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A shocking display of synchrony
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Abstract

This article explores the Kuramoto model describing the synchronization of a population of coupled oscillators. Two
versions of this model are considered: a discrete version suitable for a population with a finite number of oscillators, and a
continuum model found in the limit of an infinite population. When the strength of the coupling between the oscillators exceeds
a threshold, the oscillators partially synchronize. We explore the transition in the continuum model, which takes the form of
a bifurcation of a discrete mode from a continuous spectrum. We use numerical methods and perturbation theory to study
the patterns of synchronization that form beyond transition, and compare with the synchronization predicted by the discrete
model. There are similarities with instabilities in ideal plasmas and inviscid fluids, but these are superficial. © 2000 Published
by Elsevier Science B.V.
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1. Introduction

Mutual synchronization is a common phenomenon in biology. It occurs at different levels in and among many
different organisms. For example, synchronization occurs on a small-scale of the cardiac pace-maker cells of the
SA (sinoatrial) and AV (atrioventricular) nodes in the human hearth that synchronously fire and give the pace to
the whole muscle. But synchrony also arises as the coordinated behaviours of crickets that chirp in unison and of
fireflies that flash together. Although this article is motivated by these biological problems, our aim here is primarily
mathematical and not directly relevant to biology; we study an idealized mathematical model constructed to explore
the dynamics of a population of coupled oscillators.

In the biological context, mathematical studies of problems of this kind began with van der Pol’s analogy between
the heart and a system of coupled relaxation oscillators, and with Wiener’s interpretation of the alpha rhythms in
the human brain in terms of synchronously firing neurons. Somewhat later, Winfree [1] highlighted the generality
of the synchronization problem, and fixed some simple first assumptions for a mathematical model. Subsequently,
Kuramoto [2] built on Winfree’s ideas and proposed a detailed model in which each oscillator is identical to the
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others upto the frequency and phase (so that the amplitudes are all constant and equal), and the ensemble is coupled
through amean field. The equation of the model for thenth oscillator is

dθn
dt

= ωn + K

N

N∑
j=1

f (θj − θn)+ ξn, (1)

whereωn is a random variable chosen from a distribution with a probability density functiong(ω),K is thecoupling
strength, f (φ) is the form of coupling andξn is white noise. Kuramoto, and most subsequent workers, have further
setf (φ) = sinφ. We, too, will follow that lead and use this mean field throughout the current article (but see [3,4]
and our final remarks).

Because the model is composed of distinct oscillators, we refer to the set (1) of ordinary differential equations
(ODEs) as the discrete Kuramoto model.1 This system is not just an idealized mathematical toy that describes
biological populations but has also appeared as a normal-form equation for systems of general coupled oscillators;
for example, the model arises as an asymptotic description of a weakly coupled or disordered array of Josephson
junctions [5].

Following Kuramoto, we define anorder parameter, r, through the relation

reiψ = 1

N

N∑
j=1

eiθj . (2)

This parameter measures the synchronization among the oscillator phases:r = 0 corresponds to the completely
incoherent state, and finiter to some level of synchrony. The information contained in the phase,ψ , is mostly
ignored.

Kuramoto studied steadily oscillating populations in the case of no added random noise (ξn = 0), and showed
that the incoherent stater = 0 exists for all coupling strengths. More interestingly, he also showed that there were
other, non-trivial solutions with a finite degree of synchrony in the population. Specifically, these are populations
for which the oscillator frequencies become modified to

ω̂n =
{
� for |ωn −�| < Kr,

�+ (ωn −�)
√

1 −K2r2/(ωn −�)2 for |ωn −�| > Kr,
(3)

where� is the frequency of the synchronized sub-population. Kuramoto found that these partly synchronized
populations exist for coupling strengths that exceed some critical threshold:K > Kc = 2/[πg(0)]. Below that
threshold, only incoherent populations exist. In a particular case with a Lorentzian frequency distribution,g(ω) =
[π(1 + ω2)]−1, Kuramoto derived the relation

r =
√

1 − 2/K (4)

(and� = 0) for the partly synchronized populations, the critical threshold beingKc = 2. Eq. (4) illustrates a
near-threshold scaling behaviour,r ∼ (K −Kc)

β with β = 1
2, which also holds for generalg(ω) [6].

The synchronized sub-populations are apparently stable in the discrete model, and so their appearance coincides
with the onset of order, as in a phase transition. When noise is added to the system, a similar threshold and transition
arises, although the value of the critical coupling strength,Kc, is different. To illustrate the dynamics, we display
the results of numerical simulations of the ODEs (1), withN = 256 and two different values of the coupling
parameterK in Fig. 1; we add noise in the form of random perturbationsξn drawn from a normal distribution with

1 By “discrete” here we refer to a finite population; later we use “continuous” to mean the infinite population. This terminology should be
distinguished from other models in which one uses a discrete time variable (so the governing equations are coupled maps rather than ODEs).
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Fig. 1. Numerical simulations of the discrete Kuramoto model withN = 256 andD = 0.01. The frequencies are selected from the distribution
(24), and the initial condition is a population of oscillators with phases chosen in [0,2π ] according to the distribution described in Section 4
with a = 2, ξ = 0.1 andL = 0. Panels (a) and (c) show a sub-threshold case withK = 0.65 ≈ 0.9Kc, and panels (b) and (d) show an unstable
case withK = 0.80 ≈ 1.1Kc (Kc = 0.739). Panels (a) and (b) show time evolution of the probability density function computed by counting
the number of oscillators whose instantaneous values ofθn fall into bins of sizeπ/32; the density in the bins is then shaded according to the
greyscale displayed in the key. Panels (c) and (d) show the time evolution of the order parameter,r.

standard deviation 2D = 0.02. In the upper panels of these figures, we show the time evolution of the instantaneous
distribution of phases of the oscillators, obtained by dividing the interval ofθ into a finite number of bins (in this
case 64) and counting the number of oscillators in each bin. In the lower panels, the time evolution of the order
parameter,r, is displayed.

For the case shown on the left, the coupling strength is below threshold:K = 0.65 < Kc. Here, the order
parameter fluctuates at low amplitude, indicating that a collective, coherent behaviour does not suddenly appear.
In the phase distribution, however, some low-amplitude collective structures can be noticed: a small population
of oscillators cluster in phase and drift erratically. Presumably this structure is connected to the vacillations inr,
but there is no tendency for strong, sustained synchrony. By contrast, whenK = 0.8 > Kc, in a very short time
the phases of the oscillators gather together in a small range of angles and then drift coherently. The amplitude of
the order parameter grows quickly, and then saturates, whereupon it exhibits small fluctuations. In other words, a
fraction of the population synchronizes.

The discrete model formulated by Kuramoto has the advantage that it is straightforward to solve numerically for
a small number of oscillators, but the procedure becomes unweildy once the population becomes large. Moreover,
the discrete formulation is not especially suited to analytical avenues of approach. An alternative approach is to
take the continuum limit of the discrete model [7,8] and capture the behaviour of an infinite population,N → ∞.
The continuous model takes the form of a partial differential equation (PDE) for the distribution,ρ(θ, ω, t), of the
oscillators in phase and frequency at timet . In this study, we adopt this model, and explore the predicted dynamics
of the oscillator population. In particular, we study in detail the dynamics in the vicinity of the critical coupling
thresholdKc.

In the PDE, the transition occurs when the incoherent equilibrium state,ρ = (2π)−1, suffers the onset of a linear
instability. The instability takes the form of a normal mode with structure inθ ; when this mode grows to finite
amplitude and saturates nonlinearly, a synchronized state appears. This rationalizes Kuramoto’s transition in terms
of bifurcation theory.
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Several previous works [9,10] have also studied this transition, dealing mainly with the noisy version of the
formulation. In the continuum description, the noise is modelled by a diffusion in angleθ . Consequently, the PDE
is dissipative and techniques of centre-manifold reduction furnish a simple amplitude equation for the onset of
θ -structured states (see Section 8.1). Here we are more interested in the limit in which the noise is very slight, and
to leading order, the PDE is non-dissipative. This is the case considered by Crawford and Davies [3] and that article
played a key role in motivating the present study.

The important facet of the non-dissipative problem that changes the complexion of the transition is the linear
eigenvalue spectrum of the incoherent state. Unlike many dissipative systems, that eigenspectrum contains a neutrally
stable continuous spectrum. Moreover, although the instability results from a discrete normal mode, the distinguished
mode bifurcates to instability by detaching from the continuous spectrum. This added ingredient to the problem leads
to significant complications in the weakly nonlinear description. Notably, because at onset there is no separation
between the distinguished mode and the remainder of the spectrum, we cannot apply centre-manifold techniques
directly, and standard weakly nonlinear expansion fails (but see [3]).

Similar difficulties arise for ideal plasmas [11,12] and inviscid shear flows [13–16]. In these situations, the
unstable mode is also embedded in a continuous spectrum at the onset of instability. The failure of standard weakly
nonlinear techniques is seen as the appearance of singularities in the equations along a special surface that locates the
wave-particle resonance for the plasma, and the inviscid critical level for the fluid. To circumvent the singularities,
one abandons the standard weakly nonlinear theory in a slender region surrounding the singular level. In thiscritical
layerone finds another solution that varies on a much finer spatial scale, and then matches with the customary weakly
nonlinear solution which remains valid outside. In other words, one proceeds with a matched asymptotic expansion.
But the essential physical point is that the mode, as it grows, overturns the plasma or fluid inside the critical layer
and generates a “cat’s eye” pattern. This physical effect is not captured in the relatively simple structure of the
unstable mode, and a low-order equation for the modal amplitude is unable to describe the dynamics of the forming
patterns. By performing matched asymptotics, we add the needed extra physics. One of our goals in this article is
to explore the parallel for synchronizing populations of coupled oscillators.

The similarity in the linear problem also poses further questions in the coupled oscillator problem. For ex-
ample, pattern formation can result even for stable fluid flows or plasma equilibria; do oscillator populations
also show such sub-threshold effects? Less specifically, the fact that all three problems are characterized by a
bifurcation from the continuous spectrum leads one to wonder whether there is some underlying, unifying “nor-
mal form” that may guide theoretical explorations. In this article, we also consider the Kuramoto model in this
light.

2. Mathematical formulation

2.1. The continuous model

The continuous version of the model takes the form of a PDE for the distribution,ρ(θ, ω, t), of the oscillators in
phase and frequency at timet :

ρt + ωρθ +K(ρG)θ = Dρθθ , (5)

where

G(θ, t) =
∫ ∞

−∞

∫ 2π

0
f (φ − θ)ρ(φ, ω, t)g(ω)dφ dω, (6)
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θ ∈ [0; 2π ] andω ∈ [−∞; ∞], and as described in Section 1, we takef (θ) = sinθ until Section 11. The density
functionρ is periodic inθ and must also satisfy, for eachω, a normalization law∫ 2π

0
ρ(θ, ω, t)dθ = 1. (7)

The derivation of these equations has the flavour of the BBGKY hierarchy in plasma physics and can be found in
[3].

The system has equilibrium solutions withρ independent ofθ , which represent incoherent states. For these states,
any structure inω reflects an internal frequency distribution. But this frequency structure supplements the intrinsic
frequency variation of the uncoupled oscillators given byg(ω), and is therefore superfluous. The only equilibrium
state of relevance is the particular solution,ρ = (2π)−1, for which the oscillators are uniformly distributed in
frequency, but their intrinsic frequencies are distributed according tog(ω).

Our measure of order in (2) becomes, in the continuous limit

reiψ =
∫ ∞

−∞

∫ 2π

0
eiθρ(θ, ω, t)g(ω)dθ dω. (8)

Strictly speaking, whenf (θ) 6= sinθ , this definition should be generalized [4].

2.2. Symmetrical systems

The equations are symmetrical under the transformation,ρ(θ, ω, t) = ρ(−θ,−ω, t), providedg(ω) is an even
function and the initial condition also possesses the symmetry. We refer to populations with this property as
symmetrical systems. The symmetry has the useful consequence thatG(θ, t) is separable inθ andt :

G(θ, t) = −G(t) sinθ, (9)

where

G(t) =
∫ ∞

−∞

∫ 2π

0
ρ(θ, ω, t)g(ω) cosθ dθ dω, (10)

∫ ∞

−∞

∫ 2π

0
ρ(θ, ω, t)g(ω) sinθ dθ dω = 0. (11)

Moreover,reiψ → G(t), and soψ = 0 orπ , andr ≡ |G(t)|. In later sections we exploit this symmetry.

3. Linear theory

We commence our study of the Kuramoto model by discussing the linear stability of the incoherent state,
ρ = (2π)−1. To some degree, this repeats the work of Strogatz and Mirollo [8], but we sketch results which
prove useful for the discussion that follows.

We perturbρ around the steady-state solution:

ρ = 1

2π
+

∞∑
m=0

[cm(ω, t)e
imθ + c.c.], (12)
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where c.c. denotes complex conjugate andm is the integral angular wave number. With this decomposition, we find

G ≡ iπeiθ
∫ ∞

−∞
c1(ω, t)g(ω)dω + c.c. or G(t) = 2π

∫ ∞

−∞
c1(ω, t)g(ω)dω, (13)

and a linearization of Eq. (5) gives

cmt = −(m2D + imω)cm + 1

2
Kδm1

∫ ∞

−∞
cm(ν, t)g(ν)dν (14)

3.1. Eigenvalue spectrum

The eigenvalue spectrum can be computed by seeking solutions with temporal dependence, eλt . Also, because
of the form of the coupling functionf (φ) = sinφ, only them = 1 mode appears in the mean field and is therefore
important to stability. For this mode, it is straightforward to derive

D(λ) ≡ 1 − 1

2
K

∫ ∞

−∞
g(ω)

λ+D + iω
dω = 0. (15)

There is a discrete eigenvalue providedD(λ) has a zero somewhere in the spectral (complexλ) plane. When
Re(λ) < 0, the discrete mode is damped and its contribution to an arbitrary initial perturbation will decay with
time. If Re(λ) > 0, on the other hand, the discrete mode is unstable.

However, the eigenvalue problem is not as straightforward as it first seems: the dispersion functionD(λ) has
the form of a Cauchy integral and is not an analytic function over the whole complexλ-plane. The non-analyticity
reflects the presence of the continuous spectrum along the lineλ = −D − iω (see [8]).

By way of illustration, consider a delta-function and a Lorentzian frequency distribution:

g1(ω) = δ(ω) and g2(ω) = [π(1 + ω2)]−1. (16)

In these cases we may explicitly perform the integral in the dispersion relation. Then

λ = −D + 1
2K and λ = −D + 1

2K − sgn(λ+D). (17)

The second of these expressions is non-analytic forλ = −D, as expected. The relation for the delta-function
frequency, however, is analytic, which illustrates how this particular frequency distribution is special because the
continuous spectrum decouples from the discrete mode. The mode is unstable forK > Kc, with

Kc = 2D and Kc = 2 + 2D. (18)

This is the critical coupling strength.
For the Lorentzian, we summarize the stability calculation as follows: For 0< K ≤ 2, the system is stable and

has no discrete modes. AtK = 2, an eigenmode appears out of the continuous spectrum, and when 2< K < 2+2D
the system has a single discrete mode, but is still stable. IfK > 2 + 2D there is an unstable growing mode. If the
dissipation is zero, the system can only be either unstable, with a growing mode (K > 2), or neutrally stable with
no discrete modes (K ≤ 2). Moreover, the eigenmode bifurcates out of the continuous spectrum at the onset of
instability.

3.2. An initial-value problem

Although the incoherent state is only neutrally stable whenD = 0 andK < Kc, the order parameter still decays
with time in the linear initial-value problem. The decay reflects the phase mixing of integral superpositions of modes
in the continuous spectrum and as pointed out by Strogatz et al. [17], is analogous to Landau damping in plasmas.
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We illustrate this peculiar form of damping by solving the initial value problem for the Lorentzian frequency
distribution withK < Kc,D = 0 and the initial condition

c1(ω,0) = a

π

eiLω

ω2 + a2
+ c.c., (19)

whereL ≥ 0 anda are constants. By using Laplace transforms, we may derive the solution

G = 2aK

(a2 − 1)

[
e−L

K − 4
− e−aL

a(K − 2a − 2)

]
e(K/2−1)t

+4

[
2aet−L

(a2 − 1)(4 −K)
− ea(t−L)

(a − 1)(2a + 2 −K)

]
H(L− t)

+4

[
8ae(K−2)(t−L)

[(K − 2)2 − 4a2](K − 4)
+ e−a(t−L)

(a + 1)(2 − 2a −K)

]
H(t − L), (20)

whereH(t) is the Heaviside function.
To highlight the Landau damping, we takeL = 0. Then

G = 2(K + 2a)e(K/2−1)t − 4e−at

(a + 1)(K + 2a − 2)
. (21)

Evidently, the order parameter decays exponentially forK < 2. Part of this decay, given by the term proportional
to e(K/2−1)t , reflects an intrinsic property of the oscillator population, and its form is not dependent on the initial
condition (except for the numerical value of the prefactor); this is Landau damping. The other decaying term in
(21) is not a general property of the population and arises from the form of the initial condition (as evidenced by
the damping rate, which depends on the width of the Lorentzian initial condition); this second form of damping is
usually ignored in comparison to Landau damping, often without justification. We refer to the combined effect as
continuum damping, and is illustrated in Fig. 2. This figure shows the order parameter for this particular case, and
two other cases withL 6= 0.

For generalL, in addition to the ultimate decay, Eq. (20) also indicates that there can be sustained transients: for
t < L, the order parameter contains exponentially growing terms (see Fig. 2 forL = 20 and 40). We discuss the
transients in more detail a little later. But all of these features of the linear, initial-value problem are familiar from
plasma theory and fluid dynamics [18,19]. Soon, we answer the question of whether the nonlinear dynamics is also
similar.

Fig. 2. Evolution of the order parameter forK = 1.5, a = 2 and three values ofL (0, 20 and 40). In the second panel, the trend of Landau
damping is also shown.
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Fig. 3. Crenellating solution (23) to the linear initial-value problem withK = 1.25 at (a)t = 1, (b) t = 2, (c) t = 5 and (d)t = 10.

To understand the dynamics underlying the decay of the order function, and also to differentiate it from the decay
of a normal mode, we must examine the probability density. For brevity, we do this in the special caseL = 0,K = 1
anda = 2, for which

r(t) = 10
9 e−t/2 − 4

9e−2t , (22)

c1(ω, t) =
(

2

π

1

ω2 + 4
− 5

9π

1

2iω − 1
− 1

9π

1

2 − iω

)
e−iωt + 5

9π

e−t/2

2iω − 1
+ 1

9π

e−2t

2 − iω
. (23)

Evidently, the functionc1(ω, t) contains the non-decaying and non-separable term e−iωt , and hence cannot be
described in terms of a normal mode. As time proceeds, this term becomes progressively more crenellated and,
through increasing cancellations, integral averages ofc1(ω, t) decay. Because the order parameter is essentially
such an integral average,r therefore decays in time.

The crenellation process is illustrated in Fig. 3 which displays four snapshots of the perturbation to the probability
distribution as densities on the(θ, ω)-plane. The crenellation results from a tilting over of the initially vertical stripes
of the pattern of the perturbation. The tilt itself arises from the evolving phase difference between oscillators with
different frequencies. In other words, crenellation and continuum damping are just the phase mixing of the oscillator
population.

4. Numerical schemes

The continuous model is most efficiently solved by Fourier decomposition inθ : ρ = ∑∞
m=−∞ρ̃m(ω, t)eimθ . For

each value ofω, we truncate the Fourier series atm = L. We usedL up to 512 in the computations; the smaller
the dissipation or the longer the time of integration, the more Fourier modes are needed. ForD ≥ 10−2 and stable
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coupling strengths, we found thatL = 32 was a good compromise in many situations. For smallerD, more Fourier
modes are essential, and we used upto 512 for the computations withD = 0 and the largest initial probability
densities. In the unstable cases,L = 64 was adequate forD ≥ 10−2. But for the non-diffusive computations we
again usedL = 512.

The simplicity of the truncated system above relies on the form of the mean-field interaction term; for more
generalf (θ), the equations are not tri-diagonal, but the generalization is straightforward.

To simplify the numerical computations, we considered frequency distributions with compact support on [−1,1].
In particular, as an analgoue of the Lorentzian, we consider the probability density function

g(ω) =



(1 − ω2)

[(π − 2)(1 + ω2)]
for |ω| < 1,

0 for |ω| > 1.
(24)

The oscillator population with|ω| > 1 then decouples from the problem and we may solve for the remainder of the
population on the finite domain.

Following Crawford and Davies [3], we evaluate the integrals overω using Gauss–Legendre quadrature, splitting
the integration range into sub-intervals to improve resolution if necessary. This requires the values ofρ at a set of
quadrature points, which is where we solve the ODEs for the Fourier decomposition. Almost always, we used 501
quadrature points. However, when the diffusivity was small, we used up to 1201 points. In all cases, we verified
that resolution in bothθ andω was sufficient.

With the Fourier decomposition and Gaussian quadrature in hand, we integrate the system using a semi-implicit
Adams–Bashforth–Moulton predictor–corrector scheme. In the predictor–corrector time integration, we extrapolate
forwards forρ at the beginning of the time-step. Given this approximation toρ, we evaluateG(θ, t), and then correct
ρ implicitly (which requires the inversion of a tri-diagonal matrix) to finish the time-step. This makes the scheme
a semi-implicit one and ensures numerical stability.

In all the numerical integrations, we used the initial conditions

ρ(θ, ω,0) = 1

2π
+ 2a

π(ω2 + a2)
ξ cos(θ + Lω), (25)

whereL, a andξ are constants. This starting distribution corresponds to the initial condition used to compute the
solution of the linear initial-value problem in Section 3.2 (whereξ → 0). Practically, we takea = 2. Because the
initial density must be positive, the amplitude of thekick given to the system to knock it out of the steady state
cannot exceed a maximum value:ξ ≤ 1

2.
Though we focus on the continuous version of the Kuramoto model, we also solve the discrete ODEs (1) to verify

the correspondence of the two systems and to check that there are no special effects introduced by discreteness.
The integration of the ODEs is performed with a fixed step (1t = 0.1), fully implicit, predictor–corrector scheme
whenD 6= 0. The fixed time-step is forced by the noise term that prevents the convergence of adaptative methods.
If D = 0, we use a more accurate and efficient variable step, Runge–Kutta scheme.

To parallel the initial condition used in the numerical integrations of the PDE, we first select the frequency of the
j th oscillator from theg(ω)-distribution in (24). Then, we choose the initial phase randomly from a distribution of
the form (25) withω = ωj , L = 0, a = 2 andξ suitably prescribed.

5. Nonlinear perturbations in stably incoherent populations

Before passing on to the transition to synchrony, we first consider finite-amplitude perturbations in stable popu-
lations. The aims are two-fold. First, the linear initial-value problem only captures the dynamics of disturbances of
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infinitesimal amplitude, and it is not clear whether this property extends to disturbances of finite amplitude. Second,
depending on the structure of the initial condition, one can find perturbations that grow for arbitrarily long intervals
of time in the linear initial-value problem. This raises the important question of what happens to these disturbances
when they enter the nonlinear regime.

5.1. Nonlinear continuum damping

One feature of the dynamics of fluid shear flows and plasmas is that nonlinear perturbations need not always
crenellate and decay, despite the linear Landau damping. Given sufficient initial amplitude, perturbations can sustain
themselves against tilting, wrap up the equilibrium distribution and again create a chain of cat’s eyes [20–22]. In
other words, continuum damping only proceeds if the initial amplitude is sufficiently small; otherwise, the flow
evolves to structured patterns. Thus, pattern formation can occur even on perturbing stable equilibria in shears and
plasmas. This poses the question of whether a similar effect arises in stable, noise-free oscillator populations — can
nonlinearity halt the Landau damping? If so, structured patterns of synchrony could emerge even at sub-threshold
coupling strengths provided the population is given a sufficiently strong initial perturbation.

In Fig. 4, we display numerical solutions forρ(θ, ω, t) at six successive instants of time, with initial condition
(25) andξ = 0.1. One of the curves in Fig. 5a displays the corresponding evolution of order parameter (equivalently,
|G(t)|). A tilting, periodic array of stripes of probability is evident, much like the solutions of the linear initial-value
problem displayed earlier. In other words, the oscillators again phase mix and the finite-amplitude perturbation
decays by continuum damping.

To determine whether nonlinearity has any effect on continuum damping, we performed a set of computations
with varying ξ . The results are shown in Fig. 5. The oscillations that arise for long times and low amplitudes in

Fig. 4.ρ(θ, ω, t) at six successive instants of time obtained via numerical integration with frequency distribution (24), initial condition (25),
andD = 0, ξ = 0.1,K = 0.5, a = 2 andL = 0 (Kc = 0.727).



N.J. Balmforth, R. Sassi / Physica D 143 (2000) 21–55 31

Fig. 5. Time evolution of the order parameter for the Kuramoto continuous model with frequency distribution (24) and initial condition (19).
Several stable, noisy cases are displayed withK = 0.65. In panel (a), withD = 0, we show cases withξ = 10−3, 0.1 and 0.5; the dashed-dotted
line shows the trend of Landau damping. Panel (b) shows the same picture, but forD = 0.01.a = 2 andL = 0.

this figure are due to the finite computational domain, which limits the continuous spectrum to a finite cut on the
spectral plane [17]. The oscillations have a period of 2πd, whered is the maximum coupled frequency (in this case
d = 1).

Even for the biggest kick, withξ = 1
2, there is no significant difference between the decay of the order parameter

and the linear Landau damping. Thus no new, nonlinearly induced phenomena apparently occur. This is quite unlike
the fate of nonlinear perturbations in inviscid fluid shears and ideal plasmas. However, the information contained
in the order parameter misses abona fidenonlinear effect.

We observe this effect by looking at the probability distribution. As illustrated in Fig. 6, whenξ is relatively large,
the probability collects into narrow regions and disappears from large portions of the(θ, ω)-plane. This creates a
sharply peaked distribution which indicates that the oscillator population shows significant synchronization even
below the critical threshold. The synchronization is much more pronounced than one expects from linear theory, as
illustrated in Fig. 7 which shows the peak values ofρ for ξ = 0.5. (However, with the larger values ofξ , linear theory
predicts negative probability densities.) The larger nonlinear densities arise through two effects. First, the peaks
of the probability distribution sharpen through a nonlinear focussing effect. Second, the depletion of probability
between the peaks creates flat plateaus of negligible density.

5.2. Transient amplification

The possibility of unlimited transient amplification in the linear initial-value problem can be seen from the solution
considered in Section 3.2. There, fort < L, the order parameter grows exponentially (see Fig. 2). These transiently
amplifying perturbations are inclined backwards with respect to the intrinsic phase evolution of the oscillators. As a
result, they tilt forwards toun-crenellatethe distribution for a time. Ultimately, the perturbation decays, but, in the
interim, integral averages such as the order parameter may grow by many orders of magnitude. This is analogous
to the classical shear-tilting mechanism of Kelvin and Orr in fluid mechanics, which has recently been brought
back into fashion with the rejuvenated idea that such tilting perturbations may rise to sufficiently large amplitude
to enter the nonlinear regime and spark the transition to turbulence in pipe and channel flows [23]. Physically, for
our coupled oscillators, transient amplification corresponds to a brief flash of coherence in the population before it
lapses to asynchrony. But, such amplification may induce nonlinear disturbances and produce sustained coherence
in the population for coupling strengths below the critical threshold.
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Fig. 6.ρ(θ, ω, t) at t = 10 for three different numerical integrations with frequency distribution (24) and initial condition (25),D = 0 and
K = 0.65 (Kc = 0.727). Panels (a)–(c) showξ = 10−3, 0.1 and 0.5, respectively. Panels (d)–(f) show slices through the probability density at
θ = 0. a = 2 andL = 0.

To explore this possibility, we numerically integrated the PDE with the initial condition (25) andL = 40. The
resulting evolution of the order parameter is shown in Fig. 8. As for the linear solution, the order parameter grows
by orders of magnitude before decaying. But, the ultimate behaviour is still the decay predicted by linear theory.
There are two notable differences between the linear solution and the nonlinear integration. First, for small times, the
order parameter oscillates at a level of about 10−4 rather than rising from much lower values. Second, oscillations
also set in for large times. Both effects result from the finiteness of the computational domain (and, eventually, the
resolution) and not from nonlinearity.

Transient amplification does not therefore lead to an entry of the system into the nonlinear regime and the creation
of sustained synchrony. Indeed, the only apparent effect of nonlinearity is to focus and sharpen the peaks in the

Fig. 7. Time evolution of the peak value ofρ(θ, ω, t). Three noisy stable cases are displayed withD = 0, 0.0001 and 0.01, forK = 0.65,
ξ = 0.5 andL = 0. The dots show the peak value expected from linear theory withD = 0, a = 2 andL = 0.
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Fig. 8. Time evolution of the order parameter. A noisy stable case is displayed withD = 0.01,K = 0.65, ξ = 0.5, a = 2 andL = 40
(Kc = 0.739). The broken line shows the expected linear decay rate.

probability distribution as for nonlinear continuum damping. Whilst this heightens the amount of synchrony in the
population over intermediate times, it does not alter the ultimate coarse-grained decay to incoherence. Instead, we
must look to unstable populations to observe longlived coherence.

6. A vision of synchronization

In this section, we begin our discussion of sustained synchronization and describe numerical integrations of
unstable populations. One such integration is illustrated in Figs. 9 and 10, which shows the order parameter, and
snapshots ofρ(θ, ω, t) on the(θ, ω)-plane.

In Fig. 10, the probability initially gathers into tilting stripes. However, rather than continually tilting, phase
mixing ends and the stripes evolve into a quasi-steady pattern in which probability gradually collects into two
regions and depletes elsewhere. The probability distribution evolves into a finer structure in these special regions,
as illustrated in Fig. 11 (the evolution of the order parameter corresponding to this integration is shown in Fig. 12).
This shows how fine scales develop inside a “critical region” much like how structure forms inside the critical layer
of an unstable mode in an ideal plasma or shear flow. However, the geometry is quite different from a cat’s eye
pattern.

As fine structure develops in the critical region, the peak probability density increases dramatically (see Figs. 11
and 13a ). The peak amplitude (occurring atω = θ = 0) eventually levels off at a value dictated by the degree of noise
(Fig. 13b); forD → 0, the peak amplitude appears to increase without saturation (the peak never diverges in the

Fig. 9. Time evolution of the order parameter. An unstable noisy case is shown withD = 0.01,Kc = 0.739,ξ = 0.001 andK = 0.8. The
broken line shows the expected linear growth rate.a = 2 andL = 0.
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Fig. 10.ρ(θ, ω, t) at six successive instants of time obtained via numerical integration, and corresponding to Fig. 9.

computations due to artifical diffusion caused by finite resolution). Also, although the peak probability may diverge
asD → 0, the order parameter shows no such singular behaviour and, in fact, approaches a level independent ofD

(see Fig. 12). Both of these observations are consistent with the boundary-layer theory presented in Section 7.2 that
constructs steady solutions to the PDE. The predictions of the asymptotic theory are included in Figs. 12b and 13b.

Fig. 11. Snapshots ofρ(θ,0, t) drawn above the(θ, t)-plane for a numerical integration withK = 0.8,D = 10−4, a = 2,L = 0 andξ = 0.001.
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Fig. 12. (a) Time evolution of the order parameter for numerical integrations withK = 0.8, a = 2,L = 0 andξ = 0.001. Four values ofD are
shown. ForD = 0, the computation becomes unreliable just belowt = 100 and is not plotted thereafter. (b) Final value ofr as a function ofD.
The line shows the value expected from the boundary-layer theory of Section 7, as given by (41).

Fig. 13. (a) Time evolution of the peak of the probability distribution for the same numerical integrations as in Fig. 12. Again, theD = 0 case is
halted when the code becomes unreliable. (b) Final peak value as a function ofD. The curve shows the value expected from the boundary-layer
theory of Section 7, as given by (37).

Because the probability density develops ever finer and higher peaks in populations with very low noise levels, a
cascade to smaller scales occurs as evolution proceeds. As a result, the accuracy of the numerical scheme ultimately
breaks down when the width of the peak reaches the wavelength of the highest Fourier mode. This is illustrated
in Fig. 14; the two cases withD = 0.01 and 10−4 are resolved, but fort > 100, theD = 0 computation is not
reliable. (Note the large number of Fourier modes used in this particular computation.) The cascade makes long-time
computations especially difficult in the noise-free limit.

The phenomenology of the supercritical evolution for noise-free populations is reminiscent of the formation of
an irregular solution. Indeed, the “potential”u, defined byuθ = ρ, evolves towards an almost discontinuous profile
much like a shock layer. This is, perhaps, not so surprising in view of similarities between the equation satisfied by
u and Burger’s equation. We give further analogies with shock formation later.

7. Steadily oscillating populations

A feature of the numerical simulations illustrated above is that, whenK > Kc andD 6= 0, the population evolves
to a steady solution in whichG becomes constant andρ approaches a stationary pattern. IfD = 0, there is some
suggestion thatG again levels off, butρ appears to focus continually into special regions. This motivates a search for
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Fig. 14. This figure shows the amplitude of the Fourier modes,|cm(ω, t)|, as a density on the(t, m)-plane atω = 0 for numerical integrations
with K = 0.8, a = 2, L = 0 andξ = 0.001. The greyscale is logarithmic, as given by the key. The three panels are for (a)D = 0.01, (b)
D = 10−4 and (c)D = 0. Note that different resolutions are used in the three cases.

steady solutions of the PDE. More generally, these particular solutions are special examples of steadily oscillating
populations in whichG(θ, t) andρ(θ, ω, t) take the form of rigidly “rotating” or “propagating” patterns in phase.
In this section, we look for these steadily propagating solutions.

7.1. The absence of silent smooth solutions

The steadily propagating solutions take the form,

ρ(θ, ω, t) = ρ(θ −�t, ω) ≡ ρ(2,ω) and G(θ, t) = G(θ −�t) ≡ G(2), (26)

where� is the propagation velocity and2 = θ −�t .
Eq. (5), forD = 0, becomes

(ω −�)ρ2 +K(Gρ)2 = 0. (27)

On integrating in2:

ρ = J (ω)

ω −�+ KG
, (28)

whereJ (ω) is an arbitrary function ofω. But, as a probability density,ρ cannot have a non-integrable singularity.
Yet, becauseω is a real variable that spans the entire real axis, the pole from the denominator ofρ is hard to
avoid. This is an interesting point: if the dissipation is zero the system does not admit steadily propagating, smooth
solutions withr > 0. However, there are solutions when the dissipation is finite, but small, and there are irregular
solutions withD = 0, as we show in the next section.

7.2. Noisy boundary layers

If D 6= 0, we have

(ω −�+ KG)ρ = J (ω)+Dρ2. (29)
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As indicated above, because there is always a curve on the(2,ω)-plane for whichω−�+KG = 0, or2 = 1(ω),
we cannot neglect the dissipative term in this equation. This curve lies inside the frequency interval, [ω1, ω2] ≡
[�− KGmax, �− KGmin], which we refer to as thesynchronizing zone.

If �−KGmin < ω orω < �−KGmax, we are outside the synchronizing zone and there is no pole in the noise-free
solution (28). Here, ifD � 1, we may ignore the noise term and adopt that solution. Moreover, normalizing as in
Eq. (7) gives

J (ω) =
[∫ π

−π
d2

ω −�+ KG(2)

]−1

. (30)

On the other hand, where�− KGmax < ω < �− KGmin, there is a value of2 = 1(ω) for which the noise-free
solution (28) diverges. In the vicinity of this special angle,ρ ∼ 1/(2 −1), and we cannot ignore the dissipative
term. This sets the stage for a boundary-layer calculation of the solution.

Inside the noisy boundary layer, we set

2−1 = δ
√
D and ρ = 1√

D
R. (31)

On substituting in Eq. (29) and noting that∂2 = D−1∂δ, we find that, to leading order

KG2(1)δR = J (ω)+ Rδ. (32)

Hence

R = eKG2δ
2/2
[
N − J

∫ δ

0
e−KG2δ̄2/2 dδ̄

]
≡ eKG2δ

2/2

[
N − JErf

(
δ

√
KG2

2

)√
π

2KG2

]
, (33)

whereN (ω) is another arbitrary function and we omit the argument fromG2(1).
We next demand that, for|δ| → ∞, R(δ, ω) matches with the “inner” limit of the outer, noise-free solution,

ρ ∼ J /[KG2(1)(θ −1)]. By using the asymptotics of the error function, it is straightforward to see that the only
possible way in which we can perform this matching is to takeJ = 0. Moreover, we must further takeN = 0 if
G2 > 0. This leaves us with an exponentially localized, Gaussian boundary-layer solution in the vicinity of that
part of the curveω = �− KG(2) for whichG2 < 0. Fig. 15 shows a sketch of the situation for� = 0.

The value ofN (ω) for G2(1) < 0 is computed using the normalization condition (7):

N =
[∫ ∞

−∞
e−K|G2|δ2/2 dδ

]−1

≡
√
K|G2|

2π
. (34)

To complete the construction of the solution, we need only to evaluate the integral determiningG. This integral
constraint provides a relation that determines the order function, givenK. Because the contribution of the noise-free
solution (73) from outside the synchronizing zone vanishes, the integral is limited to the boundary layer, and

G(2, t) =
∫ ∞

−∞

∫ 2π

0
sin(8−2)ρ(8,ω)g(ω)d8dω ≈

∫ ω2

ω1

sin [1(ω)−2]g(ω)dδ dω. (35)

D does not enter this expression, and so the order parameter becomes independent of the noise level in the limit.
To summarize, steadily propagating solutions cannot develop forD = 0; with D finite, but small, there are

solutions with noisy boundary layers that follow the lineω −�+ kG(2) = 0, whereG2(1) < 0.
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Fig. 15. Steadily propagating solutions. The left-hand panel shows a sketch ofρ(2,ω). There is a special curve2 = 1, whereω+KG(1) = 0,
which locates the boundary layer. Due to the periodicity ofG(2), there are two locations in2 for eachω inside the synchronizing zone,11

and12. Only one of these hasG′(1) < 0 (11 is chosen to haveG′(11) < 0 in the sketch), and in the vicinity of this location, there is a noisy
boundary layer (light grey region) in which the solution is exponentially localized. Above and below the synchronizing zone, the solutions are
essentially noise-free. The structure is illustrated in detail in the right-hand side panels which show steady solutions computed forKG = 1, three
different values ofD and (a)ω = 1

2 (inside the synchronizing zone, with boundary-layer structure) and (b)ω = 3
2 (outside the synchronizing

zone, with structure approximately independent ofD).

7.3. Symmetrical stationary solutions

By way of example, we consider symmetrical stationary solutions,� = 0. In this case, the solution is concentrated
around that part of the lineω = KG(t) sinθ with G cosθ > 0:

ρ ≈




√
ω2 −K2G2

[2π(ω −KG sinθ)]
for ω2 > K2G2,

[
(K2G2 − ω2)

4π2D2

]1/4

exp

(
−δ

2
√
K2G2 − ω2

2

)
H(G cosθ) for ω2 < K2G2,

(36)

whereH(x) denotes the Heaviside function. Note that the two formulae are not consistent in the vicinity ofω = KG
andθ = ±π/2. Strictly speaking, in those regions, which surround the “tips” of the special curveω = KG sinθ , we
need a different asymptotic expansion (see Section 8). However, to determine the leading-order form of the solution
it is not necessary to uncover these technical details.

In Fig. 16, the special curve is superimposed on a numerical solution, using the steady value ofG approached at
the end of the computation. The probability collects in exactly the region predicted. The exponential localization of
the steady solution to the boundary layer also explains the depletion of probability in the middle of the(θ, ω)-plane.
It is straightforward to read off the peak probability density from (36):

ρmax ≈
√
KG

2πD
, (37)

which agrees with the results of numerical integration (see Fig. 13).
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Fig. 16. ρ(θ, ω, t) at t = 180 obtained via numerical integration (see Fig. 9 for further details). In panel (a) we superimpose the line,
ω = KG sin(θ), on a contour plot ofρ, whereG is set to the final, steady value obtained in the integration.

For general values forD, we may explicitly integrate the dissipative equation:

ρ = J (ω)
D

ep(θ,ω)
[
P(θ, ω)+ e−2πω/D

1 − e−2πω/D
P (0, ω)

]
, (38)

whereJ (ω) must be fixed by the normalization

p(θ, ω) = 1

D
(ωθ +KG cosθ) and P(θ, ω) =

∫ 2π

θ

e−p(θ ′,ω) dθ ′. (39)

Solutions forKG = 1 are shown in Figs. 15 and 17. In Fig. 17, the solution is not computed consistently by using
(35) to determineG at the same time as constructingρ. Instead, we constructρ for fixedKG, and then compute the
integral forG, which finally gives the corresponding coupling strengthK. (For the two cases shown in the figure,
D = 0.01 andK ≈ 2.4 in panel (a), andD = 0.1 andK ≈ 2.6 in panel (b).) This technique can be used to
construct numerically the locus of dissipative solution branches,G = G(K); a selection is shown in panel (c). The
branches bifurcate from the incoherent solution at the critical coupling strength, as expected from the dissipative,
weakly nonlinear theory, and the structure of the solutions is comparable to the end states of numerical integrations.

By using the boundary-layer form forρ, we may also compute the integral in (35):

G ≈
∫ KG

−KG
g(ω)dω

√
1 − ω2

K2G2

∫ ∞

−∞
Ne−δ2

√
K2G2−ω2/2 dδ =

∫ KG

−KG
g(ω)dω

√
1 − ω2

K2G2
. (40)

For our compact distribution (24),

G ≈
√

8(K − 2 + 4/π)/K

(K + 2 − 4/π)
, (41)

which is compared with the results of numerical integrations in the previous section (see Fig. 12). For the Lorentzian,

G ≈
√

1 − 2/K, (42)

which is identical to Kuramoto’s solution (see Section 1). This equivalence raises the question of what Kuramoto’s
noise-free solutions correspond to in the PDE, a question we answer in Section 7.4.
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Fig. 17. Dissipative steady solutions for (a)D = 0.01 and (b)D = 0.1, withKG = 1. Panel (c) locates the dissipative solution branches on the
(K,G) plane for four values ofD. The squares show the bifurcation points,Kc = 2 + 2D. The solid curve is Kuramoto’s solution (42). The
dotted curves show the weakly nonlinear solution derived in Section 8.1, which assume significant noise. Near the bifurcation, the numerical
scheme becomes inaccurate.

7.4. Irregular solutions

Another possible solution to (28) is the distribution

ρ =


K|G2(1)|δ(ω −�+KG)H(−G2) for ω1 < ω < ω2,

J (ω)

(ω −�+KG)
elsewhere,

(43)

which corresponds to an integrably singular probability density along our special curve, together with an essentially
noiseless density outside the synchronizing zone. This irregular solution is also theD → 0 limit of the noisy
structures described above, and corresponds exactly to Kuramoto’s solution given in (3). The singular distribution
simply represents the sub-population of perfectly synchronized oscillators.

The irregular stationary solutions are given by

ρ =



√
K2G2 − ω2δ(ω −KG sinθ)H(cosθ) for −KG < ω < KG,√

ω2 −KG2

[2π(ω −KG sinθ)]
elsewhere.

(44)

Once again, the only contribution to the integral determiningG arises from the synchronized portion of the population,
and so

1 = K

∫ π/2

−π/2
cos28g(KG sin8)d8. (45)

For the Lorentzian, the integral may be explicitly evaluated to give the familiar result,G = √
1 − 2/K.
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Thus, although there are no smooth stationary solutions to the noise-free Kuramoto model, there are irregular
solutions with an obvious correspondence to weakly dissipative structures. Moreover, the numerical integrations
described earlier suggest a dynamical evolution to structures of this kind.

8. Weakly nonlinear analysis and critical layer theory

The appearance of slender regions in which the solution develops fine scales is reminiscent of the formation of
critical layers in ideal plasmas and shear flows. This motivates a weakly nonlinear expansion in which matched
asymptotics are exploited to resolve critical level singularities. However, whenD is not small, the matched asymp-
totics are not necessary and weakly nonlinear theory proceeds in a standard way; we summarize this case first. On
appreciating how the theory breaks down whenD → 0, we sketch out the critical-layer analysis.

8.1. Dissipative theory

WhenK = Kc andD 6= 0, one can derive a Landau equation for the amplitude of the marginally unstable mode
[9,10]. The weakly nonlinear expansion proceeds as follows. Withε � 1, a parameter organizing the expansion,
let

ε2t = T or ∂t = ε2∂T , K = Kc + ε2K2 + · · · , (46)

ρ = 1

2π
+ ε[a(T )ρ̂1(ω)eiθ + c.c.] + ε2ρ2 + ε3ρ3 + O(ε4), (47)

G = εG1 + ε2G2 + · · · , (48)

whereT is a slow time on which amplitude growth occurs, andρ̂1(ω) denotes the neutral eigenmode with amplitude,
a(T ). The scalings in these formulae are “Hopf scalings”, suitable for unfolding the bifurcation of complex conjugate
mode pairs.

From Eqs. (5) and (6) at first order (O(ε)), it follows that we may take

ρ̂1 = Kc

2(ω − iD)
and

∫ ∞

−∞
ρ̂1(ω)g(ω)dω = 1. (49)

These relations are consistent by virtue of the definition ofKc andρ̂1. Continuing on, and in particular to O(ε3),
one derives the amplitude equation

aT = 1
2K2a + (Kcπ)

2I|a|2a, (50)

where

I =
∫ ∞

−∞
ρ̂1g(ω)

ω − 2iD
dω. (51)

From the Landau equation, we can construct the steady, dissipative solutions near the onset of synchrony. These
must satisfy

|a|2 = − K −Kc

2π2K2
cI
. (52)



42 N.J. Balmforth, R. Sassi / Physica D 143 (2000) 21–55

Moreover, to leading order,G ≈ 2π |a|. Hence, for the Lorenztian,

G ≈
√
(1 + 2D)(K/2 − 1 −D)

(1 +D)
. (53)

This approximation is also drawn in Fig. 17.
We can see from the expression forρ1 that the approach breaks down whenD = 0; ρ has a pole atω = 0, but

as a probability density, this cannot have any physical meaning and must be avoided. At higher order, the situation
becomes progressively worse, with even stronger singularities appearing in the solution. These singularities all
occur at the critical level and signify the breakdown of standard weakly nonlinear theory in a system with a critical
layer.

8.2. Consequences of Hopf scaling in the low-noise limit

In this section, we sketch the asymptotic expansion for the case 1� D 6= 0. We choose the variables to scale
as in the previous case (Hopf scaling) but takeD = ε3D3. The motivation for Hopf scaling can be found in our
numerical experiments and in the analyses of Daido [4] and Crawford and Davies [3]. The scaling ofD constitutes
a distinguished limit, and ensures that the noise level enters the asymptotic expansion exactly where we want it.

On substituting the scalings into the governing equations, we find

ωρθ + ε2ρT + (ρG)θ (Kc + ε2K2) = ε3D3ρθθ . (54)

We solve this equation by introducing the expansionρ = 1/(2π)+ ερ1 + ε2ρ2 +· · · . At the first and second order,
we derive expressions forρ1 andρ2 :

O(ε) : ρ1 = −KcG1

2πω
, (55)

O(ε2) : ρ2 = K2
cG

2
1

2πω2
− KcG2

2πω
. (56)

Here, we immediately see the “critical-level” problem: the solution at both orders diverges asω → 0. Moreover,
for ω ∼ ε, ερ1 andε2ρ2 are of similar magnitude, indicating that the asymptotic sequence becomes disordered in a
slender region nearω = 0. In this “critical layer”, we must search for another solution.

Inside the critical layer, we use the new independent and dependent variables,ω = εy andρ = Z(θ, y, T ) =
Z0 + εZ1 + · · · . The equation then becomes

ε2ZT + εyZθ + (ZG)θ (Kc + ε2K2) = ε3D3Zθθ . (57)

At the first two orders,

O(ε) : (y +KcG1)Z0 = J0(y, T ), O(ε2) : [(y +KcG1)Z1]θ = −Z0T − (Z0G2)θKc,

whereJ0(ω, T ) is currently undetermined.
Despite our attempt to regularize the singularities by including the critical layer, problems still remain: near

y + KcG1 = 0, Z0 ∼ 1/(y + KcG1) andZ1 ∼ 1/(y + KcG1)
2. Thus the first inner layer is not sufficient to

avoid critical-level problems and it is necessary to include another critical region inside the first, much like a nested
boundary layer. The inner layer has a non-trivial shape given by theθ -dependence ofG(θ, T ) and is sketched in
Fig. 18.
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Fig. 18. For small dissipation (D = O(ε3)), when an unstable mode grows, a critical layer develops aroundω = 0 (light grey region); the width
of this layer is of orderε in ω. Within this first critical region, a second, critical layer also develops around the special curvey + KG1(2) = 0.
The inner critical or boundary layer is of widthε in θ , and has further distinguished regions near the tips of the special curve.

To continue with the critical-layer analysis we must enter a fully fledged, multi-deck, asymptotic analysis; we
point out the salient features here. First, we proceed to the inner critical region and we define

θ = 1(y, T )+ εδ and Z = 1

ε
ζ(δ, y, T ), (58)

wherey +KcG1(1, T ) = 0. Then, to leading order, we find a noisy boundary-layer solution

ζ = N exp

[
1

2D3
KcG1θ

(
δ − 1T

KcG1θ

)2
]
, (59)

in the regionG1θ (1, T ) < 0.
However, the inner boundary layer solution is exponentially localized and cannot be matched to the solution inside

the first critical region. This is because there are slender regions at the “tips” of the special curvey + KcG1 = 0
where the scalings of the inner boundary layer break down (becauseG1θ = 0 there). For the problem at hand,
these distinguished regions surround the points(θ, y) = (π/2,KcG1) and(θ, y) = (3π/2,−KcG1). In these “tip”
regions, another expansion is needed: for example,

θ = π

2
+ ε2/3µ, y = KcG1(1 + ε4/3Y ), Z = 1

ε2/3
η(µ, Y, T ). (60)

Fig. 18 illustrates the different regions and their scalings, and rationalizes the structure of our numerical solutions.
To leading order in each of the regions, we may then construct solutions forρ and evaluate the contribution of

each region to the integral forG. Of these, the contribution of the outer solution vanishes to leading order, and that
from the tip region is higher order. Only the inner boundary layer contributes toG1, and the resulting relation is
automatically satisfied providedKc is correctly chosen. The evolution equation forG that constitutes the ultimate
goal of critical layer theory lies at higher order. Suffice to say that the analysis at this stage becomes involved and
technical, but can presumably be carried through with much effort. We do not head down this tortuous route, here,
and instead move onto other issues that prove more revealing.
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9. Characteristics

In previous sections, we constructed asymptotic solutions in the low noise limit. The idea is that, with a small
amount of noise, boundary layers can form in which the probability density saturates at finite levels. But all evidence
so far suggests that the probability does not saturate when there is no noise. In this section, withD = 0, we present
two solutions, one exact and one approximate, that illustrate the non-dissipative dynamics and bolster the conclusions
we reached with numerical simulations in Section 6.

9.1. An exact solution: the caseg(ω) = δ(ω)

For a simplified special case of the Kuramoto model, we may find an exact solution using the method of character-
stics. This special case is the population of coupled oscillators with identical frequencies,g(ω) = δ(ω), considered
earlier. For such a population, onlyω = 0 is important, and with a symmetric initial condition, the Kuramoto system
becomes

ρt −K∂θ(ρG sinθ) = 0, (61)

G(θ, t) = − sinθ
∫ 2π

0
ρ(φ, t) cosφ dφ = −G(t) sinθ. (62)

The characteristic equations for this PDE are

dθ

dt
= −KG sinθ and

dρ

dt
= KGρ cosθ. (63)

The solution is

tan

(
θ

2

)
= tan

(
θ0

2

)
e−Kq, (64)

ρ = ρ0
sinθ0
sinθ

≡ ρ0
e−Kq

e−2Kq cos2(θ/2)+ sin2(θ/2)
, (65)

whereθ(0) = θ0, ρ(θ0,0) = ρ0(θ0), and

q =
∫ t

0
G(t ′)dt ′. (66)

Note that, ifq becomes large,ρ must become small everywhere except over a small region of sizeθ ∼ e−Kq , and
thereρ ∼ eKq � 1.

Given the solution for the probability density,G(t) becomes

G(t) =
∫ 2π

0
ρ0

sinθ0
sinθ

cosθ dθ. (67)

Consider now the initial condition,ρ0 = (1/2π)+ A cosθ0. Then

G(t) = 1 + 4Aπ e−Kq − e−2Kq

(e−Kq + 1)2
. (68)

Finally, on recalling from the definition ofq thatG(t) = dq/dt , we end up with the ODE

dq

dt
= 1 + 4Aπ e−Kq − e−2Kq

(e−Kq + 1)2
, (69)

which can be solved in closed form.
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Fig. 19. Panel (a) shows the order parameter and (b) the probability density for our exact solution withK = 1 andA = 0.01.

In Fig. 19, we plot the order parameterG(t) and evolving probability density forA = 0.01. As with the nu-
merical integrations of the system with the Lorentzian frequency distribution, the order parameter initially grows
exponentially due to the linear instability (see Section 3.2), and then saturates atG = 1.

WhenG saturates,q begins to grow linearly with time. Consequently,ρ becomes small everywhere except in a
narrow region whereθ ∼ e−Kq , and here the solution grows exponentially:ρ ∼ eKq . Thus, the dynamics brings
probability towards a singular phase, and the solution takes the form of a spike-shaped object (or a shock-like object
in the potentialu, given byuθ = ρ). This is the counterpart of what we saw in the numerical simulations, though
with different g(ω) and along a curve on the(θ, ω) plane. Evidently, evolution proceeds to one of the irregular
solutions described in the previous section.

9.2. Populations with slowly varying order parameter

Even though we can only solve the Kuramoto model exactly in the special case described above, we may still use
the method of characteristics to gain a deeper understanding of what happens in the vicinity of the synchronization
threshold. In particular, for situations in which the order parameter evolves slowly, we may find approximate
solutions for the limiting population density. This occurs near the threshold of linear instability, whereG grows
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Fig. 20. Characteristic curves for (a)κ = 0.5 and (b)κ = 1.2. In (b) the vertical dashed lines show the fixed points of the equation
θ̇ = ω(1 − κ sinθ), of which one is stable and the other unstable.ω = 1. Panel (c) shows a phase portrait of the characteristic curves on
the(θ, ω)−plane forKG = 1. The solid curve showsω = KG sinθ .

exponentially with a small growth rate, and in the late stages of evolution of the population, where the numerical
integrations of the PDE suggest thatG saturates at a constant level.

To illustrate, we consider symmetrical systems, for which we may write the characteristic equations in the form

dt

1
= dθ

ω(1 − κ sinθ)
= − dρ

ωρκ cosθ
, (70)

whereκ = KG/ω. Hence

dθ

dt
= ω(1 − κ sinθ) and

dρ

dt
= −ωρκ cosθ. (71)

The complication in solving this system lies in the time dependence ofκ. But if κ ≈ constant, we find

tan(θ/2) =


κ + √

1 − κ2 tanπψ if κ2 < 1,

κ − √
κ2 − 1 tanhπφ if κ2 > 1,

(72)

ρ(1 − κ sinθ) = constant, (73)

whereψ = ω(t − t0)
√

1 − κ2/2π andφ = ω(t − t0)
√
κ2 − 1/2π andt0 is a constant.

Depending on whetherκ2 is greater or less than unity, the characteristic curve either continually winds in angle
(κ2 < 1), or converges to the pointθ = 1 = sin−1(1/κ) (κ2 > 1); see Fig. 20. In theκ2 < 1 region, (73) indicates
thatρ oscillates in time. Whereκ2 > 1, however,ρ = constant/(1−κ sinθ) focusses continually into the vicinity of
the special angle,θ = 1; the convergence of the characteristics is our analogy with shock formation. The focussing
is illustrated further in Fig. 21, which reproduces many of the features of the full numerical solution.

The characteristic curves of the PDE also have significance for the discrete Kuramoto model. For largeN , one is
tempted to take the ODE (1) and replace the sum by an integral (see [4,6]). For symmetrical systems, the resulting
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Fig. 21. The evolving probability density predicted by solution (73) withKG = 1.

ODE is exactly theθ -equation solved above. In other words, the characteristic curves are the orbits of the oscillators
in the continuum limit, and so the phase portrait in Fig. 20 shows the evolution of individual oscillators for constantG.

10. Discrete vs. continuous

The discussion of characteristics ultimately leads us back to the discrete version of Kuramoto’s model, and in
this section we undertake a more systematic comparison of the finite dimensional system with the solutions of the
PDE. The underlying question we address in this section is whether the continuous approximation, made in the
limit N → ∞, predicts the dynamics of a finite number of oscillators. That is, if the results obtained in the previous
sections are applicable to Eq. (1).

10.1. Synchronized structures in phase space

To compare the PDE solutions with the discrete model, one can prepare the results of the simulation of the ODEs
in the same way as Figs. 4 and 10 (i.e., counting the instantaneous population density in sub-intervals of phase and
frequency). Figs. 22 and 23 show the pictures that result on replotting the data also shown Fig. 1. These should be
compared with Figs. 4 and 10. The initial behaviours of the continuous and discrete models are much the same:
we see the probability gathering into tilting stripes on the(θ, ω)-plane. Furthermore, for the unstable case, the
probability continues to build up in the vicinity of the special curve (compare Figs. 23 and 10).

10.2. Finite sampling and drifts

Despite some similarities between the PDE and ODEs, there are important differences. For example, one pe-
culiarity of the unstable discrete case is that the concentration of probability drifts inθ (see Figs. 1 and 23). This
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Fig. 22. The discrete probability density at six successive instants from the numerical integration of Kuramoto’s ODEs. This is a sub-threshold
population and corresponds to Fig. 1a (see caption of Fig. 1 for more details of the computation). Theθ andω axes are sub-divided into 64
intervals and the density is obtained by counting the number of oscillators in each bin.

is primarily related to the fact that, although the frequency distribution from which the intrinsic frequencies are
extracted is symmetric, any finite sampling of the actual population is biased to either positive or negative frequen-
cies. This induces an asymmetry in the population that can lead to a drift. If we prepare a discrete population in
which the initial frequencies are chosen in pairs with opposite signs, so that the frequency distribution is artificially
symmetrized, then the drift largely disappears, as shown in Fig. 24.

10.3. Residual synchronization and ephemeral structures

Another feature of the discrete model is that at sub-threshold coupling strengths, although the order parameter
remains at low levels,r(t) does not decay (see Fig. 1). Moreover, in Figs. 1a and 22, coherent structures are evident.
These structures drift irregularly and resemble the formations that appear above the critical threshold. In some cases,
they persist indefinitely; in others, they occasionally disappear and reform, often at different phases.

In any finite population, one expects fluctuations inr(t), and standard arguments suggest that these should scale
as 1/

√
N . Indeed, the low-level fluctuations in the order parameter show precisely this scaling withN ; see Fig. 25

and also [24]. But the detailed time evolution of the fluctuations also seems intimately connected to the ephemeral
coherent structures. Moreover, there are strong periodicities in the order parameter that are not associated with any
important intrinsic variability of the uncoupled oscillators (in Fig. 1, there is an obvious strong periodicity with a
frequencyω ≈ 0.3).

Some rationalization for the sub-threshold structures comes from the nonlinear effects observed in the numerical
simulations of the PDE. There we saw that nonlinearity acts to focus probability into narrow regions to create sharp
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Fig. 23. The discrete probability density at six successive instants from the numerical integration of Kuramoto’s ODEs. This is a super-threshold
population, corresponds to Fig. 1b (see caption of Fig. 1 for more details of the computation), and is constructed in the same way as Fig. 22.

peaks in probability even forK < Kc. However, in the continumm model, these regions subsequently tilt over and
phase mix, leading to the leading to the decay of the order parameter. By contrast, in the discrete model, the order
parameter remains at low amplitude, and the probability concentrations sustain themselves against tilting.

10.4. Finite-sampling curiosities

In addition to asymmetries that can induce drift in phase, the finite sampling of the frequency distribution can
also have some other unusual effects. For example, some samplings can lead to sustained synchronization in the
population forK < Kc. Conversely, other samples are essentially incoherent even ifK > Kc.

Fig. 24. Evolution of the phase distribution for a realization of the discrete model withD = 0.01,K = 0.8 andN = 256. The initial conditions
in this case aresymmetrizedby selecting± pairs of frequencies, and the synchronized cluster does not drift.ξ = 0.01,a = 2 andL = 0.
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Fig. 25. Order parameters for the discrete model withN = 256, 1024 and 4096, forD = 0,K = 0.65 and the standard initial conditions with
ξ = 0.1, a = 2 andL = 0. The arrows indicate the mean values in the three cases, which decay likeN−1/2.

A different kind of “curiosity” is shown in Fig. 26, which shows an example in which the initial sampling is sym-
metrized (as described above) and produces a population with a bi-modal frequency distribution. Such distributions
can suffer oscillatory instabilities [10,25], and the evolution shown in Fig. 26 is certainly more reminiscent of an
oscillating population than a convergence to steady synchronized cluster. Panel (b) of this figure shows the discrete
analogue of the mean field amplitude:

GD(t) = 1

N

N∑
j=1

cosθj . (74)

Another example is displayed in Fig. 27. For this population, there is an irregular switching on a long timescale
between a partially synchronized state in which the probability density is concentrated nearθ = 2nπ , and a

Fig. 26. Evolution of (a) the phase distribution and (b) the amplitude of the mean field,GD(t), for an anomalous realization of the discrete model
withN = 256,K = 0.8 andD = 0. The realization is anomalous because the actual sampling of the frequency distribution, shown in panel (c),
produces a bimodal population which suffers an oscillatory instability.ξ = 0.1,a = 2 andL = 0. In (c), the dot-dashed curve shows distribution
(24), and the solid curve shows a fitted bi-modal distribution.
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Fig. 27. Evolution of (a) the phase distribution and (b) the amplitude of the mean field,GD , for an anomalous case in which there is an irregular
switching on long timescales between states with probability concentrations atθ = 2nπ and states with concentrations atθ = (2n + 1)π ,
n = 0,1,2, . . . .K = 0.8,D = 0, ξ = 0.1, a = 2 andL = 0.

similar state with concentrations aroundθ = (2n+ 1)π , n = 0,1, . . . . Simultaneously, the mean field amplitude,
GD(t), shows reversals of sign. This sequence occurs on a relatively long timescale and reminds one of a low-order
dynamical system with perturbed heteroclinic orbits. In fact, such orbits are expected near the Takens–Bogdanov
bifurcation (in which a complex pair of eigenvalues bifurcate to instability with zero frequency), which are known
to occur for populations with bi-modal frequency distribution [25]. Thus, finite sampling can lead to phenomena
more usually associated with populations with more complicated frequency distributions.

11. Conclusions

In this study, we have explored the transition to synchronization in a population of weakly coupled oscillators
governed by the continuum limit of Kuramoto’s model. What we have seen is that, when the coupling strength
exceeds some noise-dependent threshold, the population develops spike-like solutions with noisy boundary layers
(for D 6= 0), or into a delta function (whenD = 0). This behaviour parallels what happens in the discrete version
of the Kuramoto model.

However, the discrete model also has other features not captured by the PDE if the population is finite. For
example, we have seen that much more complicated behaviour can occur for sub-threshold coupling strengths.
Here, the finite population has complicated temporal dynamics and behaviour (ephemeral coherent structures,
switching patterns) which reminds one of the spatio-temporal complexity seen in the complex Ginzburg–Landau
and Kuramoto–Sivashinsky equations. Certainly, this dynamics deserves more investigation.

The onset of synchronization in the Kuramoto model is quite unlike what happens in nearly inviscid shear flows
and almost ideal plasmas, despite similarities in the linear stability problem. There, a global instability “overturns”
the equilibrium structure in a thin critical layer, leading to the formation of a cat’s eye pattern. In the characteristic
curves, this pattern corresponds to an array of elliptic islands and hyperbolic points connected by separatrices, much
like the phase portrait of the pendulum. For the Kuramoto model, the instability develops in very different way,
and the structure of the characteristic curves is rather different. Moreover, we have also seen that the sub-threshold
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dynamics of the coupled oscillators is unlike that of the plasma or fluid. Thus not all bifurcations of modes from
a continuous spectrum are governed by similar dynamics. This raises the question of what details of the problem
are important to determining the dynamics of the instability, and poses the problem of catagorizing the different
kinds of bifurcations. Certainly, we have ignored one important aspect of the fluid and plasma systems: both have
an underlying Hamiltonian structure of a similar flavour. Curiously, and by contrast, in another recent model of a
coupled oscillator population [26] (with a built-in Hamiltonian structure) the bifurcation to instability is identical
to the plasma and fluid problem.

Lastly, it has been suggested [3,4] that the Kuramoto model is very special in the form of its mean-field interaction.
More specifically, the coupling has the form,N−1K

∑
nf (θn − θm) with f (φ) = sinφ. With this coupling, a

characteristic scaling of the order parameter emerges in the vicinity of the critical coupling strength:r ∼ (K−Kc)
α

with α = 1
2. Yet, Daido and Crawford and Davies suggest that couplings withf (θ) a generic function, produce

ordered states that do not scale in this way. In fact,α = 1 is the typical case.
Daido’s analysis is based on a generalization of Kuramoto’s theory, and considers steadily oscillating, noise-free

populations; effectively, it generalizes the contents of Section 7.4. Daido contends with arbitrary coupling functions
and intrinsic frequency distributions; his theory becomes mathematically complicated as a result. Crawford and
Davies present a theory based on an extension of the centre-manifold method. They are able to extract systematically
the scalingα, but the result of the theory is an amplitude equation for the unstable mode containing an infinite number
of terms. Neither Daido nor Crawford and Davies offer an intuitive physical explanation of whyα = 1 is the generic
scaling and Kuramoto’s scaling is special.

To explore this issue further we have performed some additional studies with the coupling function,f (θ) =
sinθ + σ sin 2θ . A key feature of this modified coupling term is that it neither changes the linear stability theory
of them = 1 mode, nor breaks the symmetry,ρ(θ, ω, t) = ρ(−θ,−ω, t) (the origin of the generic scaling has
nothing to do with the existence of this symmetry). The latter allows us to write

G(θ, t) = −G1(t) sinθ − G2(t) sin 2θ, (75)

where

Gm(t) = σm−1
∫ ∞

−∞

∫ 2π

0
ρ(θ, ω, t)g(ω) cosmθ dθ dω, m = 1,2 (76)

are a pair of new mean-field components, with corresponding order parameters,rm = |Gm|.
The modification to the coupling function does not change any of the arguments surrounding the structure of

slightly noisy steady populations or the characteristic curves of the PDE: one still expects the steady populations
to divide into noisy synchronized boundary layers and a de-synchronized outer population, and the characteristic
curves to trace out orbits that converge to a section of the curve defined byω+KG = 0. Thus, although the geometry
of the synchronizing zone will be slightly modified, the overall aspect of the solutions should not be very different.
Indeed, this is precisely what one observes in simulations of the discrete model [4], and in Fig. 28, which shows
numerical solutions of the PDE withσ = −1

2; the appearance of the solution is little different from the “special”
Kuramoto case.

Despite the apparent similarity of the structure of the solution, the scaling ofG implies that the extent of the
synchronizing zone is much smaller in the generic case than for Kuramoto’s example (see also Fig. 28). To understand
why this is so, we have explored the numerical solutions in detail and derived a version of Daido’s theory in the special
case at hand. We conclude that the scaling is determined by the way that the oscillator population contributes to the
mean field. More specifically, Daido’s theory implies that, just beyond onset and for steady noise-free solutions,
we may divide the integrals in (76) into contributions from the synchronizing zone and from the de-synchronized
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Fig. 28. Panels (a) and (b) showρ(θ, ω, t) at t = 200 obtained from a numerical integration withK = 0.8, a = 2,L = 0 andξ = 0.001. The
coupling function isf (φ) = sinφ − 1

2 sin 2φ (soσ = − 1
2). In panel (a), we superimpose the line,ω = KG1 sinθ − 1

2KG2 sin 2θ , on a contour
plot of ρ, whereG1 andG2 are set to the final, steady values obtained in the integration. The time histories of the order parameters are shown in
panel (c). In panels (d) and (e) we show the final value (att = 200 or more) of the order parametersr1 andr2 as functions ofK. In panel (d),
we also display the same result for Kuramoto’s coupling (σ = 0). The circles show the critical coupling forD = 0 (Kc = 2 − 4/π ) and the
square in (d) showsKc forD = 0.01 (Kc = 0.739). The dotted lines show the expected values ofr1 forD = 0 according to the current version
of Daido’s theory: for the compact frequency distribution,r1 ≈ 3π4(K − Kc)/[8(π − 2)2(π + 2)] andr2 ≈ (π2 − 4)G2

1/(4π
2). The dashed

line shows the asymptotic theory for Kuramoto’s case.

oscillators outside it. Further approximations in the vicinity of onset then indicate that, for the Lorentzian frequency
distribution (and assumingG1 positive),

G1 = 1
2KG1 + 16

3π
G2 + O((K −Kc)

3) and G2 = σ(2G2 + G2
1)+ O((K −Kc)

3), (77)
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which imply that

r1 = 3π |1 − 2σ |
32|σ | (K −Kc)+ O((K −Kc)

2) and r2 = 9π2|1 − 2σ |
1028|σ | (K −Kc)

2 + O((K −Kc)
3). (78)

The key feature of these formulae that is elementally different from Kuramoto’s case is the presence of theG2
1

contribution toG2. These areouter-fieldcontributions from the desynchronized oscillators. In other words, the onset
of the synchronization throughm = 1 induces a nonlinear mean field in the desynchronized part of the population
that organizes anm = 2 response (measured byG2). This, in turn, reacts back on the synchronizing population to
limit its growth. The overall effect is a saturating, quadratic nonlinearity. For Kuramoto’s model, the outer fieldnever
contributes to the mean field and the saturation of the instability occurs through a cubic nonlinearity coming from
the synchronizing zone (see Section 7). (This term is also present for the modified coupling, but lies at higher order.)
The nonlinear effects can also be observed in the numerical solutions. For example, Fig. 28 shows the scaling ofG1

andG2 withK −Kc, which is in agreement with the asymptotic theory. (The computations are slightly dissipative,
and this shifts the onset of synchronization and modifies the solution branch.)

The quadratic saturation effect is quite different to what happens for a dissipative population. There, the controlling
nonlinearity is always cubic, which results from the rotational symmetry of the incoherent equilibrium and demands
that the amplitude equation be invariant with respect to changing the sign ofa(T ), the amplitude of the unstable mode.
For the noise-free system, this symmetry effect no longer operates because the creation of a singular distribution in
ρ (the synchronized oscillators) immediately breaks the symmetry and allows quadratic nonlinearity to feed back
on the growing mode. In other words, the convergence to the irregular distribution breaks the Hopf scaling.
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