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Steady rucks in an elastic beam can roll at constant
speed down an inclined plane. We examine the
dynamics of these travelling-wave structures and
argue that their speed can be dictated by a
combination of the physical conditions arising in the
vicinity of the ‘contact points’ where the beam is
peeled off the underlying plane and stuck back down.
We provide three detailed models for the contact
dynamics: viscoelastic fracture, a thermodynamic
model for bond formation and detachment and
adhesion mediated by a thin liquid film. The results
are compared with experiments.

1. Introduction
Two recent articles, Kolinski et al. [1] and Vella et al. [2],
have explored the dynamics of rucks propagating along
elastic sheets in contact with an underlying plane. The
dynamics of such structures has analogies with the
mechanics of sliding crystal dislocations, earthquake slip
pulses, Schallamach waves in rubber and bio-locomotion
strategies exploiting contact (e.g. [3–7]). Kolinski et al. [1],
in particular, explored experimentally the shapes and
speeds of rucks driven forwards by a body force
such as gravity, by emplacing the elastic sheet on an
inclined plane.

To achieve steadily moving rucks, the potential
energy released by rolling must be dissipated. Kolinski
et al. [1] argue that air resistance is primarily responsible,
although their scaling theory predicts that rolling speeds
should decrease with ruck amplitude, in stark contrast
with experimental observations. These authors also
briefly consider, and dismiss, visco-elastic losses in the
bulk of the deforming sheet. They report the further
interesting observations that a threshold tilt of the plane

2014 The Author(s) Published by the Royal Society. All rights reserved.
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is required for rucks to begin rolling, and that once the ruck is in motion, a lower tilt angle is
required to arrest that rolling.

Here, we revisit this problem, exploring in more detail what might set the speed of a rolling
ruck. We offer a brief recapitulation of the analysis of Kolinski et al., which corrects a detail of
their scaling theory. The main premise of our study, however, is that it is the detailed peeling
dynamics near the contact points at the edges of the ruck that dictates the speed. This is in analogy
with the rolling friction of a cylinder or sphere on an elastic substrate (e.g. [8,9]) and a number
of other fluid mechanical ‘peeling’ problems (e.g. [10,11]). It demands consideration of a local
‘microscopic’ model for the two peeling regions, which constitutes the bulk of our analysis.

We consider three possible peeling models in particular: viscoelastic dissipation at a fracture
(which is commonly used in the solid mechanics literature for delamination or adhesion of
elastomers to a substrate; (e.g. [12,13])), a thermodynamic model based on the kinetics of
interfacial bonds bridged between the surfaces [14], and adhesion by a viscous fluid film (the
McEwan–Taylor peeling problem; [15]). All three of these models are motivated by work on
elastomer adhesion where viscoelastic losses, interfacial bonds and liquid coatings are all inferred
to contribute (e.g. [16–18]). Our main goal is to determine whether such peeling models can
describe the parametric dependence of ruck rolling speeds and the threshold for motion. We
close by comparing the theory with a series of experiments and with the older results of Kolinski
et al. [1].

2. Ruck dynamics

(a) Mathematical formulation
Consider an elastic plate of undeformed thickness d and density ρ resting on an inclined rigid
plane; θ is the angle of inclination. The uphill edge of the plate is brought downwards a distance
Ξ along the plane to form a localized ruck, as sketched in figure 1. Assuming everything
remains two-dimensional, we describe the position of the plate in terms of arc length s at time
t: (X(s, t), Z(s, t)). Denoting the local stress resultant by (NX, NZ), the equations of motion of the
ruck, where it is lifted off the plane, are [1,19]

∂

∂s
NX + ρgd sin θ = ρd

∂2X
∂t2 ,

∂

∂s
NZ − ρgd cos θ = ρd

∂2Z
∂t2

and
∂M
∂s

− NX sin φ + NZ cos φ = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where φ(s, t) is the local angle that the centerline of the plate makes with the x-axis; g is the
gravitational acceleration and M is the local bending moment. The geometry dictates

∂X
∂s

= cos φ,
∂Z
∂s

= sin φ and κ = ∂φ

∂s
, (2.2)

where κ is the local curvature. The moment and curvature are related by M = Bκ , where B is the
bending stiffness. For locations where the plate is in contact with the plane, we assume that the
normal reaction and friction are always sufficient to hold it in place with Z = 0 (cf. [2]).

We locate the edges of the ruck at s = s±(t). Here,

X(s±, t) =
{

s−(t) + Ξ ,

s+(t),
Z(s±, t) = 0, φ(s±, t) = 0, (2.3)

(the plate is shifted downhill by Ξ for s ≤ s− and is not displaced for s ≥ s+). The final condition
reflects our assumption that bending is sufficiently important in the vicinity of the contact
points that the plate meets the plane tangentially; we reserve judgement on the local curvatures,
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Figure 1. Sketch of a ruck rolling with speed U, showing the imposed foreshorteningΞ , the angle of the inclined plane θ and
the two-dimensional ruck shape (X(s, t), Z(s, t)), where s is the arc length and the ruck occupies s− < s< s+. (Online version
in colour.)

κ± = κ(s±, t), until later. Note that (2.2) in combination with the total time derivative of quantities
such as φ(s±(t), t), imply

φt(s±, t) = −κ±ṡ±, Xs(s±, t) = 1 and Xt(s±, t) = Zs(s±, t) = Zt(s±, t) = 0, (2.4)

using (lower case) subscripts as shorthand for derivatives.

(b) Energetics
By multiplying (2.1a) by Xt, (2.1b) by Zt and (2.1c) by φt, then integrating in s, one can derive the
energy equation

d
dt

∫ s+

s−
E ds = [E ṡ + Mφt]

s+
s− , (2.5)

where

E = 1
2
ρd(X2

t + Z2
t ) + 1

2
Bκ2 + ρgd(Z cos θ − X sin θ ) (2.6)

is the energy density and ṡ represents ṡ±. The power input on the right-hand side of (2.5) contains
the energy flux owing to the motion of the contact points (E ṡ) and the work done by the local
moment (Mφt).

For steady rolling at speed U, ṡ± ≡ U, and

[Mφt]
s+
s− = −BU(κ2

+ − κ2
−), [E ṡ]s+

s− = 1
2

BU(κ2
+ − κ2

−) − ρgdU(s+ − s− − Ξ ) sin θ ,

and hence evaluating (2.5) yields

d
dt

∫ s+

s−
E ds = −1

2
BU(κ2

+ − κ2
−) − ρgdU(s+ − s− − Ξ ) sin θ . (2.7)

For steady rolling, this rate of change of ruck energy must equal the rate of change of potential
energy owing to translation along the plane, i.e.

d
dt

∫ s+

s−
E ds = −ρgd(s+ − s−)U sin θ . (2.8)
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Equating (2.8) and (2.5) then gives the relationship

1
2

B(κ2
+ − κ2

−) = ρgdΞ sin θ . (2.9)

The right-hand side of (2.9) is the potential energy released by rolling; the left is the bending
energy required to peel off (and lay down) the plate from the plane at the contact points.
By analogy with fracture mechanics, we demand that the latter is equal to the effective work
of adhesion, w.

In §4, we determine w by considering the detailed mechanics of how contact and adhesion
is actually achieved in three different models. We write the result formally in terms of functions
W±(U) that are yet to be defined

1
2

Bκ2
± =W±(U), (2.10)

so that (2.9) becomes
W+(U) − W−(U) = ρgdΞ sin θ . (2.11)

Importantly, if one discards inertia as we do below, the ruck speed U appears only in these peeling
conditions. In other words, the overall shape of the structure reflects a quasi-static force balance
and peeling dictates the ruck speed.

Note that (2.9) also applies for static rucks (one multiplies the steady versions of (2.1)
by (cos φ, sin φ, κ), integrates in s and uses the boundary conditions and

∫s+
s− (Xs, Zs) ds =∫s+

s− (cos φ, sin φ) ds = (s+ − s−Ξ , 0)), immobilized either by the action of an external force or
because the energy released by rolling is not sufficient to overcome the energy of adhesion. For
the latter, this would require

ρgdΞ sin θ <W+(0) − W−(0). (2.12)

(c) Ruck shapes
Assuming that ruck rolling is relatively slow, we now ignore inertia. Because there are no longer
any time derivatives in the ruck equations, we can then consider the moving frame in which
the contact points are stationary and located at s = 0 and s = L, where L is the total arc length
of the ruck. This length is actually not known, but must be determined as part of the solution of
the problem once the foreshortening length Ξ and tilt angle θ are prescribed.

Although there is a natural bending-gravity length scale given by

Lb =
(

B
ρgd

)1/3
, (2.13)

we use L to measure lengths so that the spatial domain becomes fixed. We then set

s = Lŝ, (X, Z) = L(X̂, Ẑ), (NX, NZ) = B
L2 (N̂X, N̂Z) and κ = 1

L
κ̂ , (2.14)

to recast the model in the dimensionless form

∂X̂
∂ ŝ

= cos φ,
∂Ẑ
∂ ŝ

= sin φ and κ̂ = ∂φ

∂ ŝ
, (2.15)

∂N̂X

∂ ŝ
+ �3 sin θ = 0 and

∂N̂Z

∂ ŝ
− �3 cos θ = 0 (2.16)

and
∂κ̂

∂ ŝ
− N̂X sin φ + N̂Z cos φ = 0, (2.17)

with boundary conditions

φ(0) = φ(1) = Ẑ(0) = Ẑ(1) = X̂(0) = 0 and X̂(1) = 1 − χ

�
, (2.18)

where

χ = Ξ

Lb
and � = L

Lb
. (2.19)
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Figure 2. Sample numerical solutions for steadily rolling rucks with φs(0)= κ̂− = 0, θ = 10◦ and varying χ . Shown are
(a) ruck arc length �, (b) ruck height � Max(Ẑ) and (c) the distance between the contact points, �(X̂+ − X̂−), all plotted
againstχ 1/7. The dotted lines show the low-amplitude predictions from (2.24). The stars indicate the solutions whose profiles
are plotted on the right. (Online version in colour.)

Specification of the peeling conditions,

κ̂± = �

[
2L2

bW±(U)
B

]1/2

, (2.20)

provides two further constraints to determine the ruck speed U and length �.
Given the integral constraint (2.11), we may divorce the problems of finding the ruck speed,

and its shape and length. For a given Ξ and θ , (2.11) determines the speed, while (2.15)–(2.19)
may be supplemented with a prescription of one of the edge curvatures κ± from (2.20) to form
an ‘eigenvalue’ problem for the length � and the ruck shape (the other edge curvature is then
automatically satisfied through the integral condition (2.9)).

Sample numerical solutions to (2.15)–(2.18) with φs(0) = κ− = 0 are shown in figure 2. This
choice for the uphill curvature corresponds to a situation in which the plate is gently laid back
down on the plane without any interaction between the two surfaces. The ruck amplitude,
� Max(Ẑ), grows with the foreshortening parameter χ until it reaches a maximum corresponding
to the tallest ruck that can support itself against gravity; for larger foreshortenings, the ruck begins
to topple downhill. Eventually, the toppling over terminates the solution at a self intersection (cf.
[19,20]). During this sequence, the ruck total arc length � increases steadily with χ , but the distance
between the contact points on the plane, �(X̂+ − X̂−), varies non-monotonically.

For low amplitudes, χ � 1, one can find the ruck shapes analytically: in this limit, the solution
has the scalings (cf. [2,19])

φ ∼ χ3/7, � ∼ χ1/7, N̂X ∼ −m2 and N̂Z ≡ N̂Z(0) + ŝ�3 cos θ ∼ χ3/7, (2.21)
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where the order-one constant m and the small constant N̂Z(0) are to be determined. Hence, to
leading order

φŝŝ + m2φ + N̂Z(0) + ŝ�3 cos θ = 0, (2.22)

subject to

φ(0) = φ(1) = φŝ(0) =
∫ 1

0
φ dŝ = 0 and

∫ 1

0
φ2 dŝ = 2χ

�
. (2.23)

The solution is

φ ∼ �3 cos θ

m3

[
sin(mŝ) − mŝ + 1

2
m − 1

2
m cos(mŝ)

]
and � ∼

(
48 m4χ

5 cos2 θ

)1/7

, (2.24)

where m ≈ 8.987 is the solution to tan( 1
2 m) = 1

2 m and N̂Z(0) = − 1
2 �3 cos θ .

3. Bulk dissipation
In the absence of adhesion, we have W± = 0 in (2.9), so another mechanism is needed to balance
the potential energy release rate on the right-hand side, and hence set the motion of the ruck.
Kolinski et al. [1] propose that either air resistance or bulk viscoelasticity in the plate could
provide the required dissipation. The inclusion of either effect leads to additional terms in the
energy balance (2.9). For instance, a viscoelastic rheology may be described most simply using
the constitutive relation M = Bκ + Cκt, where C is the product of plate viscosity and moment of
inertia [1]. In that case (2.9) becomes

[
1
2

Bκ2 + Cκκt

]s+

s−
+ C

U

∫ s+

s−
κ2

t ds = ρgdΞ sin θ . (3.1)

The viscoelastic integral term on the left requires knowledge of the ruck shape to evaluate
exactly, but can be estimated on dimensional grounds. In particular, κ ∼Max(Z)/L2, and time
scales as L/U, so the integral is of order CUL−5[Max(Z)]2. For a small ruck (see §2c), we have
L ∼ Ξ1/7 and Max(Z) ∼ Ξ4/7, so this quantity scales as UΞ3/7. Assuming that this bulk viscoelastic
term controls the dissipation, it can be compared with the potential energy release rate ρgdΞ sin θ ,
to extract the scaling U ∼ Ξ4/7 sin θ . Similarly, one can estimate that air drag provides an energy
loss rate of the order ρairU2Max(Z) and therefore suggests U ∼ Ξ3/14(sin θ )1/2. Both of these
mechanisms imply a rapid increase in speed with foreshortening; in neither case is there a
threshold for rolling.

A similar scaling approach was also taken by Kolinski et al. [1]. Unfortunately, these authors
used a different expression for the potential energy release rate, featuring the length of the
ruck instead of the foreshortening Ξ . The effect is to furnish erroneous scalings U ∼ Ξ−2/7 and
U ∼ Ξ−3/14 (for viscoelasticity and air drag, respectively), which suggest that the ruck
speed should decrease with larger ruck amplitude. The correct scalings no longer have this
counterintuitive property. Nevertheless, rough estimates of the material parameters suitable for
our experiments (see §5 and appendix A), suggest ruck speeds of order 20 m s−1 according to
the scalings for the two bulk dissipations. Our rucks, however, roll at speeds of centimetres per
second. The ruck speed is also observed to increase more gradually with Ξ .

 on March 4, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


7

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140740

...................................................

4. Peeling models

(a) Viscoelastic fracture
The peeling of adhering surfaces in solid mechanics is often identified as a problem of crack
propagation. In this context, it is conventional to balance the energy released at the point of
fracture with the work of adhesion w (e.g. [12,13]). For many problems involving the peeling
of elastomers, the work of adhesion in opening the crack, wopen, is observed to depend on the
(constant) speed at which the fracture propagates through the empirical relation (e.g. [9,18,21]),

wopen = w0[1 + ϕ(aTU)], (4.1)

where w0 is the adhesion energy at zero speed and aT is a temperature-dependent factor dictated
by the viscoelastic modulus of the material. The empirical function ϕ(aTU) is often presented as
a power law ϕ ∼ Un with exponent 0.1 < n < 0.8 (e.g. [22]). The physical interpretation of (4.1) is
that local viscoelastic dissipation in the vicinity of the crack tip sets the fracture speed. Theoretical
support for the relation has been offered by Greenwood & Johnson [23] and others [13,24,25].

The work of adhesion in closing a viscoelastic crack, wclose, is often observed to be much less
than that for peeling (e.g. [8,23]), although recent theoretical work suggests that

wclose = w0[1 + ϕ(aTU)]−1, (4.2)

with the same zero-speed adhesion work w0 and empirical function ϕ as in the peeling relation
(4.1) (e.g. [26]). However, it is also observed that contamination of the surfaces by dust particles
(or roughening) can significantly reduce w0 [18].

As a parallel to these semi-empirical models, we take

wopen = w+
(

1 + Un

Un
F

)
and wclose = w−

1 + Un/Un
F

, (4.3)

where UF is a characteristic speed. Thus, for the ruck, we make the associations, W+(U) = wopen

and W−(U) = wclose, and then balance the energy release rate with the difference between the two
works of adhesion (2.11)

ΥF ≡ ρgdΞ sin θ

w+
=
(

1 + Un

Un
F

)
− w−/w+

1 + Un/Un
F

. (4.4)

This may be solved for U, giving

U = UF

(
1
2
ΥF − 1 +

√
1
4
Υ 2

F + w−
w+

)1/n

. (4.5)

Some sample ruck speeds are shown in figure 3. Importantly, the model predicts that rucks roll
provided Υ > 1 − w−/w+. That is, once the gravitational forcing exceeds a threshold set by the
difference in the two static works of adhesion: ρgdΞ sin θ > w+ − w−. The ruck rolls on any slope
if w+ = w−.

(b) A thermodynamic adhesion model
Dembo et al. [14] propose a model for adhesion of cells (see also [27,28]) in which sticking occurs
through the linking of polymer chains. There are bonded and free populations of these chains on
one of the surfaces, with densities per unit area denoted A and Af. The total areal density is fixed
and spatially uniform: A + Af = AT. The reaction kinetic model for the bonded density is

∂A
∂t

= K0[e−βΦ (AT − A) − e(1−β)ΦA], (4.6)
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Figure 3. Dimensionless ruck speeds, U/UF, plotted against forcing parameter ΥF for peeling with viscoelastic cracks, with
(a) w−/w+ = 0.5 and varying n, and (b) varying w−/w+ and n= 0.6. The stars mark the threshold. (Online version
in colour.)

where K0 is a rate constant and β is a constant parametrizing the different rates of attachment or
detachment. The reaction rates are controlled by the ‘free energy’,

Φ = Kλ2

2kBT
, (4.7)

where T is temperature, kB is Boltzmann’s constant and the chains are assumed to behave like
linear springs with constant K and length λ. Dembo et al. discuss the significance of the sign of
1 − β; here, we consider slip bonds with 1 > β (catch bonds, with 1 < β, have the unusual feature
that the bond strengthens as the surfaces are moved apart). Finally, Dembo et al. apply the spring
force to the peeling surface assuming that the bonds are all perpendicular to the substrate. Hence,
λ ≡ Z and the (perpendicular) adhesive force per unit area is KλA.

Adapting this model for our ruck, we assume that the peeling layer is relatively narrow and
the adhesion force is balanced primarily by bending, i.e.

Bλssss + KλA ≈ 0.

For steadily rolling rucks, and in the moving frame, we then set At = −UAs and introduce the
rescalings,

s = s± +
(

B
KAT

)1/4
η, A = ATa(η), λ =

√
kBT
K g(η) and υ = U

K0

(KAT

B

)1/4
, (4.8)

leading to the dimensionless peeling equations

gηηηη + ag = 0 and − υaη = (1 − a) e−βg2/2 − a e(1−β)g2/2. (4.9)

For the peeling layer at the front of the ruck, the plate bends smoothly into ‘contact’ with the
underlying plane for s − s+ → ∞. This corresponds to g → 0 and a → 1

2 for η → ∞. For η → −∞,
g diverges algebraically into the ruck and the bond density a converges exponentially quickly
to zero. The count for the number of far-field boundary conditions that must be imposed for
η → ∞ leaves us requiring a single condition for η → −∞, which we take to be gηηη → 0. Thus,
the solution to this peeling problem determines a value for

γ (υ) ≡ gηη|η→−∞, (4.10)

to which the bulk of the ruck must match. For the peeling layer at the back of the ruck, the far-
field behaviours are switched around. However, the symmetry of the equations under (η, υ) →
(−η, −υ) allow us to observe immediately that in that case gηη|η→∞ = γ (−υ).
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Figure 4. (a) γ against υ for β = 1
2 ; in the inset the data are replotted against |υ| and using logarithmic scales (upper

curve for positive, lower for negative υ). The dashed lines show limiting behaviours, γ ∼ 1.304(−v)−2/5 and γ ∼√
2[log(25/4υ log υ) − 0.5772]. (b) Sample solutions for g(η) and a(η) for υ = 1 (solid lines) and υ = −1 (dotted lines).

(Online version in colour.)

The solution for γ (υ) is discussed below, but first, we translate the result back to the notation
of the ruck problem. We have determined

W±(U) = 1
2

Bκ2 = 1
2

kBTATγ (±U/UD)2 and UD = K0

(
B

KAT

)1/4
, (4.11)

and so the energy constraint (2.11) is

ΥD = ρgdΞ sin θ

(1/2)kBTAT
= γ

(
U

UD

)2
− γ

(
− U

UD

)2
. (4.12)

Figure 4 shows numerical computations of γ as a function of υ; this plot is the graphical
analogue of the works of adhesion in (4.3) for the viscoelastic fracture model. The curvature
function increases monotonically with υ. For υ → ∞, we find γ (υ) ∼√

log(υ)/(1 − β); for υ →
−∞, on the other hand, the limiting behaviour is given by γ (υ) ∼ γ0β

−1/2(−v)−2/5 with γ0 ≈
0.922 (appendix B). Thus, for sufficiently large ruck speed, the effective adhesion energy for
breaking the plate off the runway at the front of the ruck increases logarithmically, but that for
sticking the plate back onto the plane becomes small. The physical reason for this behaviour
is that for large υ, the effective contact points are moving relatively quickly: at the front,
the bond density remains in equilibrium (with a = 1

2 ) until the surface separation becomes
sufficiently large that the exponential dissociation rate abruptly breaks all the bonds. Peeling
off therefore features higher bond densities. At the back of the ruck, when the plate bends
back down on the plane, the rate for bonds to reform is slow, so only a relatively small
population of bonds sticks the plate back down, with the bond density recovering back to
equilibrium much further uphill. Both features are evident in the large |υ| asymptotics described
in appendix B.

As υ → 0, γ (υ) approaches a common limit from either positive or negative argument. Thus,
ΥD = γ (υ)2 − γ (−υ)2 → 0 for υ → 0. That is, there is no threshold for the onset of ruck rolling.
This is illustrated in figure 5, which shows a plot of scaled ruck speed υ against the effective
gravitational driving ΥD, and mirrors the results for the viscoelastic fracture model in the case of
the natural choice, w+ = w−. The sharp rise of the curves plotted in figure 5 results from the
logarithmic dependence of γ (υ) for υ � 1, which implies that the speed grows exponentially
quickly at higher driving.
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(c) Adhesion by a viscous film
Our third model envisions a thin viscous film of thickness δ between the undeformed beam and
the underlying plane. Within the peeling regions, the fluid layer thickens as the beam bends away
from the substrate and splits into two films coating the underside of the beam and the underlying
plane. The peeling problem at the front of the ruck then has much in common with the so-called
McEwan–Taylor problem [15].

As above, we assume that bending stresses dominate in the beam over the peeling layers,
and the deflections are consequently small compared with the relevant length scales. In this
case, elastohydrodynamic lubrication theory describes the fluid motion and beam deflection
everywhere except near the meniscus where the film splits into two. The theory boils down to
demanding that the fluid flux in the frame moving with the ruck is conserved.

For the peeling layer at the front, we define the ‘contact’ position, s+(t), to be the location of
the meniscus (which may be treated as a single point on the scale of the whole ruck). Writing
x = s − s+(t), we denote h(x) ≈ Z(s) as the beam deflection perpendicular to the plane. The
dominant force balance for the beam is

Bhxxxx = p, (4.13)

where p is the pressure in the fluid film (which is approximately uniform with depth). The net
fluid flux along the film must everywhere equal the flux −Uδ that is provided from far upstream
(that is, ahead of the ruck on the inclined plane). Upstream of the meniscus (x > 0), standard
lubrication theory therefore requires

− δU = −hU − h3px

12μ
, (4.14)

where μ is the dynamic viscosity of the fluid. Downstream of the meniscus (x < 0), the fluid splits
into two free-surface films of uniform thickness 1

2 δ, with p = 0 in (4.13).
For the meniscus region itself, the lubrication scalings fail and one must resort to solving the

full steady Stokes equations. Following standard treatments of related problems [29,30], one can
solve an appropriately rescaled ‘inner’ problem numerically, and match that solution to the ‘outer’
flow governed by (4.14). The inner solution, and therefore the match, depends on the capillary
number Ca = μU/σ , where σ is the surface tension. We assume the film is sufficiently thin that
we can ignore any effects of gravity on the fluid film.

The scalings demanded by the matched asymptotics indicate that the pressure is continuous to
leading order across the meniscus region [29,30], which ensures continuity of h and its first four

 on March 4, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140740

...................................................

10−4 10−2 1 1020

0.5

1.0

1.5

Ca

G

(a)

−5 0 5 10 15

0

2

4

6

x

gxx(x)

g(x)

(b)
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derivatives at x = 0. Moreover, the key result from the inner solution is the ratio of the fluid flux
to h(0)U, i.e.

δ

h(0)
= λ(Ca), (4.15)

where λ(Ca) is a monotonically increasing function of Ca with limits λ(Ca) ∼ 1.34Ca2/3 for Ca � 1
and λ(Ca) → 0.417 for Ca → ∞ [15,30,31].

Recasting the problem in dimensionless form, we write

x =
(

Bδ3

12μU

)1/5

ξ and h(x) = δg(ξ ), (4.16)

and arrive at the dimensionless peeling equation

gξξξξξ = 1 − g
g3 , (4.17)

for ξ > 0. The requirement g → 1 for ξ → ∞ imposes two boundary conditions, leaving three
conditions to apply at ξ = 0. One of these is the dimensionless version of (4.15), g(0) = 1/λ(Ca), and
another is the pressure continuity condition gξξξξ (0) = 0. We may therefore additionally impose
gξξξ (0) = 0, which furnishes a quadratic solution for g in ξ < 0. The far-field curvature is thus
determined as

Γ (Ca) ≡ gξξ |ξ→−∞ = gξξ (0). (4.18)

Figure 6 shows the numerical computations of Γ (Ca), making use of fitted and asymptotic forms
for λ(Ca) stated above.

For the peeling region at the back of the ruck, we take x = s − s−(t) and follow the same analysis
to arrive at the peeling equation (4.17) but now to be solved for ξ < 0. Imposing g → 1 as ξ →
∞ now furnishes three boundary conditions, limiting us to two further ones at ξ = 0, namely
g(0) = 1/λ(Ca) and gξξξξ (0) = 0. The solution in ξ > 0 is therefore cubic. In order to match with the
main ruck solution, this demands that the limiting curvature, κ− = 0. No details of the matched
asymptotics are needed in this case; one only needs the guarantee that the asymptotic scheme
is successful. This does indeed appear so for low enough Ca; at higher capillary number there
appear to be some hidden issues [33].

 on March 4, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


12

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140740

...................................................

The preceeding results translate to the dimensional works of adhesion

W+(U) = 1
2
δ−2/5B1/5(12μU)4/5Γ

(
μU
σ

)2
and W− = 0. (4.19)

Thus, the energy constraint (2.11) becomes

ΥV ≡ ρgdΞ sin θ

(1/2)(12)4/5σ (B/σδ2)1/5 =
(

U
UV

)4/5
Γ

(
U

UV

)2
and UV = σ

μ
. (4.20)

Figure 5 shows the relationship between U and the dimensionless gravitational driving ΥV.
Once again, there is no threshold for rolling; even though there is no adhesion at the back of
the ruck (W− = 0), the work needed to peel the ruck off the plane at the front vanishes with the
ruck speed.

5. Ruck experiments
Our experiments are summarized in figure 7. We placed a PVC sheet of thickness 3 mm on a 45◦
incline, securing each end with clamps to prevent any sliding. For most of the experiments, the
runway was covered by 60-grit sandpaper to provide a controlled degree of surface roughness.
A ruck was created by moving the bottom of the sheet a given distance Ξ up the runway, and
then working the resulting buckle up to the top of the runway, where it was released. The buckle
subsequently converged to a rolling ruck whose speed we estimated either by timing when the
ruck passed fixed positions on the runway, or from linear fits to the central position of the ruck
extracted from video frames. The video data indicated that the rucks reached a fairly steady
rolling speed, although there were systematic variations that we ascribed to inhomogeneities in
the rubber sheet (rucks ‘wobbled’ at similar positions in repeated experiments, figure 7c).

The measured ruck speeds are plotted against foreshortening Ξ in figure 7a. Qualitatively,
the results resonate with our theoretical predictions in figures 3 and 5, and also with the results
presented by Kolinski et al. (their fig. 4b). By contrast, bulk dissipation suggests a steep rise of the
ruck speed with small Ξ (§3), which is not consistent with the experimental data. Thus, a local
mechanism within the peeling regions seems more likely than bulk dissipation in controlling the
rolling speed.

Two difficulties arose in performing repeatable experiments. First, after the sheet was left in
an undeformed state for periods of order a day, the speeds of the first few rucks to be rolled
were observed to increase systematically with the order in which they were released (figure 7b).
We interpreted this ‘work-in’ effect to result from the relaxation character of the rubber material,
much as is known in other contexts. Second, when performing experiments on different days,
ruck speeds could differ even for the same foreshortening Ξ (cf. the spread of speeds for
Ξ = 17 cm in figure 7a, which correspond to three different experimental sequences). This effect
could have a number of origins: the temperature was not controlled in the laboratory and varied
by a few degrees day to day; each time the sheet was clamped, an unknown amount of tension
could have been introduced; whenever a ruck was rolled, the sandpaper gradually scratched the
underside of the rubber sheet; the rubber clearly possessed a memory of its state of deformation,
with imprints from long-lived wrinkles or folds persisting for long times after being straightened,
and affecting subsequent ruck rolls. Rather than chase down the precise reason for this day-to-day
variation, we elected to accept its presence and mostly focus on sequences of experiments run on
the same day and with the same clamping, which showed a fair degree of reproducibility once
the sheet had been worked-in (figure 7c).

A surprise in our experiments was that ruck speeds varied little when we changed the type
of sandpaper covering the runway, replaced it with a smooth plastic sheet, or removed it entirely
to leave a sticky wooden surface (the sandpaper was glued down, and some of the adhesive
was left behind after its removal) (figure 7d). This observation casts doubt on any interpretation
that relies on the detailed surface properties, as in the kinetic and viscous peeling models in
§4b,c. The viscoelastic fracture model therefore appears to be the most plausible explanation.
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That model still requires some surface adhesive energy, but the crucial dissipation occurs within
the rubber and is controlled by its internal material properties rather than those of the interface.
To temper this conclusion, we observed that the situation was quite different in some qualitative
experiments that were performed with a sheet of PDMS rubber: for this material, ruck speeds
varied significantly when one changed the underlying surface (the material is also discernibly
tackier than the PVC).

In appendix A, we estimate physical constants in each of our three models. There is a great deal
of uncertainty so we cannot clearly rule out any of the models in comparison to our experiments
or to the earlier results of Kolinski et al. It is entirely possible that different mechanisms dominate
in different circumstances, depending on the specific material and substrate.

Finally, we mention some additional experimental observations of ruck interactions. Because
ruck speed depends on amplitude, one can launch rucks of differing size into collisions to explore
how they interact. We observe (figure 8) that to trigger a collision, the larger ruck must lie uphill,
as expected given the predicted relationships between ruck size and speed. When this ruck
reaches the back of the ruck in front, it is unable to lift the sheet off the runway between the
two structures. Instead, it becomes obstructed and slows down, and also drives the preceding
ruck forwards to accelerate it, generating a steadily propagating double-ruck state. The detailed
mechanism by which the ruck interaction takes place is not clear, as the sheet is in contact with the
runway over a narrow, but finite section between the two rucks. Our peeling models say nothing
about such interaction. However, the overall effect is that the ruck at the front controls the speed
of the bound pair that forms from the collision.
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6. Conclusion
We have explored theoretically the dynamics of rucks in an elastic sheet rolling down an inclined
plane, focusing on what sets the rolling speed. In particular, we have reconsidered the two global
dissipative mechanisms for controlling the steady rolling speed mentioned by Kolinski et al. [1],
air drag and bulk viscoelasticity, and we have studied three possible processes that might control
the speed through narrow peeling layers at the fore and aft of the ruck. The peeling models are
based on viscoelastic crack propagation, a kinetic model for the breakage of bonds spanning the
contacting surfaces, and an intervening adhesive viscous film.

The key conclusion of our analysis is that the ruck speed is set by the velocity dependence
of either the global dissipation or the local peeling dynamics, as quantified by the integral
expressions (2.9) or (3.1). With that in mind, we closed by comparing the predictions with
experiments. The experimental results lend support to the conclusion that local peeling dynamics
control the speed of the ruck. However, all of the peeling models provide qualitative agreement
with the experiments, and given the large uncertainty in parameters, we are unable to clearly rule
out any of the mechanisms.

A qualitative problem with our theory is the threshold for rolling observed in both the
experiments by Kolinski et al. and our own (rucks with Ξ < 7 cm appeared to decelerate to rest
on the 45◦ incline). No such threshold emerges in either the thermodynamic or viscous adhesive
models, and if the static energies of adhesion for breaking and making contacts are taken to be
the same (w+ = w−) nor is there a threshold with the viscoelastic fracture model. To compound
matters, Kolinski et al. [1] report a different threshold for the onset and cessation of rolling, in a
manner reminiscent of the discrepancy between dynamic and static friction, or capillary hysteresis
(e.g. [34]).

The absence of a threshold in our theory reflects the fact that although the front and
back peeling conditions are velocity dependent, they always become identical in the limit of
vanishing velocity. Any kinetic or viscous theory inherently relies upon motion to generate fore-
aft asymmetry and therefore cannot generate a threshold. This suggests that some other physical
process must be responsible for arresting motion and effecting the necessary balance in (2.9).
One can manufacture the threshold in the fracture model by simply adopting a difference in the
fore-aft works of adhesion, but this has yet to be derived from any theoretical argument. Similarly,
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in the thermodynamic model one can assume that the bonds are permanently broken once
they detach, in which case the lack of adhesion at the back provides a threshold. Alternatively,
the threshold may be associated with the material’s memory: long-lived deformation alters the
neutral stress state over time, which might conceivably arrest motion if relaxation is quicker
than rolling.
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Appendix A. Physical parameter estimates
Here, we summarize estimates of the physical constants in each of the peeling models.
The exercise is fraught with uncertainty because of a lack of information regarding the relevant
material properties.

For our experiments, we used a 3 mm thick, 7.5 cm wide PVC sheet of density 1.63 g cm−3

placed on a 45◦ incline. The PVC sheet was cut from a strip of commercially available rubber wall
protection (‘Shur-Trim wall cove base’). From simple tests based on the gravitational deflection
of a section of the rubber clamped horizontally at one end, we estimated that Lb = (B/ρgd)1/3 =
9 cm or B ≈ 0.035 kg m2 s−2. For typical values of Ξ = 10 cm, and U = 1 cm s−1, we estimate the
gravitational forcing ρgdΞ ≈ 5 J m−2. By looking at decaying oscillations of the beam we also
estimated C = 3 × 10−4 J s for the bulk viscoelastic parameter of §3.

For Kolinski et al.’s [1] experiments, we take ρ = 103 kg m−3, d = 1 mm, ν = 0.5, E = 106 Pa,
B = 10−4 kg m2 s−2 and typical values Ξ = 1 cm, sin θ = O(1) and U = 1 m s−1. Hence, ρgdΞ ≈
0.1 J m−2.

For many surfaces, the work of adhesion w0 (or w±) is quoted to be of the order of
0.1 J m−2. Estimates of the parameters (n, UF) in the fit (4.3) are more varied: data for a
PDMS surface in contact with glass or acrylic suggest a range from (0.4, 10−6 m s−1) to
(0.12, 10−9 m s−1) [18,22]. Data from Gent [35], Maugis & Barquins [21] and Shull [13] indicate that
(n, UF) ∼ (0.25, 10−12 m s−1) for a styrene butadiene rubber, (0.6, 10−6 m s−1) for polyurethane, and
(0.6, 10−8 m s−1) for PNBA, respectively. Fig. 4 of Kendall [8] suggests a slightly higher work of
adhesion for peeling, w+ = 1 J m−2, w− = 0.1 J m−2, and estimates of (n, UF) that could be as large
as (0.6, 10−4 m s−1), for rubber in contact with glass.

For the thermodynamic model, we estimate AT = 1016 m−2, kBT = O(10−21) J, K= 1 kg s−2 and
K0 = 10−10 to 0.1 s−1 based on values given by Ghatak et al. [17]. The value of the reaction rate K0
is particularly uncertain.

For fluid adhesion, we consider a film of water with surface tension σ = 0.1 N m−1, dynamic
viscosity of μ = 10−3 Pa s, and take the film to have a thickness of δ = 10−9 to 10−6 m.

One can use these parameter estimates to manufacture theoretical ruck speeds to compare
with the observations. Unfortunately, in none of the cases can one convincingly rule out a
particular model.

Appendix B. Asymptotics of the thermodynamic peeling model
Here we consider the asymptotic limits of the peeling equations (4.9) for |υ| � 1, seeking to
determine the matching value of the curvature γ (υ) = gηη|η→−∞. Sample numerical solutions for
comparison are shown in figure 9, and the results of this analysis are compared with the full
numerical solutions in figure 4.

(a) υ � 1
For large positive υ, a(η) remains constant over most of the domain, but jumps from 1

2 to 0
over a narrow boundary layer in which g is relatively large so that the final exponential term
in (4.9) balances υaη (figure 9a). For the analysis below, we located the boundary layer at η = 0;
the numerical solution in figure 9a has a different choice of origin.
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To the right of the boundary layer, a ∼ 1
2 and gηηηη + 1

2 g ∼ 0. Hence,

g ∼ g0 e−mη sin(mη − ϕ)
sin(−ϕ)

, m = 2−3/4, (B 1)

where g0 = g(0) and ϕ is an unknown phase. To the left of the boundary layer, gηηηη ∼ 0, which
implies a quadratic solution for g(η) given that gηηη → 0 as η → −∞. The boundary layer is
sufficiently narrow that g, gη, gηη and gηηη remain continuous across it to leading order (see
below). We therefore require gηηη(0) = 0 or ϕ = 1

4 π , and

g ∼ g0[1 − 2mη + m2η2], (B 2)

to the left of the boundary layer.
Within the boundary layer, we set η = δη̃ and η̃∗ = [2m(1 − β)g2

0δ]−1, where δ = υ e−(1−β)g2
0/2

(anticipating δ =O(1/ ln υ) � 1, η̃∗ = O(1), as verified below), to furnish the rescaled problem,

gη̃η̃η̃η̃ ∼ −δ4g0a and aη̃ ∼ a e−η̃/η̃∗ , (B 3)

subject to the matching conditions, a → 0 as η̃ → −∞, a → 1
2 as η̃ → ∞ and gη̃η̃η̃ → 0 as η̃ →

−∞, gη̃η̃η̃ → − 1
2 g0δ

4η̃ as η̃ → ∞; the scaling gη̃η̃η̃η̃ =O(δ4) justifies the continuity of the lower
derivatives across the boundary layer.

The solution for a which matches correctly to either side is

a ∼ 1
2

exp(−η̃∗ e−η̃/η̃∗ ). (B 4)

Integrating the first equation in (B 3) therefore gives

gη̃η̃η̃(η̃) ∼ −1
2

g0δ
4η̃∗E1[η̃∗ e−η̃/η̃∗ ], (B 5)

where E1[x] = ∫∞
x e−u/u du. This exponential integral has the asymptotic form E1[x] ∼ −γE −

ln x + O(x) for small x, where γE ≈ 0.5772 is Euler’s constant. Matching for large η̃ then requires

− 1
2

g0η̃ ∼ 1
2

g0[γE + ln η̃∗] − 1
2

g0η̃, (B 6)

and so

η̃∗ = e(1−β)g2
0/2

2m(1 − β)g2
0υ

= e−γE , (B 7)
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which implicitly determines g0 in terms of υ. Expanding in log υ, we finally obtain

γ (υ) ∼ g0

21/2 ∼
√

log(υ log υ) + (5/4) log 2 − γE

1 − β
. (B 8)

(b) −υ � 1
For large negative υ, g(η) remains close to zero whilst a(η) decays exponentially from 1

2 on the
right towards 0 over a distance of length O(|υ|): g ∼ 0 and a ∼ 1

2 (1 − e−2η/|υ|), on selecting the
origin of η as the location where a → 0 according to this outer solution. A boundary layer then
arises around η = 0 of width O(|υ|1/5), where a = O(|υ|−4/5). See figure 9b. Rescaling according to

η = |υ|1/5ς , g = β−1/2g̃(ς ) and a = |υ|−4/5ã(ς ), (B 9)

we then recover the (parameterless) problem,

g̃ςςςς + ãg̃ = 0 and ãς = e−g̃2/2. (B 10)

Numerically solving this problem using boundary conditions equivalent to those imposed on
(4.9) indicates that γ (υ) ∼ 0.922β−1/2(−υ)−2/5.

References
1. Kolinski JM, Aussillous P, Mahadevan L. 2009 Shape and motion of a ruck in a rug. Phys. Rev.

Lett. 103, 174302. (doi:10.1103/PhysRevLett.103.174302)
2. Vella D, Boudaoud A, Adda-Bedia M. 2009 Statics and inertial dynamics of a ruck in a rug.

Phys. Rev. Lett. 103, 174301. (doi:10.1103/PhysRevLett.103.174301)
3. Gittus JH. 1975 Interfacial dislocations in frictional sliding and interfacial creep: the theory of

interfaceons. Philos. Mag. 31, 317–329. (doi:10.1080/14786437508228935)
4. Heaton TH. 1990 Evidence for and implications of self-healing pulses of slip in earthquake

rupture. Phys. Earth Planet. Inter. 64, 1–20. (doi:10.1016/0031-9201(90)90002-F)
5. Kendall K. 1976 Preparation and properties of rubber dislocations. Nature 261, 35–36.

(doi:10.1038/261035a0)
6. Briggs GAD, Briscoe BJ. 1978 How rubber grips and slips Schallamach waves and the friction

of elastomers. Philos. Mag. A 38, 387–399. (doi:10.1080/01418617808239243)
7. Charras GT, Coughlin M, Mitchison TJ, Mahadevan L. 2008 Life and times of a cellular bleb.

Biophys. J. 94, 1836–1853. (doi:10.1529/biophysj.107.113605)
8. Kendall K. 1975 Rolling friction and adhesion between smooth solids. Wear 33, 351–358.

(doi:10.1016/0043-1648(75)90288-4)
9. Roberts AD, Thomas AG. 1975 The adhesion and friction of smooth rubber surfaces. Wear 33,

45–64. (doi:10.1016/0043-1648(75)90223-9)
10. Lister JR, Peng GG, Neufeld JA. 2013 Viscous control of peeling an elastic sheet by bending

and pulling. Phys. Rev. Lett. 111, 154501. (doi:10.1103/PhysRevLett.111.154501)
11. Hewitt IJ, Balmforth NJ, De Bruyn JR. In press. Elastic-plated gravity currents. Eur. J. Appl.

Math. (doi:10.1017/S0956792514000291)
12. Maugis D. 2001 Adhesion of solids: mechanical aspects. Modern tribology handbook, vol. 1. Boca

Raton, FL: CRC Press.
13. Shull KR. 2002 Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. 36, 1–45.

(doi:10.1016/S0927-796X(01)00039-0)
14. Dembo M, Torney DC, Saxman K, Hammer D. 1988 The reaction-limited kinetics of

membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234, 55–83. (doi:10.1098/
rspb.1988.0038)

15. McEwan AD, Taylor GI. 1966 The peeling of a flexible strip attached by a viscous adhesive. J.
Fluid Mech. 26, 1–15. (doi:10.1017/S0022112066001058)

16. Kendall K. 1973 Peel adhesion of solid films-the surface and bulk effects. J. Adhesion 5, 179–
202. (doi:10.1080/00218467308075019)

17. Ghatak A, Vorvolakos K, She H, Malotky DL, Chaudhury MK. 2000 Interfacial rate processes
in adhesion and friction. J. Phys. Chem. B 104, 4018–4030. (doi:10.1021/jp9942973)

 on March 4, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1103/PhysRevLett.103.174302
http://dx.doi.org/doi:10.1103/PhysRevLett.103.174301
http://dx.doi.org/doi:10.1080/14786437508228935
http://dx.doi.org/doi:10.1016/0031-9201(90)90002-F
http://dx.doi.org/doi:10.1038/261035a0
http://dx.doi.org/doi:10.1080/01418617808239243
http://dx.doi.org/doi:10.1529/biophysj.107.113605
http://dx.doi.org/doi:10.1016/0043-1648(75)90288-4
http://dx.doi.org/doi:10.1016/0043-1648(75)90223-9
http://dx.doi.org/doi:10.1103/PhysRevLett.111.154501
http://dx.doi.org/doi:10.1017/S0956792514000291
http://dx.doi.org/doi:10.1016/S0927-796X(01)00039-0
http://dx.doi.org/doi:10.1098/rspb.1988.0038
http://dx.doi.org/doi:10.1098/rspb.1988.0038
http://dx.doi.org/doi:10.1017/S0022112066001058
http://dx.doi.org/doi:10.1080/00218467308075019
http://dx.doi.org/doi:10.1021/jp9942973
http://rspa.royalsocietypublishing.org/


18

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140740

...................................................

18. Lorenz B, Krick BA, Mulakaluri N, Smolyakova M, Dieluweit S, Sawyer WG, Persson BNJ.
2013 Adhesion: role of bulk viscoelasticity and surface roughness. J. Phys. Condens. Matter 25,
225004. (doi:10.1088/0953-8984/25/22/225004)

19. Wang CY. 1986 A critical review of the heavy elastica. Int. J. Mech. Sci. 28, 549–559.
(doi:10.1016/0020-7403(86)90052-4)

20. Flaherty JE, Keller JB. 1973 Contact problems involving a buckled elastica. SIAM J. Appl. Math.
24, 215–225. (doi:10.1137/0124022)

21. Maugis D, Barquins M. 1978 Fracture mechanics and the adherence of viscoelastic bodies.
J. Phys. D 11, 1989. (doi:10.1088/0022-3727/11/14/011)

22. Waters JF, Guduru PR. 2009 Mode-mixity-dependent adhesive contact of a sphere on a plane
surface. Proc. R. Soc. A 466, 1303–1325. (doi:10.1098/rspa.2009.0461)

23. Greenwood JA, Johnson KL. 1981 The mechanics of adhesion of viscoelastic solids. Philos.
Mag. A 43, 697–711. (doi:10.1080/01418618108240402)

24. Persson BNJ, Albohr O, Heinrich G, Ueba H. 2005 Crack propagation in rubber-like materials.
J. Phys. Condens. Matter 17, R1071. (doi:10.1088/0953-8984/17/44/R01)

25. Persson BNJ, Brener EA. 2005 Crack propagation in viscoelastic solids. Phys. Rev. E 71, 036123.
(doi:10.1103/PhysRevE.71.036123)

26. Greenwood JA. 2004 The theory of viscoelastic crack propagation and healing. J. Phys. D 37,
2557. (doi:10.1088/0022-3727/37/18/011)

27. Hodges SR, Jensen OE. 2002 Spreading and peeling dynamics in a model of cell adhesion.
J. Fluid Mech. 460, 381–409. (doi:10.1017/S0022112002008340)

28. Mani M, Gopinath A, Mahadevan L. 2012 How things get stuck: kinetics,
elastohydrodynamics, and soft adhesion. Phys. Rev. Lett. 108, 226104. (doi:10.1103/PhysRev
Lett.108.226104)

29. Ruschak KJ. 1982 Boundary conditions at a liquid/air interface in lubrication flows. J. Fluid
Mech. 119, 107–120. (doi:10.1017/S0022112082001281)

30. Jensen OE, Horsburgh MK, Halpern D, Gaver III, DP. 2002 The steady propagation of a bubble
in a flexible-walled channel: asymptotic and computational models. Phys. Fluids 14, 443–457.
(doi:10.1063/1.1432694)

31. Bretherton FP. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188.
(doi:10.1017/S0022112061000160)

32. Halpern D, Gaver III, DP. 1994 Boundary element analysis of the time-dependent motion of a
semi-infinite bubble in a channel. J. Comput. Phys. 115, 366–375. (doi:10.1006/jcph.1994.1202)

33. Taroni M, Breward CJW, Howell PD, Oliver JM. 2012 Boundary conditions for free surface
inlet and outlet problems. J. Fluid Mech. 708, 100–110. (doi:10.1017/jfm.2012.275)

34. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. 2009 Wetting and spreading. Rev. Mod. Phys.
81, 739. (doi:10.1103/RevModPhys.81.739)

35. Gent AN. 1996 Adhesion and strength of viscoelastic solids. is there a relationship between
adhesion and bulk properties? Langmuir 12, 4492–4496. (doi:10.1021/la950887q)

 on March 4, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1088/0953-8984/25/22/225004
http://dx.doi.org/doi:10.1016/0020-7403(86)90052-4
http://dx.doi.org/doi:10.1137/0124022
http://dx.doi.org/doi:10.1088/0022-3727/11/14/011
http://dx.doi.org/doi:10.1098/rspa.2009.0461
http://dx.doi.org/doi:10.1080/01418618108240402
http://dx.doi.org/doi:10.1088/0953-8984/17/44/R01
http://dx.doi.org/doi:10.1103/PhysRevE.71.036123
http://dx.doi.org/doi:10.1088/0022-3727/37/18/011
http://dx.doi.org/doi:10.1017/S0022112002008340
http://dx.doi.org/doi:10.1103/PhysRevLett.108.226104
http://dx.doi.org/doi:10.1103/PhysRevLett.108.226104
http://dx.doi.org/doi:10.1017/S0022112082001281
http://dx.doi.org/doi:10.1063/1.1432694
http://dx.doi.org/doi:10.1017/S0022112061000160
http://dx.doi.org/doi:10.1006/jcph.1994.1202
http://dx.doi.org/doi:10.1017/jfm.2012.275
http://dx.doi.org/doi:10.1103/RevModPhys.81.739
http://dx.doi.org/doi:10.1021/la950887q
http://rspa.royalsocietypublishing.org/

	Introduction
	Ruck dynamics
	Mathematical formulation
	Energetics
	Ruck shapes

	Bulk dissipation
	Peeling models
	Viscoelastic fracture
	A thermodynamic adhesion model
	Adhesion by a viscous film

	Ruck experiments
	Conclusion
	1
	-1

	References

