotted in panel (b). As for the elastic case, a window
of intermediate wavelengths are unstable.
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