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We consider a nonlinear diffusion equation describing the planar spreading of a viscous

fluid injected between an elastic sheet and an underlying rigid plane. The dynamics de-

pends sensitively on the physical conditions at the contact line where the sheet is lifted

off the plane by the fluid. We explore two possibilities for these conditions (or “regulariza-

tions”): a pre-wetted film and a constant-pressure fluid lag (a gas-filled gap between the

fluid edge and the contact line). For both flat and inclined planes, we compare numerical

and asymptotic solutions, identifying the distinct stages of evolution and the correspond-

ing characteristic rates of spreading.

1 Introduction

Many physical problems involve the spreading of a viscous fluid layer under gravity. If

the layer is shallow, lubrication theory is often used to describe the fluid dynamics. This

furnishes a nonlinear diffusion equation for the fluid depth, h, that is degenerate at the

edge where h goes to zero. Correctly modelling the advance of this front has obvious

practical importance and has attracted much research (see [3, 6]).

In the simplest case when gravity provides the only pressure force, the diffusion equa-

tion is second order and the advance of the front can be correctly predicted by imposing

the condition h = 0 there, the front speed then being determined by mass conservation

[15]. When surface tension is introduced, the ‘thin film’ equation is fourth order in space

and an additional condition is required to determine the contact angle tan−1(hx). Un-

fortunately, for a moving front that angle is not, in general, constant. Moreover, there

are mathematical difficulties in dealing with a vanishing diffusivity at the contact line.

Consequently, for practical purposes some form of regularization is usually adopted to

avoid these issues. One common approach is to add a thin pre-wetted film of fluid, thus

avoiding the requirement for any boundary conditions at a genuine contact line or ‘front’

[23]. Unsatisfyingly, however, the solution can turn out to depend upon the pre-wetted

film depth, δ, and may not converge to any limit as that depth is decreased towards zero

[27]. Other forms of reqularization suffer from a similar problem. Indeed, even outside

the confines of the thin film approximation, full continuum theories of fluid mechanics

are unable to describe the flow near the contact line without introducing molecular-scale

physics [3, 6].

In this paper we consider spreading beneath a thin elastic sheet, when pressure forces

result from bending and stretching of the sheet, as well as from gravity. This gives rise
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to a sixth-order diffusion equation, for which it is again convenient to regularize the

behaviour near the front [9]. We consider two alternatives: (i) a pre-wetted film, and

(ii) a fluid lag. For the latter, there is a finite fluid edge, but the sheet does not touch

down on the underlying substrate there; rather, the edge lags the touchdown position,

leaving a small gas-filled gap. The gas in this gap is held at a given constant pressure,

−σ, corresponding to that for which the fluid vaporizes, or to some other pressure if

other gasses are present (if the sheet is permeable, for instance). A similar approach is

commonly used in models of fluid-driven fracture [19, 10, 12] and is motivated by the

fact that the pressure close to the advancing front becomes large and negative, causing

dissolved gasses to exsolve from the fluid.

We explore the planar spreading of fluid that is supplied at a constant rate from

a line source on either a flat or a sloping substrate. Using a combination of numerical

computation and asymptotic analysis, we determine in detail how the two regularizations

of the fluid edge impact the dynamics in the limit that the pre-wetted film depth δ

becomes small, or the lag pressure σ becomes large. Our analysis is similar to two previous

studies: Flitton & King [9] examined the spreading over a flat surface of a constant

volume, and Lister, Neufeld & Vella [21] considered the axisymmetric version of our

problem.

Applications for which this study is relevant include geophysical, engineering and bio-

logical problems. The growth of magma intrusions and fluid-driven opening of fractures

in the Earth’s crust can be described using a model of this type [22, 4], and analogous

models for turbulent fluid flow have been used to describe subglacial floods [7, 26]. Similar

models have application to the manufacture of silicon wafers [18, 16], the development

of micro-electro-mechanical systems [14], the peeling of an elastic sheet from an adhesive

[5], “elastocapillarity” [1], the passage of air flow in the lungs [11], the operation of vocal

cords [13], and the suppression of viscous fingering [24].

The paper is organized as follows. In section 2 the physical problem is described and

we introduce the governing diffusion equation. In section 3 we consider the dynamics of

the front, describing the regularizations and summarizing the effect these have on the

local structure of the solutions in the limit δ → 0 or σ → ∞. We then describe the

numerical and asymptotic results for solutions on the flat, concentrating on the problem

with bending stress in section 4 and with tension in section 5. Solutions on a slope are

then considered; those with bending in section 6, and with tension in section 7.

2 Model equations

2.1 Dimensional equations

We consider the situation shown in figure 1: a fluid is injected at the interface between a

rigid substrate and a deformable elastic sheet. The normal displacement of the sheet is

h(x, t), and the fluid flow in the gap is modelled using lubrication theory, for which

ht + Jx = w, J =
h3

12µ
(ρg tan θ − px) , (2.1)

where J(x, t) is the fluid flux along the gap, ρ and µ are the fluid’s density and viscosity,

θ is the angle of the underlying slope, g is the gravitational acceleration, and p(x, t) is
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Figure 1. Diagram showing setup with close ups of the contact line for the two
regularizations.

the pressure at the base of the fluid layer. The source term w is taken to be either a point

source with strength Q at the origin, or is spread over a vent of finite width.

The fluid pressure is dictated by the elastic forces in the sheet and the hydrostatic

pressure in the fluid. Modelling the sheet as a beam of thickness d, Young’s modulus E,

and Poisson ratio ν, we have

p =
Ed3

12(1− ν2)
hxxxx − Nhxx + ρgh, (2.2)

relative to the pressure in the absence of any deformation, which includes the uniform

weight of the sheet. The tension, N , is given by

N = Ed
(

ξx + 1
2h2

x

)

, (2.3)

where ξ(x, t) is the in-plane displacement. In the thin layer limit, the fluid traction acting

tangential to the base of the sheet is much smaller than the normal force (the lubrication

pressure), and so the longitudinal force balance on the sheet demands ∂N/∂x = 0; i.e.

N(t) is uniform in space. For related reasons, the in-plane displacement ξ is much smaller

that the out-of-plane deflection h, allowing one to discard any lateral motion of the sheet

in computing the fluid flux in (2.1). If there is no longitudinal displacement of the sheet

for x ≥ Ld(t) and x ≤ −Lu(t), then the integral of (2.3) implies that

N =
Ed

Lu + Ld

∫ Ld

−Lu

1
2h2

x dx. (2.4)

2.2 Dimensionless equations

Dimensions are removed by writing x = Lx̂, h = Hĥ, t = (LH/Q)t̂, and p = P p̂, where L,

H and P = 12µQL/H3 are characteristic length, depth, and pressure scales. On dropping

the hat decoration, the dimensionless equations become

ht =
[

h3 (px − S)
]

x
+ w, (2.5)

where

p = B∂4h

∂x4
− T N

∂2h

∂x2
+ Gh, N =

1

Lu + Ld

∫ Ld

−Lu

1
2h2

x dx. (2.6)
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Bending Tension Gravity Slope

Depth t5/9 t5/11 t1/5 t0

Length t4/9 t6/11 t4/5 t

Table 1. Potential similarity scalings when a particular term dominates the pressure

gradient.

The source function w(x) is either Dirac’s delta function or is spread over a vent of finite

dimensionless width, xv; in practice, we use 3
4 max(0, x2

v − x2)/x3
v. The parameters are

B =
Ed3

12(1− ν2)

H
PL4

, T =
EdH3

PL4
, G =

ρgH
P , S =

L
HG tan θ. (2.7)

These four parameters control the relative importance of the forces of bending and ten-

sion, and gravity acting normal to or down the slope (or simply “gravity” and “slope”,

for short). If one of these forces dominates the others in the pressure gradient, a similarity

scaling for the fluid depth and length might be expected (e.g. [20]); these scalings for a

constant rate of injection are summarized in table 1. Particular choices of the dimensional

length and depth scales, L and H, allow two of the parameters to be set to 1.

3 Contact line dynamics

3.1 The need for regularization

If the fluid domain is finite, with expanding edges at x = −Xu(t) or Xd(t), then mass

conservation requires

Ẋ = h2(S − px) at x = X(t) =

{

−Xd

Xu.
(3.1)

Three further boundary conditions are required at each edge (or two if B = 0), and if we

were to assume that the sheet meets the substrate smoothly at that point, a plausible

choice is h = hx = hxx = 0. However, it is in fact impossible to construct solutions to

(2.5) that have a genuine edge that advances at finite speed [9]. To demonstrate this, one

observes that the local behaviour as x → X(t) and h → 0 is governed by

−Ẋhx ∼
[

h3 (Bhxxxxx − T Nhxxx + Ghx − S)
]

x
. (3.2)

Seeking a solution h ∼ (X − x)m for some exponent m, we find the dominant balance

(provided B 6= 0),

mẊ(X − x)m−1 ∼ Bm(m − 1)(m − 2)(m − 3)(m − 4)(4m − 5)(X − x)4m−6. (3.3)

Matching exponents requires m = 5/3, but then the sign of term on the left is positive

and that on the right is negative, making this balance unfeasible. A similar result holds

if B = 0 [17]. We conclude that the model described by (2.5) and (2.6) on a finite domain

is incomplete, and are forced to consider some form of regularization.
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3.2 The pre-wetted film

In this model we assume that a thin film is present everywhere and pose (2.5) on an

infinite domain with h → δ as |x| → ∞. There are no longer any genuine fluid fronts, but

the depth decreases sharply towards the thickness of the film at two expanding positions

that can be identified as effective contact lines. For definiteness, we locate these fronts

at x = X(t), where h(X, t) = 2δ and X = −Xu(t) or Xd(t); provided δ � 1, the precise

multiple of δ chosen is of no consequence. This device further enables us to compute

the tension in (2.6) if we adopt Lu = Xu and Ld = Xd. Note that, implicitly, we

therefore assume that the viscous traction in the pre-wetted film is sufficient to anchor

the overlying elastic sheet in place without slipping (enforcing ξ = 0 for x < −Xu and

x > Xd), even though we ignore its effect on the sheet above the main fluid current. The

key point in justifying this assumption is that the pre-wetting film is introduced here as

a regularization of the model, not necessarily because one is really there.

With the pre-wetted film, our strategy for numerically solving (2.5)-(2.6) is first to

truncate the infinite domain and discretize x with a uniform grid on a finite computational

domain that is larger than the final extent of the spreading current. The tension integral is

computed by quadrature and after using centred finite differences for spatial derivatives,

we integrate the resulting system of ODEs in time using a standard stiff integrator. The

initial condition is h(x, 0) = δ, and, for purposes of illustration, we mostly include w as

a line source at x = 0. For spreading over a horizontal surface, we exploit symmetry to

consider only half the domain, 0 ≤ x, imposing hx(0, t) = hxxx(0, t) = 0.

3.3 The fluid lag

In this model the sheet loses contact with the fluid at x = X(t) = −Xu(t) and Xd(t),

and then touches down on the substrate at x = L(t) = −Lu(t) and Ld(t). The regions

−Lu < x < −Xu and Xd < x < Ld are filled with gas at pressure −σ. Over these ‘lags’,

h represents the deflection of the sheet, and the constant pressure requires (cf. (2.6)),

Bhxxxx − T Nhxx = −σ. (3.4)

At x = L, we apply the contact conditions h = hx = hxx = 0, and we require continuity of

h and its first four derivatives at the fluid fronts, x = X . Note that, given the hydrostatic

contribution to the pressure, p − Gh = −σ at the top of the fluid and the pressure is

therefore continuous (cf. (2.6) and (3.4)); surface tension and the shape of the fluid front

over the gap are not considered. A similar set of conditions was used by Aristoff et al in

a related problem [1].

Whilst (3.4) is straightforward to solve analytically, the solution takes a particularly

simple form if only one of the bending and tension terms are present. With only the

bending term (T = 0), the solution satisfying h = hx = hxx = 0 at x = L is

h =
σ

24B (L − x)3(L − x − `) + h(X) (L − x)3/`3, (3.5)

where ` = L − X is the unknown ‘lag’. The remaining continuity conditions are then

72 Bh(X) + 24B`hx(X) − σ`4 = 0, 24Bh(X)− 4B`2hxx(X) − σ`4 = 0,

24 Bh(X) + 4B`3hxxx(X) − 3σ`4 = 0, Bhxxxx(X) + σ = 0, (3.6)
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Figure 2. Boundary layer solutions for (a) bending and (b) tension. Dashed lines are for the
pre-wetted film, solid lines are for the fluid lag. Insets show a magnification close to ξ = 0 and
the crosses indicate the position of the fluid edge.

which serve to determine ` and to provide three boundary conditions at x = X . Note

that h = O(σ`4), so the lag distance becomes small for h → 0 and σ � 1.

If only tension is included (B = 0) the equation is lower order and we can demand

only h = hx = 0 at x = L, and continuity of h, hx and hxx at x = X . The equation (3.4)

then has solution

h =
σ

2T N
(L − x)2, (3.7)

and the continuity conditions at x = X are

2T Nh(X) − σ`2 = 0, T Nhx(X) + σ` = 0, T Nhxx(X) − σ = 0, (3.8)

which determine ` and provide two boundary conditions at x = X .

The numerical method with this regularization consists of first mapping the area oc-

cuppied by the expanding fluid onto a fixed domain, applying the boundary conditions

(3.6) or (3.8) at each edge, and evolving those positions using (3.1). We then discretize

the mapped domain, approximating derivatives with centred differences and evaluating

N with quadrature, and advance the system in time with the stiff integrator. A finite

width and nonzero depth are required to initialize the computation. We therefore adopt

the distributed source w(x), taking xv = 1 and the initial h to be a small bulge with a

quartic shape spanning the vent. For currents on a horizontal surface, we again exploit

symmetry and compute the solution over only half of the domain, 0 ≤ x ≤ X(t) ≡ Xd(t).

For the problems on a slope, the upslope and downslope regions, −Xu(t) ≤ x ≤ 0 and

0 ≤ x ≤ Xd(t), are mapped separately onto fixed grids.

3.4 The boundary layers at the fluid fronts

In the following sections we focus on the effect of the regularizations as the pre-wetted film

becomes thin, δ � 1, or as the pressure in the lag region becomes large and negative,

σ � 1. In either limit, the regularization is felt primarily over a thin boundary layer

adjoining the fluid fronts, x = X(t). The short lengthscale of these boundary layers

indicates that the term with highest derivative dominates the right-hand side of the
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balance in (3.2). We therefore rescale the variables according to

x = X(t) + ε ξ, h(x, t) = ∆ g(ξ), (3.9)

where (ε, ∆) � 1. These small parameters can be chosen so that

Ẋε5 = B∆3 if B 6= 0, or Ẋε3 = T N∆3 if B = 0, (3.10)

and either ∆ = δ for the pre-wetted film or ∆ = σε4/B for the fluid lag (in view of the

depth scale h = O(σ`4/B) over the gas-filled gap; if B = 0, ∆ = σε2/T N instead). The

function g(ξ) then satisfies

−gξ = (g3gξξξξξ)ξ (B 6= 0) or gξ = (g3gξξξ)ξ (B = 0). (3.11)

The boundary conditions to be imposed on (3.11) depend on the choice of regularization.

The details of the problems for both of our regularizations and the two choices, B 6= 0

and B = 0, are relegated to Appendix A; figure 2 summarizes the four possible boundary

layer solutions. The limiting behaviour as ξ → −∞ is either

g ∼ 1
2Γξ2 or g ∼ −31/3ξ(ln−ξ)1/3, (3.12)

depending on whether bending or tension dominates the pressure gradient.

Rewriting this limiting behaviour in terms of the original variables, we derive the

following matching conditions on the bulk of the flow at x = X(t): if bending is included,

h = 0, hx = 0, hxx =

{

Γδ−1/5B−2/5Ẋ2/5 (pre-wetted film),

Γσ1/7B−3/7Ẋ2/7 (fluid lag),
(3.13)

where Γ ≈ 1.35 and Γ ≈ 1.77 are numerically determined constants. If B = 0,

h = 0, hx =

{

−31/3(ln 1/δ)1/3T −1/3N−1/3Ẋ1/3 (pre-wetted film),

−31/3(ln σ)1/3T −1/3N−1/3Ẋ1/3 (fluid lag).
(3.14)

If N is constant, these final conditions represent Tanner’s law for the dynamic contact

angle at a moving contact line [25]. The equivalent conditions on the curvature in (3.13)

represent a modified version of this law for higher derivatives [9].

4 Flat solutions with bending and gravity

We concentrate first on the flat case in which only bending and gravity contribute to the

pressure: B = G = 1 and T = S = 0. The governing equation is then

ht =
[

h3 (hxxxxx + hx)
]

x
+ w. (4.1)

A numerically calculated solution is shown in figure 3 for the case of the pre-wetted film,

with w taken as a line source at x = 0. Two distinct phases of the injection can be

identified: a small time uniform pressure phase, in which spreading is controlled by the

conditions at the edge, followed by a long time evolution towards self-similar gravity-

dominated spreading. Over each phase, characteristic temporal scalings emerge for the

extent, X(t), and central depth, H(t) = h(0, t), of the current (figure 3(c)-(d)).
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Figure 3. Numerical solutions for bending and gravity with the pre-wetted film with δ = 10−2.
Panel (a) shows snapshots of the solution at t = 2, 4 and t = 6, 10, . . . , 50; panel (b) adds the
snapshots for t = 200, 400, . . . , 4000. Panel (c) shows the evolution of the fluid edge x = X(t),
and panel (d) shows the evolution of the central height H = h(0, t). The lighter (red) pentagrams
in panels (c) and (d) show the early time solution from section 4.1, and the dots in panel (a)
show an example profile from that solution. Dark (black) pentagrams show the late time solution
from section 4.2, and the dots in panel (b) show the profile predicted at the final time from that
solution.

4.1 Early time : uniform pressure

During the early time evolution the fluid does not significantly spread laterally and the

pressure is approximately uniform, p ≈ P (t), except very close to the edge. The shape

therefore evolves quasi-statically, with

hxxxx + h = P, 0 ≤ x ≤ X(t). (4.2)

The symmetry conditions hx = hxxx = 0 apply at x = 0, and the approximate boundary

conditions from (3.13) at x = X(t). The solution to (4.2) is

h =
H(CS + cs)

(C − c)(S − s)

[

1 − (Cs + Sc)

(CS + cs)
cosh

x√
2

cos
x√
2
− (Cs + Sc)

(CS + cs)
sinh

x√
2

sin
x√
2

]

,

(4.3)

where h(0.t) ≡ H(t) = P (t)(C − c)(S − s)/(CS + cs), and

C = cosh
X√
2
, S = sinh

X√
2
, c = cos

X√
2
, s = sin

X√
2
. (4.4)

The edge curvature condition from (3.13) is

hxx(X) =
H(CS − cs)

(C − c)(S − s)
=

{

Γδ−1/5Ẋ2/5 (pre-wetted film).

Γσ1/7Ẋ2/7 (fluid lag).
(4.5)
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Figure 4. Asymptotic solutions for flat spreading. (a) Early time solution for bending and
gravity, from (4.3)-(4.7) for δ1/7t = 1, 2, . . . , 10. (b) Late time solution for bending and gravity,
from (4.13), (4.14) and (4.18), for t̂ = 2, 4, . . . , 20. (c) Early time solution for tension and gravity,
from (5.3)-(5.6), for (ln 1/δ)3/7t = 1, 2, . . . , 10. (d) Late time solution for tension and gravity,
from (4.13), (4.14) and (5.16), for t̂ = 2, 4, . . . , 20.

Global mass conservation implies the volume constraint

1
2 t =

∫ X

0

h(x, t) dx = H
(CS + cs)X − (S2 + s2)

√
2

(C − c)(S − s)
, (4.6)

in which we have used the solution (4.3) for h. Hence, on eliminating H(t), the edge

condition becomes

(CS − cs)t

4[(CS + cs)X − (S2 + s2)
√

2]
=

{

Γδ−1/5Ẋ2/5 (pre-wetted film),

Γ̂σ1/7Ẋ2/7 (fluid lag),
(4.7)

which constitutes an ordinary differential equation for X(t). The numerical solution to

(4.7) is included in figure 3, and the evolving shape predicted by (4.3) is shown figure 4.

For small times, t � δ−1/7 or t � σ1/9, X is relatively small and (4.3) reduces to the

quartic

h = H
(

1 − x2/X2
)2

. (4.8)

In this limit, (4.7) has the power law behaviour

X ∼
{

A δ1/17 t7/17

A σ−1/23 t9/23
H ∼

{

(15/16A) δ−1/17 t10/17 (pre-wetted film),

(15/16A) σ1/23 t14/23 (fluid lag),
(4.9)

where

A = (15/2Γ)5/17(17/7)2/17 ≈ 1.84, A = (15/2Γ)7/23(23/9)2/23 ≈ 1.68. (4.10)

For large times, t � δ−1/7 or t � σ1/9, the profile in (4.3) becomes almost uniform

with h ≈ H , and the solution tends towards

X ∼
{

δ1/7(4Γ)−5/7t,

σ−1/9(4Γ)−7/9t,
H ∼

{

1
2δ−1/7(4Γ)5/7 (pre-wetted film),

1
2σ1/9(4Γ)7/9 (fluid lag);

(4.11)
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i.e. H becomes constant and X grows linearly in time, as seen in figure 3.

Substituting these predictions into the original equation, one finds that constant pres-

sure is established for t � δ9/5 or t � σ9/11, equivalent to the time taken for the current

to become sufficiently long that the boundary layer develops at the contact line. More-

over, the approximation breaks down when t = O(δ−5/7) or t = O(σ7/9), at which point

the time derivative ht can no longer be neglected and a pressure gradient develops. At

such times, the length of the current is relatively large, X = O(δ−4/7) or X = O(σ2/3),

indicating that bending becomes unimportant over the bulk of the fluid layer.

4.2 Late time: convergence to gravity control

For the late time behaviour, and concentrating for the moment on the pre-wetted film,

we rescale the variables according to

t = δ−5/7t̂, x = δ−4/7x̂, h = δ−1/7ĥ, X = δ−4/7X̂. (4.12)

To leading-order, we then recover a standard equation describing viscous spreading under

gravity:

ĥt̂ =
(

ĥ3ĥx̂

)

x̂
, 0 < x̂ ≤ X̂(t̂), (4.13)

with

−ĥ3ĥx̂ = 1
2 at x̂ = 0, X̂t̂ = −ĥ2ĥx̂ at x̂ = X̂. (4.14)

Unlike the problem considered by Huppert [15] and others, however, the fluid depth at

the edge, Ĥ1 ≡ ĥ(X̂), is not zero. Instead, the bending term reasserts its influence over

a layer adjacent to the front region; this edge layer connects the interior of the gravity

current to the contact line and has a thickness of δ4/7 in terms of the new coordinate x̂

(i.e. it is O(1) in terms of x). Writing x̂ = X̂ − δ4/7y, the leading order equation over

the edge layer is

ĥyyyyy + ĥy = 0 with ĥ → Ĥ1 as y → ∞. (4.15)

The conditions (3.13) require

ĥ = ĥy = 0, ĥyy = ΓX̂
2/5

t̂
, at y = 0. (4.16)

The solution is

ĥ = Ĥ1

[

1 − e−y/
√

2

(

cos
y√
2

+ sin
y√
2

)]

, (4.17)

with

Ĥ1 = ΓX̂
2/5

t̂
. (4.18)

This last result determines the extra condition required to solve the interior problem in

(4.13)-(4.14). A numerical solution is required (but is more straightforward than for the

original sixth order equation) and is shown in figure 4. The evolution of the fluid edge

and centre height from this solution are also included in figure 3. The initial condition

for the calculation (begun at small, but finite t̂) is taken from the limiting behaviour of

the early time solution in section 4.1: ĥ(x̂, 0) = 1
2 (4Γ)5/7 is uniform while X̂ ∼ (4Γ)−5/7t̂.

As t̂ → ∞, the front decelerates and the edge height Ĥ1 tends towards zero. The
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Figure 5. Numerical solutions for pure bending with the pre-wetted film. Panels (a) and (b)
show the positions of the fluid edge X(t) and the maximum deflection H(t) for the three values of
film thickness shown. Pentagrams show the predictions of the analysis in (4.9). Panel (c) shows
final shapshots for the same solutions (main panel), and 10 snapshots of h for the computation
with δ = 10−3. Panel (d) shows the same data as (c) (including the inset), plotted using the
scaled variables (main panel), and a close up of the edge for the final snapshots (inset). The
dots show (1 − x2/X2)2.

solution then converges to the similarity solution of (4.13)-(4.14) that results when ĥ = 0

at x̂ = X̂. In terms of the original variables, the similarity solution,

h → t1/5f(x/t4/5), (4.19)

satisfies

1

5
f − 4

5
ηfη =

(

f3fη

)

η
, −f3fη = 1

2 at η = 0, −f3fη = f = 0 at η = η1.

(4.20)

The long time spreading is therefore given by

X ∼ η1 t4/5, H ∼ f(0) t1/5, (4.21)

where η1 ≈ 0.66 and f(0) ≈ 1.00 are determined by numerical solution of (4.20).

For the case of the fluid lag, the relevant scalings are

t = σ5/9 t̂, x = σ4/9x̂, h = σ1/9ĥ, X = σ4/9X̂, w = δ−4/9ŵ, (4.22)

and the leading order problem to solve is then the same as (4.13)-(4.14), but with the

boundary condition (4.18) replaced by

Ĥ1 = ΓX̂
2/7

t̂
. (4.23)
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Figure 6. Numerical solutions for pure bending with the fluid lag, showing the same informa-
tion as in figure 5, with the pentagrams showing the analytical result from (4.9). The inset in
panel (d) shows a close up near the edge, plotted using the scaled coordinates of the boundary
layer from appendix A.

4.3 Pure bending

If only the bending term controls the spreading and there is no gravity, the quartic shape

from (4.8) and the power law behaviour in (4.9) apply indefinitely. There are two notable

features of this solution.

First, spreading is entirely controlled by the behaviour close to the contact line. The

smaller the pre-wetted film or the more negative the lag pressure, the more the lateral

spreading of the fluid is confined and the greater the height at the centre. There is no

convergence as δ → 0 or σ → ∞; the prediction in that limit is an infinitely narrow,

infinitely tall blister. The dependence on either δ or σ is, however, rather weak (δ1/17

or σ−1/23), and for practical purposes the difference is relatively small for for different

values of the regularization parameters; see figures 5 and 6. These figures show numerical

solutions to the full problem with only the bending term in the equation, for three

different values of the regularization parameters δ and σ, comparing the results with the

predictions from (4.9).

Second, the powers of time are different for the two regularizations, and in both cases

are different from the (X, H) ∼ (t4/9, t5/9) scalings expected based purely on the scale-

invariance of the bending-dominated differential equation. That is, one does not observe

a similarity solution. Nevertheless, the difference between these exponents is rather small.

For example, for X(t), 4/9 ≈ 0.44, 7/17 ≈ 0.41 and 9/23 ≈ 0.39. This coincidence is

presumably responsible for the erroneous identification of a similarity solution in previous

work [22]. The fact that the solutions do not tend towards the self-similar scaling suggests

that a similarity solution to the bending problem does not in fact exist.
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Figure 7. Numerical solutions for tension and gravity with the pre-wetted film with δ = 10−2.
Panel (a) shows snapshots of the solution at t = 1.6, 3.2, 4.8 and t = 8, 12, . . . , 40; panel (b)
adds snapshots for t = 80, 120, . . . , 1000. Panel (c) shows the evolution of the fluid edge x = X,
and panel (c) shows the evolution of the central height H = h(0, t). Lighter (red) pentagrams in
panels (c) and (d) show the approximate early time solution from section 5.1, and the dots in
panel (a) show a sample profile from that solution. Dark (black) pentagrams show the approxi-
mate late time solution from section 5.2, and the dots in panel (b) show the profile predicted at
the final time from that solution.

5 Flat solutions with tension and gravity

We now consider the case when there is only tension and gravity: T = G = 1 and

B = S = 0. The equations to be solved are

ht =
[

h3(−Nhxxx + hx)
]

x
+ w, N =

1

L

∫ L

0

1
2h2

x dx. (5.1)

A numerical solution is shown in figure 7 for the case of the pre-wetted film. As for the

bending solution in figure 3, the injection can be broken down into an early uniform

pressure phase, controlled by the conditions at the fluid edge, and a subsequent evolu-

tion towards self-similar gravity-controlled spreading, with tension and the contact line

playing no role.

As suggested by the matching conditions in section 3.4, the asymptotic analysis of the

solutions in this case relies upon expansions in powers of ln 1/δ or ln σ. For practical

purposes, these numbers are not very large and the approximations cannot be expected

to be as good as for the bending case in the previous section. Nevertheless, the analysis

serves a useful purpose to understand the role of the regularization in controlling the

spreading.
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5.1 Early time: uniform pressure

The approximate solution for the early pressure phase is constructed in much the same

way as for the bending problem in section 4.1. For a constant pressure p ≈ P (t) over the

interior, we have

−Nhxx + h = P, 0 ≤ x ≤ X(t), (5.2)

with the symmetry condition hx = 0 at x = 0, and the conditions (3.14) at x = X .

These are combined with the global volume constraint and the integral expression for

the tension N(t) in (5.1), to provide an evolution equation for X(t).

The solution of (5.2) is

h = H
cosh(X/

√
N) − cosh(x/

√
N)

cosh(X/
√

N) − 1
, (5.3)

where H(t) = P (t)[cosh(X/
√

N) − 1]/ cosh(X/
√

N). The tension from (5.1) is therefore

related to H and X by the transcendental equation

N =
H2

4X
√

N

sinh(X/
√

N) cosh(X/
√

N) − X/
√

N

[cosh(X/
√

N) − 1]2
. (5.4)

The global volume constraint demands

1
2 t =

∫ X

0

h(x, t) dx = H
√

N
(X/

√
N) cosh(X/

√
N) − sinh(X/

√
N)

cosh(X/
√

N) − 1
, (5.5)

and matching to the slope at the contact line in (3.14) requires

H sinh(X/
√

N)√
N [cosh(X/

√
N) − 1]

= 31/3Ẋ1/3N−1/3 ×
{

(ln 1/δ)1/3

(ln σ)1/3 (5.6)

Combing (5.4), (5.5) and (5.6) leads to an evolution equation for X(t), the solution to

which is shown in figures 4 and 7. Given that we may simply replace δ with σ−1 to recover

the fluid lag problem from the prewetted film case, we continue with only the latter.

For small times, t � (ln 1/δ)3/7, X is small and the shape in (5.3) is approximately

h = H
(

1 − x2/X2
)

. (5.7)

In this limit the solutions for X and H are

X ∼ C (ln 1/δ)−1/11 t6/11, H ∼ (3/4C) (ln 1/δ)1/11 t5/11, (5.8)

where

C = (11/6)1/11(3/4)3/11 ≈ 0.98. (5.9)

For large times the counter-intuitive limiting behaviour is

X ∼ (3/10)1/3(1/2)5/9(ln 1/δ)−1/3t10/9, H ∼ (10/3)1/3(1/2)4/9(ln 1/δ)1/3t−1/9;

(5.10)

i.e. H is decreasing and X is growing more than linearly (see figure 7). This aspect of

the solution is not seen in the full numerical solutions, presumably because the constant

pressure approximation breaks down before it is reached.
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5.2 Late time : convergence to gravity control

As in the bending problem, at later times the interior of the flow becomes dominated by

gravity alone and the tension term is important only in a narrow layer close to the fluid

edge. For t & (ln 1/δ)15/14, we write

t = (ln 1/δ)15/14t̂, x = (ln 1/δ)6/7x̂, h = (ln 1/δ)3/14ĥ,

X = (ln 1/δ)6/7X̂, N = (ln 1/δ)−2/7N̂. (5.11)

The interior problem is then identical to that given in (4.13)-(4.14), except for the edge

condition H1. The depth at the edge, Ĥ1 = ĥ(X̂) is determined by matching to the edge

layer, in which we write x̂ = X̂ − (ln 1/δ)−1ŷ and solve the leading order equation,

−N̂ ĥŷŷŷ + ĥŷ = 0 with ĥ → Ĥ1 as ŷ → ∞, (5.12)

with the conditions (3.14) requiring

ĥ = 0, ĥŷ = 31/3X̂
1/3

t̂
N̂−1/3 at ŷ = 0. (5.13)

The solution is

ĥ = Ĥ1

(

1 − e−ŷ/
√

N̂

)

, Ĥ1 = 31/3X̂
1/3

t̂
N̂1/6. (5.14)

The tension N̂ is dominated by the stretching contribution from the edge layer and is

given by

N̂ =
1

X̂

∫ ∞

0

1
2 ĥ2

ŷ dŷ → N̂ =
Ĥ

4/3
1

42/3X̂2/3
. (5.15)

The expression for the fluid depth at the border of the interior region is therefore

Ĥ1 =
33/7

41/7
X̂−1/7X̂

3/7

t̂
. (5.16)

The interior problem (4.13)-(4.14) with (5.16) once again requires a numerical solution;

initial conditions (imposed at small, but finite t̂) follow from the limiting behaviour in

section 5.1: X̂(t̂) ∼ (3/10)1/3(1/2)5/9t̂10/9 and ĥ(x̂, t̂) ∼ (10/3)1/3(1/2)4/9t̂−1/9. The

solution is shown in figures 4 and 7. Eventually, for t̂ → ∞, the edge depth Ĥ1 tends

towards zero and the behaviour converges to the similarity solution in (4.20) with the

long-time spreading given by (4.21).

5.3 Pure tension

If there is no gravity term, the quadratic solution (5.7) for the constant pressure phase and

the power laws in (5.8) apply indefinitely. As for the pure bending problem, this implies

that the spreading is controlled by the pre-wetted film depth or lag pressure, but the

dependence on δ or σ is even weaker than before. Some numerical solutions are shown in

figure 8 for different values of the regularization parameters; there is almost no difference

between the solutions and in fact the difference is less than predicted by the result in

(5.8). This is presumably because that analysis relies upon the largeness of ln 1/δ or ln σ,

and even for δ = 10−3 this approximation is rather poor. The disagreement may also
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Figure 8. Numerical solutions for pure tension with a fluid lag (solid, for σ = 1, 10, 100) and
a pre-wetted film (dashed, for δ = 10−1, 10−2, 10−3). Panels (a) and (b) show X(t) and H(t);
the pentagrams plot the predictions from (5.8) for the three values of δ. Panel (c) shows the
final profile for each case; the inset shows ten earlier snapshots for the σ = 1 solution. Panel
(d) shows the data from (c) in the scaled variables, h/H and x/X, with the inset displaying
a magnification close to the final fluid fronts. Dots show (1 − x2/X2) and crosses show the
similarity solution from (5.17)-(5.18) for δ = 10−1.

be linked to the neglect of some time-dependent terms in the logarithm of the matching

behaviour in (3.14) (see Appendix A.3); the numerical solutions continue for long enough

that such terms are comparable to 1/δ or σ and should be accounted for. Nevertheless,

even without accommodating this long time behaviour, the analysis indicates that there

is no convergence to a limit for δ → 0 or σ → ∞.

Note that the power laws predicted by (5.8), (X, H) ∼ (t6/11, t5/11) are the same

as those predicted by a similarity scaling of the equation with pure tension (which are

different from those predicted for surface tension [17] because N ∼ t−2/11). This reflects

the fact that, for the approximate solution in (5.8), the time derivative ht is O(ln 1/δ)−1

smaller than the divergence of the flux, regardless of time. An alternative analysis of the

pure tension case is to treat ln 1/δ as O(1), thereby invalidating the uniform pressure

approximation. The effective boundary conditions in (3.14) remain valid (the boundary

layer analysis in appendix A relies on δ being small, rather than (ln 1/δ)−1), and the

problem then has a similarity solution h = t5/11f(x/t6/11), N = t−2/11ν, where f(η), ν,

and the scaled fluid edge position η1, satisfy

5

11
f − 6

11
ηfη = ν

[

f3fηηη

]

η
, ν =

1

η1

∫ η1

0

1
2f2

η dη, (5.17)

with

fη = 0, νf3fηηη = 1
2 at η = 0, (5.18)

f3fηηη = 0, f = 0, fη = −(18/11)1/3(ln 1/δ)1/3η
1/3
1 ν−1/3 at η = η1. (5.19)
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Figure 9. Numerical solutions for bending, slope and a pre-wetted film with δ = 10−2. Panel
(a) shows snapshots at t = 1.5, 3, 4.5, ..., 21. Panel (b) shows the evolution of the downstream
and upstream fluid edges, Xd(t) and Xu(t) (solid), and maximum height H (dashed). The dotted
lines show the early time behaviour from (5.8); the dot-dashed line shows the eventual linear
trend of Xd(t). Panel (c) shows the final profile, with dots showing the final upstream shape
from (6.2) and the travelling wave shape from (6.6). The travelling-wave solution is positioned
so that its maximum lines up with that of the numerical solution.

Note that this similarity solution still depends on the film depth δ. A numerical solution

to (5.17)–(5.19) is included in figure 6 and is very close to the quadratic in (5.7).

6 Sloping solutions with bending

We now consider injection on an incline with bending stresses. To keep the discussion

concise we ignore all other contributions to the pressure and set B = S = 1 and T = G =

0. Hence,

ht =
[

h3(hxxxxx − 1)
]

x
+ w. (6.1)

A numerical solution with the pre-wetted film is shown in figure 9. Initially, the behaviour

is the same as for the flat solution of section 4, the slope having little effect until the length

of the current becomes sufficiently large. At longer length scales, the slope dominates the

pressure gradient over most of the flow, so that h ≈ 1 there (the constant injection

providing a downslope flux of unity). The bending stress remains important close to the

vent, where it controls the distance that the fluid spreads upslope and its eventual limit

Xu(∞), and close to the downslope fluid front x = Xd(t), where it controls the shape of

a travelling wave and gives rise to a decaying oscillation leading back from the front.
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6.1 Upstream spreading

After the initial transient, the shape at the upstream end tends to a steady state. Ignoring

the pre-wetted film, and for a line source at x = 0, the steady profile is given by

hxxxxx =

{

1 −Xu < x < 0,

1 − 1/h3 0 < x.
(6.2)

subject to

h = hx = hxx = 0 at x = −Xu(∞), (6.3)

continuity of h and its first four derivatives at x = 0, and h → 1 as x → ∞. The numerical

solution to this problem indicates Xu(∞) ≈ 2.53, and is included in figure 9(c).

6.2 The travelling wave

We examine the behaviour at the downstream edge by moving to a translating frame

with the coordinate

ζ = x − Xd(t). (6.4)

In this frame, the solution evolves to a steady travelling wave determined by

−Ẋdh
′ =

[

h3(h′′′′′ − 1)
]′

, (6.5)

where the prime denotes a derivative with respect to ζ.

In the case of the prewetted film, it is necessary to account for the small flux of fluid

in the film ahead of the front (neglected above in (6.2)), which demands that the front

speed is Ẋd = 1 + δ + δ2. Equation (6.5) can then be integrated to give

h′′′′′ = 1 − 1 + δ + δ2

h2
+

δ + δ2

h3
, (6.6)

subject to

h → 1 as ζ → −∞ and h → δ as ζ → ∞. (6.7)

A solution to this steady problem is included in figure 9.

In the case of the fluid lag, for which the fluid loses contact with the elastic sheet at

ζ = 0, the front speed is Ẋd = 1 and the integral of (6.5) becomes

h′′′′′ = 1 − 1

h2
, (6.8)

subject to h → 1 as ζ → −∞, and the gap boundary conditions (3.6) at ζ = 0 (those

conditions ensure continuity with the lag region in ζ > 0, and provide a total of three

conditions on h once the gap length ` is determined). Some solutions to this problem are

shown in figure 10 for different values of σ.

6.3 The effect of regularization on the shape of the travelling wave

When the pre-wetted film is small, or the lag pressure is large, the boundary layer analysis

of section 3.4 applies and indicates that

h → 0, h′ → 0, h′′ → δ−1/5Γ or σ1/7Γ for ζ → 0. (6.9)
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Figure 10. Numerically computed travelling waves with the fluid lag. Panel (a) shows front
profiles for σ = 109, 109.5, . . . , 1013; the inset shows the same data logarithmically, with x scaled
by σ1/21 and h by σ5/21. The dashed line shows the asymptotic prediction for the first three
bulges of a train given by (6.10). Panel (b) plots against σ the maximum heights of the first two
bulges, and the minimum height at their left hand borders. Pentagrams show the asymptotic
predictions in (6.27), (6.28) and (6.25); the maxima scale with σ5/21, the minima with σ−5/63.

In this section, we consider the pre-wetted film with δ � 1, for which the flux corrections

on the right-hand side of (6.6) can be neglected, reducing that equation to (6.8). Thus,

equivalent results for the fluid lag are obtained simply by replacing δ with σ−5/7 and Γ

with Γ.

6.3.1 The primary bulge

The relatively large second derivative arising in (6.9) implies that h must become large

directly behind the front, as seen in figures 9 and 10. This generates a wide bulge over

which h−2 � 1 and the main balance in (6.8) is h′′′′′ ≈ 1. If the width of the bulge is

ζ1, the height is therefore h1 ∼ O(ζ5
1 ). Moreover, given that the contact-line curvature

is h′′ = O(δ−1/5), the estimate h′′ ∼ h1/ζ2
1 indicates that the bulge has height, h1 =

O(δ−1/3), and length, ζ1 = O(δ−1/15).

At the left-hand border of the bulge, h must fall back to smaller values in order that the

term h−2 in (6.8) reenters the main balance and prevents the fluid depth from becoming

negative. This term then produces a sufficiently rapid adjustment of the fourth derivative

of h (i.e. the pressure) to cause h to rebound and remain positive. As we demonstrate

below, the transition layer in which h rebounds turns out to be relatively narrow. As

a result, the lower derivatives of h remain largely unaffected by the structure of the

transition region, which further demands that h approaches the left edge of the bulge

quadratically. Imposing the conditions h = h′ = 0 at both borders the bulge, we write

the quintic solution for its shape as

h =
1

120
ζ2(ζ + ζ1)

2[ζ + ζ1(
1
2 + ϕ1)], (6.10)

where the contact-line curvature condition in (6.9) indicates that

ζ1 = δ−1/15Z1, Z1 = (120 Γ/(1 + 2ϕ1))
1/3

, (6.11)

but the constant ϕ1 is not yet determined. For use below, it is helpful to note that the
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non-zero derivatives at the right and left edges of the bulge are then

h′′
R/L = δ−1/5H ′′

R/L, h′′′
R/L = δ−2/15H ′′′

R/L, h′′′′
R/L = δ−1/15H ′′′′

R/L, (6.12)

where

H ′′
R/L =

Z3
1

120
(2ϕ1 ± 1), H ′′′

R/L =
Z2

1

10
(1 ± ϕ1), H ′′′′

R/L =
Z1

10
(2ϕ1 ± 5). (6.13)

6.3.2 The minimum at the left border of the bulge

The key to determining the structure of the transition region at the left-hand border of the

bulge is to first observe that the solution there must match the curvature, h′′ = O(δ−1/5),

of the bulge solution. Hence, we introduce the rescalings,

ζ = −ζ1 + δβ/2+1/10ς, h = δβG(ς), (6.14)

and write

Gςςςςς = −δ(1−β)/2

G2
+ δ(1+3β)/2. (6.15)

The exponent β is determined by noting that the jump in the fourth derivative across the

transition region must be of order δ−1/15 (the size of hζζζζ for the bulge solution). But

from the integral of the leading-order term on the right hand side of (6.15), we observe

that

[hζζζζ ]
ζ+

1

ζ→ζ−

1

∼ δ−β−2/5 [Gςςςς ]
∞
−∞ ∼ O(δ1/10−3β/2). (6.16)

Hence, we require β = 1/9. Given this scaling, we may then use the match with the bulge

solution to write

G ∼ G1 + 1
2H ′′

Lς2 + 1
6δ2/9H ′′′

L ς3 + O(δ4/9). (6.17)

6.3.3 The infinite wave train

The solution for the transition region in (6.17) emphasizes how the second and third

derivatives of h(ζ) are not modified to leading order by the local structure of this region.

Thus, immediately to the left of the minimum at ζ = ζ1, we must continue to integrate

the travelling wave equation (6.8) subject to the conditions,

h(ζ+
1 ) = 0, h′(ζ+

1 ) = 0, h′′(ζ+
1 ) = δ−1/5H ′′

L. (6.18)

But, save for the replace of Γ by H ′′
L, these conditions are identical to those in (6.9),

which kick off the primary bulge solution in (6.10). In other words, the minimum at

ζ = ζ1 must be followed by another bulge of width ζ2 = O(δ−1/15) and height h2 =

O(δ−1/3). Furthermore, that second bulge must terminate to the left in another transition

region with the same structure as that elucidated in Sec. 6.3.2. Continuing the argument,

we see that the unavoidable consequence is an infinite train of bulges, each with the

same asymptotic scaling for their width and height. Indeed, figure 10 presents numerical

evidence for the development of a second bulge behind the primary one, scaling in the

same asymptotic way, but algebraically smaller in size. Generalizing (6.10), the kth bulge
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Figure 11. The two possible branches of the map ϕk+1 = F (ϕk) shown by solid and dotted
lines (the upper branch diverges at ϕk = 0.5). For ϕk > 5

8
, the solutions become complex and

are not drawn. The dashed line is the diagonal, ϕk+1 = ϕk and the star indicates the fixed point,
ϕk+1 = ϕk = ϕ.

solution can be compactly written as

h =
1

120



ζ +

k−1
∑

j=1

ζj





2 

ζ +

k
∑

j=1

ζj





2 

ζ +

k−1
∑

j=1

ζj + ζk( 1
2 + ϕk)



 , (6.19)

which has derivatives at the edges given by (6.12) and (6.13) with subscript 1 replaced

by k.

The final piece of the puzzle is to determine the constants, ϕk. In view of the gen-

eralization of (6.17), matching of the second and third derivatives of h across the kth

transition region implies

ζk+1

ζk
≡ Zk+1

Zk
=

(

2ϕk − 1

2ϕk+1 + 1

)1/3

=

(

1 − ϕk

1 + ϕk+1

)1/2

. (6.20)

This relation can be written as a cubic equation for ϕk+1, although one of its solutions,

ϕk+1 = −ϕk, is spurious. The remaining possible solutions are

ϕk+1 =
1 + ϕk − 4ϕ2

k ± (1 − ϕk)
√

5 − 8ϕk

2(1 − 2ϕk)2
. (6.21)

These can be viewed as a two-fold mapping, ϕk+1 = F (ϕk), as illustrated in figure

11. However, none of the iterative solutions for ϕk provides a sensible choice for these

constants other than the fixed point,

ϕk ≡ ϕ ≈ 0.625. (6.22)

Given this choice, we may complete our asymptotic solution by noting that the jump

in the fourth derivative of h across the kth transition region must be

[hζζζζ ]
ζ+

k

ζ−

k

= −δ−1/15Zk
(2ϕ + 5)(1 − ϕ)1/2 − (2ϕ − 5)(1 + ϕ)1/2

10(1 + ϕ)1/2
(6.23)

On the other hand, generalizing the leading-order of (6.17) to

G = Gk +
Z3

k

240
(2ϕ − 1) ς2,
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we establish

[Gςςςς ]
∞
−∞ ∼ −δ4/9

∫ ∞

−∞

dς

(Gk + Z3
k(2ϕ − 1) ς2/240)2

= −δ4/9 2π
√

15

G
3/2
1 Z

3/2
1 (2ϕ − 1)1/2

,

(6.24)

Matching (6.23) with (6.24) determines

Gk ≈ 17.33 Z
−5/3
k . (6.25)

In summary, in the limit δ → 0, the solution develops an infinite train of bulges with

widths, heights hk ∝ ζ5
k , and left-hand minima given by

ζk = δ−1/15Zk, hk = δ−1/3Hk, gk = δ1/9Gk, (6.26)

where

Z1 ≈ 3.76 Γ1/3, H1 ≈ 0.26 Γ5/3, G1 ≈ 1.90 Γ−5/9, (6.27)

and the ratios of successive values are

Zk/Zk+1 ≈ 2.08, Hk/Hk+1 ≈ 39.03, Gk/Gk+1 ≈ 0.29. (6.28)

These predictions are compared with numerical solutions in figure 10. Note that the

relatively small values of the exponents in (6.26), and the rapid decrease in successive

bulge heights, signifies that relatively small values of δ and σ−1 are required in order to

observe the scaling of the second bulge.

7 Sloping solutions with tension

Finally, we consider a current on a slope, including tension but not bending: B = G = 0

and T = S = 1. The problem to be solved is

ht =
[

−h3(Nhxxx + 1)
]

x
+ w, N =

1

Lu + Ld

∫ Ld

−Lu

1
2h2

x dx. (7.1)

A numerical solution with a pre-wetted film is shown in figure 12. Aside from the non-

constant tension, this problem is equivalent to the standard problem of fluid flowing

down a slope with surface tension (Tuck & Schwarz 1990). The short time behaviour

is the same as seen in section 5. When the slope takes over, the bulk of the flow is

dominated by the slope, with h ≈ 1, and the tension comes into play only near the vent

and downslope edge, where a prominent ridge appears. As the length of the fluid region

expands, the tension decreases in time so that the effect of the tension on the shape of

the front might also be expected to decay in time. The solution for the pre-wetted film

in figure 12 suggests that the height of the ridge remains constant, however, while its

length scale decreases in time. We confirm this observation below.

7.1 Upstream spreading

Around the vent, the tension allows the fluid depth to vary smoothly from h ≈ 1 down-

stream to h = 0 some distance upstream. The length scale over which this adjustment
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Figure 12. Numerical solutions for tension, slope and a pre-wetted film with δ = 10−2. Panel
(a) shows snapshots of h at t = 1, 2, ..., 5, and then 7, 9, ..., 37. Panel (b) shows the evolution
of the downstream and upstream fluid edges; the dotted line shows the early time solution from
(5.8) and the dashed line shows the eventual linear trend of Xd(t). Panel (c) shows the maximum
height H(t) and tension N ; the dotted line show the early time behaviour from (5.8) and the
dashed line shows the expected late-time dependence of N from section 7.2.

occurs is O(N1/3), which decays with t. For large times, the time derivative in the equa-

tion becomes unimportant, and writing x = N(t)1/3z, the shape of the adjustment region

is described by

−hzzz =

{

1 −Zu < z < 0

1− 1/h3 0 < z,
(7.2)

with boundary conditions h = hz = 0 at z = −Zu and h → 1 as z → ∞. Numerical

solution gives Zu ≈ 1.73, so the upstream fluid edge should eventually retreat towards

the origin as Xu(t) ∼ ZuN1/3. The solution in figure 12 does not apparently continue for

long enough to clearly observe this retreat.

7.2 The travelling wave

Considering first the case of the pre-wetted film, we again study the travelling wave by

working in the translating frame of the front. This time the relevant length scale depends

on the tension N(t): we write

h = h(ζ), ζ = N−1/3(x − Xd), (7.3)

and neglect the time derivative in (7.1) (which can be justified since N decays with t) to

furnish

−Ẋdh
′ =

[

−h3(h′′′ + 1)
]′

, (7.4)
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Figure 13. Numerical solutions for the travelling wave problem for tension and a pre-wetted
film. Panel (a) shows the front profile for δ = 10−1, 10−2, . . . , 10−14; the inset compares the
solution for δ = 10−14 with the asymptotic result in (7.8). Panel (b) shows the maximum
height of the first bulge, and the minimum height at its left edge, as δ is varied. Stars show the
prediction from (7.8), scaling with (ln 1/δ)1/2.

with h → 1 as ζ → −∞ and h → δ as ζ → ∞. Solutions to this problem are shown in

figure 13.

The fact that this rescaled problem becomes independent of the tension rationalizes

the observation that the height of the travelling wave remains constant in time. More-

over, contributions to the tension arise only from the vicinity of the upstream edge and

travelling front, so the integral for the tension becomes

N ∼ 1

N1/3t

[
∫ ∞

−Zu

1
2h2

z dz +

∫ ∞

−∞

1
2h′2 dζ

]

(7.5)

(Lu + Ld ∼ t). Thus, N ∼ Bt−3/4, where the constant B depends on δ in view of the

boundary condition for (7.4). The characteristic width of the bulge at the front therefore

decreases in time as t−1/4. For δ = 10−2, B ≈ 1.22 and the asymptotic prediction for

N(t) is included in figure 12.

For the fluid lag the situation is less clear-cut: the boundary conditions (3.8) apply

at ζ = 0, and indicate that the travelling wave solution depends on a time-dependent

regularization parameter, σ̂ = σN−1/3. However, at least when N � σ−1, the effective

boundary conditions in (3.14) hold and the travelling wave shape for the fluid lag becomes

equivalent to that for the pre-wetted film.

7.3 The effect of regularization on the shape of the travelling wave

For δ � 1, the integral of (7.4) furnishes

h′′′ = −1 + h−2, (7.6)

ignoring the flux corrections in the pre-wetted film. We apply h → 1 for ζ → −∞, and

the effective contact angle conditions in (3.14),

h = 0, h′ = −31/3(ln 1/δ)1/3 at ζ = 0. (7.7)

The asymptotic structure of the solution to this problem was analyzed by Benilov et al

[2], and consists of a train of bulges in which the dominant balance is h′′′ ≈ −1. The first



Elastic-plated gravity currents 25

bulge has the shape

h = −1

6
ζ(ζ + ζ1)

2, ζ1 = (ln 1/δ)1/621/232/3, (7.8)

with a maximum height of h1 = (ln 1/δ)1/225/2/9. As seen in figure 13, extremely small

values of δ are required to make this approximation remotely close to the full solution,

the error in the predicted maximum height for δ = 10−15 still being around 5%.

Unlike in the travelling front problem for bending, when the amplitude of successive

bulges decayed algebraically, the bulges in this case have asymptotically lower amplitude,

each bulge being logarithmically smaller than the previous one. There is little hope of

being able to distinguish this in numerical solutions with finite values of δ or σ. Similar

asymptotically decaying trains of capillary waves also occur in other settings [29, 8].

8 Discussion

We have analyzed solutions of a higher-order nonlinear diffusion equation for a fluid

spreading underneath an elastic sheet. Our primary focus has been on the behaviour

close to the advancing fronts at the edges of the fluid and the role this has in controlling

the dynamics. The early time behaviour always depends on the detailed dynamics of

those contact lines. We have used two regularizations of the contact region to explore

this dependence: a pre-wetted film and a fluid lag. For long times, the spreading is always

eventually controlled by gravity, although the time taken to reach this state depends upon

the choice of the parameters inherent in the regularization (here, the film thickness, δ, or

the lag pressure, σ). More extreme values of these parameters have the effect of confining

the flow to a narrower region and lengthening the time taken for gravity to take control.

Our analysis of tension-dominated spreading demonstrates that solutions are qualita-

tively similar to those for a current restrained by surface tension; the decay of the elastic

tension in time mostly alters how the length and depth of the current scale with time,

and cause any boundary layers in which the tension controls the dynamics to gradually

thin. With bending, the dependence of the solutions on the regularization parameters

at the edge is stronger, depending on a weak power rather than a logarithm (compare

figures 5, 6 and 8). In the case of the travelling wave on the slope, the bending stress

creates a decaying wave train extending behind the front; this feature has some similar-

ities with the train of capillary waves seen in the corresponding surface tension problem

[2] (and, indeed, the problem with elastic tension), although the asymptotic structure is

somewhat different and more readily observable.

For tension-dominated problems, the solutions depend logarithmically on the regular-

ization parameters. The origin of this dependence is the match between the three powers

of the fluid depth h in the effective diffusion coefficient and the three derivatives of h

in the pressure gradient. This corresponds to a critical situation in a wider class of such

equations with other exponents [9]. Further work could extend our analysis to other

values of the exponent of h in the diffusivity; that such choices may lead to different be-

haviour is physically important because other exponents emerge in alternative physical

models, such as for flow in porous media. The difficulties associated with the degeneracy

of the equation at the edges are in part due to the approximation of the elastic stresses
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using the beam equation (2.2); another relevant extension would be to reintroduce the

full elastic equations for the sheet close to the contact line and impose an appropriate

condition on the stress singularity at the fracture-like tip [19, 4].

We have focussed on planar spreading as the simplest context in which to understand

the behaviour at the fluid edge. Most applicable settings are two dimensional, however, in

which case the tension becomes spatially varying as well as time-dependent (e.g. [5]). Even

without that extra layer of complexity, the direct extension of our numerical solutions to

two dimensions (unless axisymmetric) is problematic, because a fine resolution is required

to resolve the detailed structure of the region near the contact “contour”. A potential use

for an analysis of the type presented here is to formulate effective boundary conditions

that avoid the need for such detailed resolution.

For clarity, we have separately addressed the cases when bending and tension provide

the stress from the elastic sheet. In general, however, both terms appear in the equation

and one may wonder how this may affect the general features of the spreading dynamics.

Generically, one expects that the higher derivatives of the bending stress impact the

problem more at earlier times than the tension, which becomes more prominent later in

the evolution, before gravity eventually wins out. Thus, solutions may experience a variety

of different evolutionary phases due to the interplay of bending, tension and gravity.

Provided the bending term is present, that term will always dominate the behaviour

in the narrow region adjoining the contact line, and the asymptotic solutions that we

have presented can be modified to account for situations with a combination of bending,

tension and gravity controlling the pressure over the fluid interior. A recent study [21]

has considered the axisymmetric analogue of this problem, and explored such solutions

with a tension-dominated interior matching to a bending-dominated edge region.
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Appendix A Boundary layers at the fluid front

A.1 Pre-wetted film with bending

When B 6= 0, bending dominates the pressure gradient on small length scales. Moreover,

for a pre-wetted film, h → δ ahead of the fluid front. Thus, we take

ε = δ3/5B1/5Ẋ−1/5 and ∆ = δ (A 1)

in (3.9). The integral of (3.11a) leads to

1 − g = g3gξξξξξ with g → 1 as ξ → ∞. (A 2)

In order to match to the bulk of the fluid flow, we require g(ξ) to grow at most quadrat-

ically as ξ → −∞:

g ∼ 1
2Γξ2 as ξ → −∞. (A 3)
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The numerical solution to (A 2), which is shown in figure 2, provides Γ ≈ 1.35. In terms

of the original variables, the limiting behaviour in (A 3) furnishes the first relation in

(3.13).

A.2 Fluid lag with bending

For a fluid lag, the pressure condition Bhxxxx = −σ at x = X implies

ε = σ−3/7B2/7Ẋ1/7 and ∆ = σ−5/7B1/7Ẋ4/7. (A 4)

The fluid occupies ξ < 0 and the jump condition (3.1) applies at ξ = 0, as do the four

conditions in (3.6) that describe the lag region. The leading order boundary layer problem

is therefore

−1 = g2gξξξξξ (A 5)

with

72g + 24Λgξ − Λ4 = 24g − 4Λ2gξξ − Λ4 = 24g + 4Λ3gξξξ − 3Λ4 = gξξξξ + 1 = 0 (A 6)

at ξ = 0. Here Λ = σ3/7B−2/7Ẋ−1/7` is the rescaled lag, which is determined as part of

the solution.

Numerical solution now gives

g → 1
2Γξ2 as ξ → −∞, (A 7)

where Γ ≈ 1.77, and the scaled lag is Λ ≈ 1.33.

A.3 Pre-wetted film with tension

If there is no bending term, B = 0, and the tension dominates the pressure gradient

near the front. The local problem at the front is analogous to that with surface tension

[28, 27]. We write

ε = δ T 1/3N1/3Ẋ−1/3 and ∆ = δ , (A 8)

and the integral of (3.11b) provides

g − 1 = g3gξξξ, with g → 1 as ξ → ∞. (A 9)

Matching now demands the limiting behaviour,

g ∼ −31/3ξ(ln(−ξ))1/3 as ξ → −∞. (A 10)

Or, in terms of the original variables,

h ∼ 31/3(ln δ−1T −1/3N−1/3Ẋ1/3(X − x))1/3T −1/3N−1/3Ẋ1/3(X − x). (A 11)

In translating this relation to the final condition in (3.14), we neglect the terms Ẋ and

N in the logarithm, as well as the dependence on x. This assumes implicitly that these

quantities are much larger than δ (or σ−1 below), which is asymptotically correct for

small enough t. However Ẋ and N decay in time and such an approximation is invalid

for t = O(δ−1) (or t = O(σ)). We avoid explicit consideration of such large times in the

current exploration.
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A.4 Fluid lag with tension

In this case, the condition T Nhxx = σ at x = X indicates that

ε = σ−1T 2/3N2/3Ẋ1/3 and ∆ = σ−1T 1/3N1/3Ẋ2/3. (A 12)

The integral of (3.11b) is

1 = g2gξξξ, (A 13)

with the boundary conditions (3.8) becoming

g − 1
2Λ2 = gξ + Λ = gξξ − 1 = 0 at ξ = 0, (A 14)

where Λ = σ T −2/3N−2/3Ẋ−1/3` is the rescaled lag. Again,

g ∼ −31/3ξ(ln(−ξ))1/3 as ξ → −∞, (A 15)

or

h ∼ 31/3(ln σ T −2/3N−2/3Ẋ−1/3(X − x))1/3T −1/3N−1/3Ẋ1/3(X − x). (A 16)
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