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Shear instability in shallow water
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This study considers the linear stability of shear flows in shallow water. It explores
instabilities related to the classical incompressible (Rayleigh) instability, and those
caused by the over-reflection of surface gravity waves. Numerical solutions of the
linear stability problem are presented, together with analytical arguments elucidating
the role of finite potential vorticity gradients. The slow development of marginally
unstable modes is considered for almost inviscid flows. This is described by an
evolution equation for the amplitude of the unstable mode, coupled to a critical-layer
potential vorticity equation. This reduced system presents a compact description of
the linear stability problem and allows exploration of viscous effects.

1. Introduction
Shear instability plays a fundamental role in a variety of fluid mechanical phenom-

ena in the astro- and geosciences. The particular problem under discussion here is
shear instability in a shallow fluid layer at high Reynolds number. This problem has
applications to a variety of flows in geophysics (Satomura 1981; Griffiths, Killworth
& Stern 1982; Kubokawa 1985; Hayashi & Young 1987), and accretion and pat-
tern forming processes in astrophysical disks (Drury 1985; Glatzel 1985; Narayan,
Goldreich & Goodman 1987; Papaloizou & Pringle 1987). The shallow water system
is analogous to a two-dimensional compressible flow, and so the problem also has a
slightly different interpretation.

It is known that inviscid shear flows in shallow water (or two-dimensional com-
pressible fluid) may suffer two types of instability (Blumen, Drazin & Billings 1975).
The first is closely related to the classical Rayleigh instability of incompressible
flows (Rayleigh 1880). When the fluid is effectively incompressible (of small Froude
number) and of constant mean depth (density), one expects this classical form of
instability to remain relatively unmodified. That is, under the usual conditions of the
Rayleigh–Fjortoft theorem (Rayleigh 1880; Fjørtoft 1950), to exist when there are
inflection points in the flow ‘profile’ U(y), where y is the cross-stream coordinate. In
this paper, this first kind of instability will be refered to as ‘inflectional instability’.

Shallow water shear flows can also be unstable to a second type of instability
related to surface gravity waves (Satomura 1981; for compressible flows the instability
is connected to acoustic waves – Broadbent & Moore 1979; Blumen et al. 1975). The
underlying physical mechanism has been interpreted as an over-reflection process, or
as the coupling of positive and negative energy modes (Takehiro & Hayashi 1992).
Here, this second form of instability will be referred to as ‘supersonic’, since in order
to exist the wave speed must match the mean fluid velocity somewhere in the flow.

The aim of the current work is two-fold. First, a complete description of linear
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stability is presented. This includes an analysis of the effects of gradients in the back-
ground potential vorticity (which are often neglected in this context; but see Drury
1985; Kubokawa 1985; Papaloizou & Pringle 1987; Perkins & Renardy 1997) and
weak viscosity. The second aim is to construct a perturbation theory for marginally
unstable, almost inviscid flows. This extends previous work on shallow water and
compressible flows by advancing into the viscous and nonlinear regimes, and provides
the compressible version of theories of marginally stable, incompressible, inviscid
shears (Stewartson 1981; Balmforth & Young 1997). Previously, Shukhman (1991)
and Williams (1992) have given weakly nonlinear theories of acoustic instabilities
of vortices. These studies are related to the current one, but Shukhman derives an
amplitude equation containing an infinite sum, and Williams particularizes to flows
with constant potential vorticity and ignores critical-layer effects.

2. Formulation of the problem
Consider a channel containing a shallow fluid layer with equilibrium velocity profile,

U(y), and depth, H(y). Here, U(y) and H(y) are arbitrary functions, but in this study,
U(y) will be assumed to be a monotonic function. Disturbances to this state are
governed by the dimensionless equations,

(∂t+U∂x)u+U ′v+uux+vuy = − 1

F2
hx+

ε3ν

(H + h)
{∂x[(H+h)ux]+∂y[(H+h)uy]}, (2.1)

(∂t +U∂x)v + uvx + vvy = − 1

F2
hy +

ε3ν

(H + h)
{∂x[(H + h)vx] + ∂y[(H + h)vy]} (2.2)

and

(∂t +U∂x)h+ ∂x[(H + h)u] + ∂y[(H + h)v] = 0, (2.3)

solved on the domain, −∞ < x < ∞ and −1 < y < 1. In (2.1)–(2.3) the non-
dimensionalization leaves the Froude number, F , a parameter equivalent to a charac-
teristic Mach number, but based on the surface gravity wave speed rather than sound
speed. In addition, the velocity profile and height field have characteristic values of
unity: U(±1) = ±1 and H(0) = 1. The equations also include viscous terms with
dimensionless coefficient, ε3ν; the factor ε is a small parameter that will be exploited
later (the scaling of ε3 is a distinguished one and ensures the flow is nearly inviscid).
In the circumstance that ν = 0, any U(y) is an equilibrium; when ν 6= 0, the arbitrary
velocity profile U(y) must be maintained by a suitable body force.†

Equations (2.1)–(2.3) are solved subject to boundary conditions of no flow at the
walls, v(x,±1, t) = 0. In addition, when ε3ν 6= 0, no slip should also be imposed
on the velocity field. However, in the problem at hand, the viscous terms will only
become important inside the interior in special slender regions (the critical layers) and
in wall boundary layers; the effect of viscosity decays exponentially quickly outside
these layers and the viscous boundary condition decouples from the interior problem.
Hence, explicit consideration of the no-slip condition is not necessary.

† Note that the viscous terms are energetically consistent, but may not be the proper dissipative
terms for a shallow water theory. However, viscosity will only be considered as a perturbation of
the inviscid problem, and in the asymptotic expansion only simplified forms of the dissipative terms
appear; the precise, original form is unimportant.
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3. Inviscid linear theory
Before constructing any weakly nonlinear theory, it is first necessary to provide

a complete discussion of linear stability. In the current context, previous work has
covered a substantial amount of the linear stability theory. However, most of this work
has concentrated upon flows with constant potential (specific) vorticity (Satomura
1981; Hayashi & Young 1987; Narayan et al. 1987; Takehiro & Hayashi 1992). This
leads to a crucial simplification in the normal mode problem. Here, this restriction
will be relaxed.

The equations for normal modes with dependence exp ik(x− ct) take the form

ik(U − c)u+U ′v = − ik

F2
h, (3.1)

ik(U − c)v = − 1

F2
hy (3.2)

and

ik(U − c)h+ ikHu+ (Hv)y = 0. (3.3)

The elimination of u and h leads to the second-order equation

∂y

[
1

HK2
∂y(Hv)

]
− v +

k2F2U ′

K4

[
2Q+

H ′

H2
(U − c)

]
v +

HQ′v
K2(U − c) = 0, (3.4)

where

K2 = k2

[
1− F2

H
(U − c)2

]
(3.5)

and Q = −U ′/H is the background potential vorticity.
The normal-mode equation (3.4) has two kinds of singular points. The first arises

where K2 = 0, or, equivalently, when y = yt with

U(yt) = c±H1/2/F. (3.6)

These points may be identified as the turning points of short-wavelength waves, and
are removable (this is seen on writing the system as two first-order equations for u
and v; then there are no singular coefficients at y = yt). The second singular point
occurs where y = yc with U(yc) = c. For monotonic velocity profiles (which will be
considered), there is only one such singular point. This is the so-called critical level of a
wave-like disturbance with (real) wave speed c. Unless Q′ = 0 everywhere, the critical-
level singularity cannot be removed (hence to avoid the attendant complications,
Q′ = 0 was often assumed in previous discussions).

Here, the equations will be solved specifically for various model flow profiles with
H = 1. One particular family is given by

U(y) =
tanh αy

tanh α
. (3.7)

The numerical scheme used is based on a Newton–Raphson–Kantorovitch algorithm
(Cash & Singhal 1982). This algorithm is not specially designed for problems with
potentially singular points, and spurious neutral eigenvalues occasionally arise in
using it. To improve the detection of these fake eigenvalues, additional grid points
were placed at and around the critical level.
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3.1. Conservation laws

Three important relations for the inviscid system are the following; these are quoted
specifically for the case H = 1.

First, the inviscid potential vorticity equation is

(∂t +U∂x)q + uqx + vqy + Q′v = 0, (3.8)

where

Q+ q = −U
′ + uy − vx

1 + h
. (3.9)

In linear theory, this equation becomes

ik(U − c)q + Q′v = 0, (3.10)

where

q = −(uy − vx + Qh). (3.11)

Second, the energy equation of inviscid linear theory takes the form

dE

dt
=

1

2

∫ 1

−1

U(v∗q + vq∗)dy, (3.12)

where

E =
1

2

∫ 1

−1

[|u|2 + |v|2 + F−2|h|2 +U(u∗h+ h∗u)]dy. (3.13)

Third, the total streamwise momentum balance is

dM

dt
= −1

2

∫ 1

−1

(v∗q + vq∗)dy, (3.14)

with

M =
1

2

∫ 1

−1

(u∗h+ h∗u)dy. (3.15)

4. Numerical calculations
4.1. Inflectional instability

When F = 0, the surface gravity wave speed becomes infinite and these waves are
filtered from the problem. The normal-mode equation in that circumstance reduces
to

∂y

[
1

H
∂y(Hv)

]
− k2v +

HQ′v
U − c = 0, (4.1)

which may be described as an ‘anelastic’ version of Rayleigh’s equation. Importantly,
an analogue of the Rayleigh–Fjortoft Theorem follows for this system: instability
can only exist if Q possesses a local minimum somewhere within the flow (assuming
U ′ > 0).

Another important feature of equation (4.1) is that it admits neutral solutions only
if either v(yc) = 0, or if Q′(yc) = 0, where yc is the critical level of the neutral mode.
But one can show that solutions for which v(yc) = 0 do not satisfy the boundary
conditions (this does not remain the case for the general normal-mode equation;
some solutions with v(yc) = 0 are displayed in the next subsection). Hence, neutral
modes can only exist if their critical level aligns with an inflection point.
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Figure 1. Inflectional instability for three values of F (0, 0.25 and 0.5; see labels) and α = 2.
Shown is ci against k.
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Figure 2. Eigenfunctions of the neutral mode at the edge of the unstable band of wavenumbers;
k = km ≈ 1.303, F = 0.5 and α = 2.

For the model flow (3.7), the criterion for instability is satisfied and so the shear
is potentially unstable. This is verified by numerical computations, which are shown
in figure 1. This figure displays growth and decay rates for the anelastic case, F = 0,
and for two finite values of F .

Complex eigenmodes appear as conjugate pairs, corresponding to growing and
decaying modes, and the unstable band of wavenumbers occupies the range 0 < k <
kc. At k = kc, there is a neutral mode whose critical level lines up with the inflection
point (y = 0); the eigenfunction is illustrated in figure 2 for F = 0.5 and α = 2.
Evidently, compressibility (the divergence of the velocity field) exerts a stabilizing
role, as found previously by Blumen (1970) and Blumen et al. (1975).

Another remarkable feature of the inflectional instability is that for k > kc there are
no discrete eigenmodes connected to the unstable modes. This reflects the fact that
the modes bifurcate from a continuous spectrum consisting of wave speeds c in the
range [−1, 1] (the range of flow speeds, e.g. Case 1960). In a standard Hamiltonian
problem there would normally be two neutral modes to the stable side of the point
of bifurcation (in k), but here there is only this continuous spectrum.

For F 6= 0, there is also an infinite number of surface gravity waves. However,
provided that F is small, these waves all have phase speeds that lie outside the range
of flow speeds, [−1, 1] (see figure 3). Moreover, they are always stable. When F
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Figure 3. Wave speeds of the surface gravity modes for F = 0.5 and α = 2.
The thick line indicates the unstable modes.

becomes sufficiently large, however, these modes can acquire phase speeds that match
the flow speed somewhere within the channel. That is, they acquire critical levels. In
this circumstance, the modes can become unstable.

4.2. Supersonic instabilities

When α = 0, the velocity profile becomes linear (Couette flow), there is no background
vorticity gradient, and the critical level does not present a singularity in the normal-
mode equation. In fact, that equation is written most compactly in terms of u:

uyy − k2[1− F2(y − c)2]u = 0, (4.2)

which has parabolic cylinder functions as solutions (Narayan et al. 1987). In such
a situation, inflectional instability is impossible, and there remains only the surface
gravity waves that may be destabilized through over-reflection (Satomura 1981;
Takehiro & Hayashi 1992).

In figure 4, the (complex) wave speed is shown for the case α = 0 and F = 2. The
surface gravity waves have phase speeds that enter the range of flow speeds once k
becomes sufficiently large. The picture portrayed in figure 4 reproduces the results of
Satomura (1981) and Takehiro & Hayashi (1992). Figure 5 shows the eigenfunctions
of the neutrally stable modes bounding the instability band with lowest wavenumber.
Note how the symmetry changes from one side of the instability band to the other.
Also, the mode shown in figure 5(b) is one of a small subset of the modes for which
v(yc) = 0.

The pattern of the wave speed shown in figure 4(a) can be roughly understood using
short-wavelength arguments. The modal dispersion relation is, in this approximation,

tanφ+ tanφ− ∼ 1
4
e−Φ (4.3)

(cf. Knessl & Keller 1992; Ford 1994), where

φ+ = k

∫ 1

y+

[F2(U − c)2 − 1]1/2dy, φ− = k

∫ y−

−1

[F2(c−U)2 − 1]1/2dy (4.4)
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Figure 4. Supersonic instability when α = 0 and F = 2: (a) wave speed, cr , and (b) ci against k for
the five lowest-order pairs of surface gravity waves.
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Figure 5. Eigenfunctions of the neutral modes at the edges of the lowest-wavenumber instability
band; (a) k = kb ≈ 2.73235 and (b) k = ka ≈ 2.5573. F = 2 and α = 0.



104 N. J. Balmforth

and

Φ = k

∫ y+

y−
[1− F2(U − c)2]1/2dy, (4.5)

with y± denoting the two turning points in (3.6), provided these lie inside the channel.
The right-hand side of (4.3) is exponentially small in the short-wavelength limit,

and so the dispersion relation simplifies to

φ+ ∼ nπ or φ− ∼ nπ, with n = 1, 2, . . . . (4.6)

These two pieces of the dispersion relation reveal the presence of two sets of surface
gravity modes, one set concentrated in the region [y+, 1], the other in [−1, y−]. The
corresponding eigenvalues comprise the two sets of interweaving branches of wave
speeds in figures 3 and 4. However, though (4.6) describes the pattern of interweaving
branches, it does not predict the instability bands that open up when the branches
cross. These bands occur when both of (4.6) hold simultaneously. In that circumstance,
(4.3) may be expanded in another way:

c2
i =

1

4k4F4
e−Φ

[∫ y−

−1

(c−U)dy

[F2(U − c)2 − 1]1/2

∫ 1

y+

(U − c)dy
[F2(U − c)2 − 1]1/2

]−1

. (4.7)

This indicates that the peak in ci in each instability band is a rapidly decreasing
function of k (as in figure 4b).

The instability displayed in figure 4 can be rationalized as coupling between waves
with different senses of wave action or energy (Hayashi & Young 1987; Takehiro
& Hayashi 1992). On substituting the normal-mode form into equation (3.15) and
assuming c to be real, it follows that, when α = 0,

M = − k2F2

2(k2 + F2)

∫ 1

−1

(U − c)|u|2dy. (4.8)

For a particular mode, M can be identified as the disturbance momentum and, for
α = 0, used as an alternative to action (Takehiro & Hayashi 1992). Modes that are
concentrated above the critical level have eigenfunctions for which |u|2 is strongly
localized to the region [y+, 1], in which U > c. Hence these modes have negative
disturbance momentum. The modes concentrated below the critical level have U < c
in the regions in which they are localized, and so they have positive disturbance
momentum. In other words, the modes that appear at small k with positive phase
speed have M > 0, and those with negative phase speed have M < 0. (Another way
of observing these modal properties is through the relation

F2k3 ∂c

∂k

∫ 1

−1

(U − c)|u|2dy =

∫ 1

−1

|uy|2dy, (4.9)

obtained from (4.2), which indicates that ∂c/∂k ∝ −M−1. Hence from figure 4 the
sign of M can be read off.) When the phase speeds of the two types of modes cross,
there is an interaction in which each of the modes fuels the other to give rise to an
exponentially growing disturbance.

An important feature of the dispersion relation (4.6) is that as k →∞ with n fixed,
either y+ → 1 or y− → −1 (since φ± must remain finite). That is, c → −1 + F−1 or
c→ 1− F−1 for the ‘upper’ or ‘lower’ branches respectively. For F = 1

2
, the branches

accumulate to c = ±1, as in figure 3; for F = 2, the accumulation speeds are ± 1
2

(figure 4).
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Figure 6. Supersonic instability when α = 0.5 and F = 2. The two lowest-order pairs of surface
gravity waves are shown. (a) Wave speed, cr , and (b) ci against k.

The two sets of branches therefore will only cross when 1−F−1 > 0 and −1+F−1 <
0; equivalently, F > 1. Importantly, in this circumstance, all the branches cross, and
so there must be an infinite number of instability bands. This is a necessary condition
for instability, and is stronger than the requirement that the flow be supersonic
(Blumen 1970; Ripa 1983), which is F > 1

2
(cf. figure 3). The improvement in this

condition arises because F > 1 recognizes that mode coupling must occur, whereas
F > 1

2
ensures only that there is a critical layer. When the flow has potential vorticity

gradients, however, F > 1
2

is the more appropriate condition because only the existence
of a critical layer is needed for instability, as will become clear shortly.

If one concentrates on the crossings at c = 0, then (4.6) predicts the resonant
wavenumber, k = kr with

kr ∼ nπ
[∫ 1

1/F

(F2U2 − 1)1/2 dy

]−1

. (4.10)

Thus, the crossings become equally spaced once k is sufficiently large. In other words,
when the flow loses stability, there are resonant chains of unstable modes, a feature
that is important in any nonlinear theory.

4.3. The effect of potential vorticity gradients

When α 6= 0, the critical-level singularity fundamentally affects the problem. Again,
one can show that modes can only be neutral if v(yc) = 0 or Q′(yc) = 0. This condition
places an important constraint on the location of the neutral modes. In particular,
as indicated by the numerical results displayed in figures 6–9, it forces most of the
neutral modes possessing critical levels to either split into growing/decaying mode
pairs or entirely disappear.

In the current problem one can employ the energy and momentum equations (3.12)
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Figure 7. As figure 6 but for α = 2.

and (3.14) to rationalize this effect of the critical-level singularity. If Q′ is everywhere
small, then (3.12) and (3.14) can be rewritten in the forms

|ci| = −πcQ
′
c|vc|2

2k2E|U ′c| and |ci| = πQ′c|vc|2
2k2M|U ′c| (4.11)

(cf. Kubokawa 1985), where the subscript c indicates the value at the critical level.
(This relation also implies E = −cM.) Thus, provided −cQ′c/E or Q′c/M is positive,
there is a growing and decaying pair of modes. However, if Q′c/M is negative, equation
(4.11) is inconsistent and there can be no normal modes. The existence of unstable
modes therefore hinges on the sign of the combination Q′c/M. For modes with M > 0,
instability exists in regions with positive potential vorticity gradient. But there are no
modes where that gradient is negative. The opposite is true for modes with M < 0.

This explains the instability and disappearance of modes in figures 6 and 7 (cf.
Perkins & Renardy 1997). In these pictures, the lowest-order surface gravity modes
enter the range of flow speeds and immediately become unstable. This is just a
consequence of the fact that Q′ ≡ −U ′′ < 0 near y = −1 where the modes with
M < 0 enter the critical-level region, and Q′(y) > 0 where the M > 0 modes enter the
range of flow speed. Subsequently, the modes collide at the inflection point, y = 0,
and the modal interaction again occurs, generating the ‘bubble’ in ci. However, when
the interaction ceases at larger k (k > 2.6 in figure 6 and k > 2 for the lowest order
mode in figure 7), both modes disappear because their critical levels enter regions in
which Q′c/M < 0.

One physical image of the destabilization by potential vorticity gradients is that
when Q′(y) is finite, the critical level emits wave action and drives the modes if
Q′/M > 0 (Drury 1980). When Q′/M < 0, on the other hand, the critical level is
‘absorbing’. The physical interpretation is incomplete because, when the critical level
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Figure 8. Supersonic instability for the model flow, U(y) = (y + 0.1y3)/1.1 and H(y) = 1 with
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ci against k.
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(b) ci against k.
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‘absorbs’ wave action, modes disappear rather than become damped, and when it is
‘emitting’ there is also a decaying mode.

More solutions of the linear stability problem are illustrated in figures 8 and 9,
which show the wave speed of the lowest-order surface gravity waves for model flows
with U(y) = (y + 0.1y3)/1.1 and U(y) = y − 0.3(y2 − 1), respectively (and H = 1).
In the first case, the sense of the potential vorticity gradient is exactly the opposite
to that of the tanh profile used for figures 6 and 7. As a result, the modes are
destabilized or disappear in precisely the converse fashion to the hyperbolic case:
the modes disappear when they first enter the critical level region at small k, then
reappear at larger k beyond the first modal interaction. In the second example, Q′
is constant and positive. Consequently, the modes entering the range of flow speeds
from above continue to exist as conjugate pairs. Those that approach c = −1 from
below disappear once they acquire critical levels.

The disappearance of the modes also affects the modal resonances away from the
inflection point (y = 0). Because of critical-level singularity, one of the interacting
modes now no longer exists, and so these resonances cannot occur. However, there
remains a remnant of the interaction that leads to a sharp peak in the growth rates
(e.g. k = 4.5 in figure 6, k = 3.1 in figure 7 and k = 4.4 in figures 8 and 9).

At first sight it seems peculiar that a modal quartet (two pairs of growing/decaying
modes) can appear in place of a pair of neutral surface gravity waves as soon as
the potential vorticity is non-zero. However, the key point is that the neutral modes
are embedded in the continuous spectrum. If the background potential vorticity is
uniform, this continuous spectrum is not coupled to the surface gravity waves. But
when the potential vorticity gradient is finite, the surface gravity modes couple to the
continuum. The extra eigenvalues that appear can be interpreted as arising from the
continuous spectrum (they are ‘resonance poles’ that move off a different Riemann
sheet of the dispersion relation and onto the physical spectral plane as the potential
vorticity gradient is introduced – see, for example, Crawford & Hislop 1989).

5. Critical-layer expansions: weakly nonlinear, inflectional modes
Next, some analytical developments of the problem are explored that are related

to the critical-layer expansions often used for Rossby waves (Stewartson 1978; Warn
& Warn 1978) and in spatially developing flows (Goldstein & Leib 1988; Goldstein
& Hultgren 1988). The aim is two-fold.

The expansions are part of the weakly nonlinear theory of instabilities in the
problem. The calculation can be carried through without difficulty for the inflectional
instabilities (this case is dealt with first in this section; see also Appendix A). But there
are some difficulties with the theory for supersonic instabilities, as will be described
in the next section. The second point of the expansions is that they provide analytical
insights into the linear stability problem, which is the main theme of this paper.
Notably, this insight extends to the slightly viscous problem, and consequently the
rather unusual effects of viscosity on the normal modes can be uncovered.

5.1. The expansion

Figure 1 indicates that the band of unstable wavenumbers occupies a range [0, kc].
At this stage it is possible to proceed in one of two ways. If the system is spatially
extended, then a weakly nonlinear expansion would be opened once one of the
parameters α and F were tuned such that the band shrank to k = 0. This situation
is similar to that considered by Balmforth & Young (1997). The second route is
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to consider purely periodic systems in which there is a minimal wavenumber, km.
If km = kc, the periodic flow is then marginally stable, and the stage is set for the
expansion. This is the approach followed here.

In strongly dissipative problems this second approach leads to amplitude equations
of ordinary differential form for the marginally unstable modes. In the current, almost
inviscid problem, this reduction in the dimension of the problem does not occur. The
reason is that in dissipative systems, there is a spectral gap between the marginally
unstable modes and the other, strongly damped modes in the system, and the usual
techniques of centre-manifold theory can be exploited to reduce the dimension (e.g.
Guckenheimer & Holmes 1983). For the problem at hand, in which dissipative terms
are added perturbatively, the neutral modes lie inside the continuous spectrum of the
leading-order, inviscid problem. Hence there is no spectral gap and a dimensional
reduction is not possible. What can be achieved will now be explored. The main
details of the calculation are presented in Appendix A. Here, the salient features of
the expansion will be summarized.

The expansion begins from a marginally stable state, defined by U = U0(y), which is
then perturbed by modifying the background velocity: U = U0(y) + εU1(y) + ε2U2(y).
Next, pose the expansions

u = ε2(u0 + εu1 + · · ·), v = ε2(v0 + εv1 + · · ·) and h = ε2(h0 + εh1 + · · ·), (5.1)

then transform into a frame moving at the wave speed and rescale time in that frame:
∂t → −U(yc)∂x + ε∂T , where T is a slow timescale on which instability develops, and
yc is the critical level of the neutrally stable mode (an inflection point; yc = 0 for
the example quoted earlier). This scaling of the problem ensures that the evolution of
the amplitude is controlled by a combination of nonlinearity and viscosity inside the
critical layer, and the instability arising through the modification to the marginally
stable profile.

The expansions are then substituted into the equations and the system is solved
order by order. At leading order, the equations reduce to those for the neutral mode:

u0 = A(T )û0(y)eikmx + c.c. (5.2)

The amplitude is at this stage undetermined, but at next order, to find a bounded
solution, a solvability condition must be applied. This furnishes the evolution equation
for the mode amplitude. However, the procedure is complicated because the equations
appear to be singular at y = yc. In other words, a critical-level singularity arises.

The apparent singularity is resolved by looking for another solution valid inside
a slender region surrounding the critical level, the ‘critical layer’. Inside this region,
the solution varies on a shorter spatial scale, which is resolved by introducing the
stretched coordinate, Y = y/ε. Another expansion then furnishes the critical-layer
solution that must be matched to the original solution which remains valid outside
the critical layer. In other words, one develops expansions in an inner region (the
critical layer) and in an outer one (the bulk of the flow), then matches them in an
intermediate region in the usual prescription of a matched asymptotic expansion.

The matched asymptotics resolves the apparent singularity and allows the proper
formulation of the solvability condition. This results in the evolution equation for A
with the novelty that it is coupled to an equation for the potential vorticity inside the
critical layer. This is the coupled system

IAT − ikmΩA =

∫ ∞
−∞

∫ ∞
−∞

e−ikmxζx(x, Y , T )dY dx (5.3)
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and

∂T ζ + Y ζx +ΨxζY − νζY Y = κΨT + γΨx, (5.4)

where

Ψ = A(T )eikmx + A∗(T )e−ikmx. (5.5)

Here κ ∝ −U ′′′(yc) and γ ∝ U ′′(yc), and the coefficients, I and Ω, are defined in
Appendix A.

Equations (5.3)–(5.4) are similar to those derived by Goldstein & Hultgren (1988)
and Churilov & Shukhman (1987) for incompressible shears, and to the ‘single-wave
model’ of plasma physics, which can be derived from the Vlasov–Poisson equation
(del Castillo-Negrete 1998). Presumably, (5.3)–(5.4) constitute a ‘normal form’ for the
amplitude equation describing the bifurcation of an unstable mode from a continuous
spectrum. However, there is no rigorous mathematics underlying this result here,
unlike in strongly dissipative systems where normal-form theory is well established
(Coullet & Spiegel 1983; Guckenheimer & Holmes 1983).

One important feature of the amplitude equations is that the dissipation leads to
a slow, viscous spreading of the critical-layer vorticity. Ultimately, this means that
the vorticity diffuses out of the region of thickness ε and new scalings are needed to
describe the long-time solution (Churilov 1989; Goldstein & Hultgren 1988).

5.2. Reconsidering linear theory

The linearization of these equations leads to the system

IAT − ikmΩA = ikm

∫ ∞
−∞
ζ̃dY (5.6)

and

∂T ζ̃ + ikmY ζ̃ − νζ̃Y Y = κΨT + ikmγΨ, (5.7)

on introducing the dependence ζ = ζ̃(Y ,T ) exp ikmx. This set of equations can be
solved in closed form for the initial-value problem. Here, though, attention is focused
on the normal modes, with dependences exp−ikmct. Then,

cr + i|ci| = IΩ + π2κγ + iπ(κΩ − Iγ)
I2 + π2κ2

(5.8)

if ν 6= 0, or

cr + ici =
IΩ + π2κγ + iπ(κΩ − Iγ)

I2 + π2κ2
(5.9)

if ν = 0. That is, two dispersion relations that are identical up to the absolute value
of ci that appears in (5.8). This indicates that unstable modes correspond in the two
problems when κΩ−Iγ > 0. But there is only one viscous mode; the decaying inviscid
mode has no counterpart (this mode is the consequence of time-reversibility in the
inviscid system; Lin 1945). When κΩ− Iγ < 0, there are no inviscid modes, reflecting
the presence of only the continuous spectrum. However, in viscous theory, a mode
still exists. This mode corresponds to a peculiar ‘quasi-mode’ of the inviscid problem.
This quasi-mode is an inconsistent solution to (5.8); it has no meaning as a normal
mode but, none the less, appears in the initial-value problem (it is a Landau pole;
Balmforth 1998).

In the example presented in § 3.2, there is a further symmetry that implies that
I = γ = 0. Hence, for this case, cr = 0 and |ci| = Ω/πκ if ν = 0, which is the
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Figure 10. Inviscid (solid lines) and viscous (circles) eigenvalues: (a) the predictions of the linearized
amplitude equations; (b) numerically computed eigenvalues for ε3ν = 10−4 and the model flow (3.7)
with α = 2 and F = 0.25.

analogue of (4.11), or ci = Ω/πκ if ν 6= 0. The comparison between inviscid and
viscous eigenvalues is sketched in figure 10(a).

These predictions of the linearized amplitude equations can be directly verified by
numerical means. Viscous eigenvalues are furnished by solving the linear equations
with the inclusion of the dissipative terms of (2.1)–(2.2). The results of such a
calculation are shown in figure 10(b), which shows a qualitatively similar picture to
the analytical results in panel (a). (In the case of the numerical results, the eigenvalues
are plotted against k rather than a control parameter of the equilibrium state, but
this is not essential.)

6. Low-amplitude, supersonic instability
6.1. The proliferation of active modes

The main problem with a weakly nonlinear development of the supersonic instability
is that, as noted earlier, whenever there is a band of unstable modes, there are in fact
infinitely more such bands, many of which lie in resonant chains. It seems implausible
to assume that one may quantize the domain in precisely the correct fashion so as
to isolate only a single marginally stable mode. In fact, even were this feasible, there
would still be the neutral surface gravity waves that are similarly difficult to ignore.

There are various ways around this difficulty, none of which is particularly satisfying.
For example, the instability band at the lowest wavenumbers is typically the most
unstable. In the unlikely event that this band was not in resonance with any other
modes, neutral or unstable, then one could adopt the Draconian measure of assuming
that all the other unstable and neutral modes had zero initial amplitude. This removes
them from the nonlinear problem. Alternatively, one can argue that the higher-
wavenumber modes are increasingly affected by dissipation (through viscous terms
of the form, −νk2u), and so eventually, the resonant chains become very strongly
damped and unimportant. Or, if one concentrates only on linear theory (which is, in
fact, the main emphasis here), the problematic nonlinear resonances are irrelevant,
and one can continue regardless. With these justifications in mind, we press on with
the expansion, focusing on the first instability band.

In addition to the proliferation of modes, problems are aggravated still further
whenever there are potential vorticity gradients, for then the instability is no longer
localized to narrow bands (see figures 6–8). This indicates that the only option for
a controlled expansion is to perturb from a state in which the potential vorticity
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Figure 11. The instability band and the neutral stability points.

gradients are zero throughout the shear; that is, Couette flow. Potential vorticity
gradients can then be introduced at higher order to gauge their effect.

6.2. The expansion

The aim is therefore to consider the weakly nonlinear development of the first
instability band for a flow with a weak potential vorticity gradient. The quantization
of k is exploited to expand about either of the marginal states bounding the instability
band (see figure 11). That is, km = ka or kb.

It is clear from this picture that at either of the neutral stability points, there are
in fact two marginally stable modes. In one direction (in k) they split into a pair
of neutral waves, in the other direction into a growing–decaying mode pair. This
scenario signifies a degenerate type of bifurcation (a Takens–Bogdanov bifurcation),
where complex conjugate modes bifurcate to instability through zero frequency. The
most important consequence of this degeneracy is that the equation for the mode
amplitude A becomes higher order in time.

It also turns out that, because of the symmetries of the leading-order eigenfunctions
at ka and kb (see figure 5), the expansion proceeds differently in the two cases. In
particular, the expansion at k = ka is somewhat special, and must be taken to higher
order than that at k = kb. The reason for this is that because v(0) = 0 for the neutral
mode with k = ka, critical-level singularity does not appear until an unusually high
order (cf. (3.4)). For simplicity, the analysis specializes to the case k = kb. However,
having made this specialization, the amplitude equations that then result apply to
much more general situations, including the neutral modes bounding the instability
bands with yc 6= 0, and probably even the mode at k = ka (though this has not been
verified).

Again the details of the expansion are relegated to an appendix (Appendix B).
Briefly, asymptotic sequences like (5.1) are again posed. At leading order the equations
for the neutrally stable mode appear, and the unknown amplitude is denoted by A(T ).
The evolution equation for A is found on proceeding to higher order. In this case,
the expansion must be carried to second order. Here again a solvability condition
must be formulated that leads to the evolution equation, but as before there is a
critical-level singularity. Once more this signifies the presence of the critical-layer
region, and just as for the inflectional instability, the singularity is resolved inside
the critical layer. This circumvents the apparent critical-level singularity and again
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couples the A-equation to the critical-layer potential vorticity equation:

ATT + iΩAT − ΓA =

∫ ∞
−∞

∫ ∞
−∞

e−ikmxζdxdY (6.1)

and

ζT + Y ζx +ΨxζY − νζY Y = κΨT + γΨx, (6.2)

with

Ψ = A(T )eikmx + c.c., (6.3)

where Ω and Γ are convolutions of the linear eigenfunctions and contain the (arbi-
trary) modifications to the profile, U1 and U2, and κ = −û′(0)U ′′′(0) and γ = û′(0)U ′′(0)
where û(y) is the neutral mode eigenfunction (shown in figure 5a).

6.3. Linear theory and effects of weak viscosity

On dropping the nonlinear terms and taking the dependence, ζ = ζ̃(Y ,T )eikmx, one
finds

ATT + iΩAT − ΓA =

∫ ∞
−∞
ζ̃dY (6.4)

and

ζ̃T + ikmY ζ̃ − νζ̃Y Y = κAT + ikmγA. (6.5)

The normal-mode dispersion relation then follows as

Γ − Ωkmc+ k2
mc

2 = iπ(κc− γ)s, (6.6)

where

s =

{
sgn(ci) if ν = 0
1 if ν 6= 0.

(6.7)

This is the general dispersion relation for modes bordering an instability band in the
presence of potential vorticity gradients.

In the special case for which U(y) is antisymmetrical, then, as noted in Appendix
B, Ω = γ = 0. Hence, the dispersion relation reduces to

Γ + k2
mc

2 = iπκcs. (6.8)

This gives either

(outside) cr = ± 1

2k2
m

(−4k2
mΓ − π2κ2)1/2, sci =

πκ

2k2
m

, if Γ < −π2κ2/4k2
m, (6.9)

or

(inside) cr = 0, sci =
πκ± (π2κ2 + 4k2

mΓ )1/2

2k2
m

, if Γ > −π2κ2/4k2
m. (6.10)

As indicated by the labels, the first of these relations corresponds to values of Γ for
which km is shifted away from the instability band; the second describes the situation
when km is moved inside the band.

The solutions to the dispersion relations (6.9)–(6.10) are illustrated in figure 12.
Note that viscosity does not lead to a damping term in the linear theory of the
amplitude equations. It does, however, affect the structure of the eigenvalues.

If κ = 0, the instability bands of the constant potential vorticity case are recovered:

(outside) cr = ± 1

km
(−Γ )1/2, ci = 0, if Γ < 0, (6.11)
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or

(inside) cr = 0, ci = ± 1

km
Γ 1/2, if Γ > 0. (6.12)

The eigenvalues in (6.11)–(6.12) are valid for both ν = 0 and ν 6= 0, and so viscosity
has no effect on the modal structure in this particular case. This is also seen in figure
13, which compares numerically computed viscous and inviscid eigenvalues (obtained
by solving the linear equations with the viscous terms of (2.1)–(2.2) retained). Related
results are given by Glatzel (1989).

When κ 6= 0, the criterion for entering the instability band becomes Γ > −π2κ2/4k2
m.

Thus, in most cases, the band is broadened by the effect of finite potential vorticity
gradients (as indicated in figure 12b, this is not true if ν = 0 and κ < 0). This effect
is seen in the numerical solutions displayed in figures 4–7. In addition, the modal
structure is very different in the inviscid and viscous cases.

For ν = 0 and κ < 0, then (6.9)–(6.10) imply that there are no modes in Γ < 0
(see figure 12b). Equivalently, over this region, there are quasi-modes (the inconsistent
solutions to (6.9)–(6.10)). When κ > 0, on the other hand, there is a growing–decaying
pair in Γ < −π2κ2/4k2

m (figure 12a). This is a repetition of the earlier result obtained
from (4.11): outside the instability bands, modes either disappear or become unstable-
decaying mode pairs on the introduction of a finite potential vorticity gradient.

The inviscid modes that lie inside the instability band for κ = 0 continue to exist
when κ 6= 0. In the dispersion relations this arises because there is always one of the
solutions in (6.10) that is permitted by the absolute value. In other words, the finite
potential vorticity gradient does not destroy the instability band. However, there are
two bifurcations possible: when κ < 0, modes appear out of the continuous spectrum
(figure 12b), and if κ > 0, growing–decaying modes continue into the band as shown
in figure 12(a).

These predictions can be compared with the numerical results presented in § 4.
The eigenvalues that enter the instability band in figure 6 at k ≈ 2.4 correspond
to the modes denoted ‘A’ in figure 12(a); those that appear at k ≈ 2.3 in figure 8
parallel the emergence of the pair in figure 12(b). Note that if κ > 0 there is another
unstable-decaying mode pair for −π2κ2/4k2

m < Γ < 0. These modes are the solutions
from the − sign in (6.10), and are labelled B in figure 12(a). These other modes were
not detected in the numerical calculations.

The κ 6= 0 solutions are somewhat different with viscosity (ν 6= 0; s ≡ 1). Now there
are no absolute values in (6.9)–(6.10). This means that there is no disappearance of
modes in regions with the ‘wrong’ sign of κ; instead there are true, decaying modes
(compare panels b and d in figure 12). Moreover, of the two solutions inside the
instability band, one (labelled A in figure 12c) is analogous to the inviscid instability.
The other (labelled B in figure 12c) is decaying, but is not the same as the decaying
inviscid mode in this region; in fact, it corresponds to a quasi-mode. In other words,
once again, the inviscid decaying mode disappears on introducing viscosity (Lin
1945), and the damped viscous modes correspond to quasi-modes. These features
parallel what happens on adding viscosity to the inflectional instability (§ 5) and in
the incompressible shear-flow problem (Balmforth 1998).

Some numerical results are displayed in figures 14 and 15; these agree with the
predictions shown in figure 12(c, d). Figures 14 and 15 show viscous eigenvalues for
the two lowest-order surface gravity waves of the model (3.7) with α = 0.5 and F = 2
(so figure 14 is analogous to figure 6), and of the flow with U(y) = (y + 0.1y3)/1.1
(compare figure 15 to figure 8). There are four modes for each k in these pictures,
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unlike in the inviscid versions. Away from the instability band at cr = 0, the modes are
the viscous analogues of either unstable inviscid modes or quasi-modes (for example,
in figure 14, the mode pair shown by solid lines for k < 2.4 corresponds to an inviscid
instability, and for k > 2.65 they correspond to a pair of quasi-modes). Note that
viscosity has a destabilizing effect over some ranges of k for the tanh profile (the
peak in growth rates at k ≈ 0.7 and k ≈ 1.6 in figure 14 are noticeably higher than
in the inviscid case), but not for the cubic profile, and that the structure of the
secondary instability bands at k ≈ 4.5 in figure 14 and k ≈ 4.2 in figure 15 can also
be understood using equation (6.6).

7. Conclusions
In this paper, the linear stability problem for shear flow in shallow water has been

solved numerically. Instabilities have been classified into two catagories, inflectional
and supersonic. In the examples presented here, this classification is unambiguous: the
inflectional instability can be continued to the incompressible limit where it becomes
analogous to Rayleigh’s instability, and the supersonic instabilities can be traced to
the surface gravity waves of the shallow water Couette problem. Moreover, the two
types of instabilities reside in different regions of parameter space. However, the
distinction may well become ambiguous for general profiles.

Some analytical arguments based on conservation laws and short-wavelength theory
have been used to clarify the results. Notably, the effects of finite potential vorticity
gradients have been elucidated. Then, critical-layer expansions were employed to
construct theories for the evolution of marginally stable modes. This theory was used
to reconsider the linear problem and give reduced dispersion relations of closed form.
Moreover, the theory reveals the effect of weak viscosity.

The analysis of the evolution equations could be taken much further. The reduced
formulation of the problem facilitates a straightforward discussion of effects such
as transient amplification (the Orr mechanism, Farrell 1982). One notable feature of
the shallow water problem that is evident from the amplitude equations is that this
mechanism can amplify the surface gravity waves as well as vortical disturbances (the
vorticity inside the critical layer provides a source term in the amplitude equation
(6.4)). Nonlinear theory can also be developed. For example, nonlinear equilibrium
states can be constructed relatively simply (Balmforth & Young 1997; del Castillo-
Negrete 1998). For the supersonic instabilities, these equilibrium states are finite-
amplitude surface gravity waves with cat’s-eye patterns centred at the critical level.

However, the weakly nonlinear theory for inflectional instability is little different
to that for incompressible fluid shears and so there is less novelty in proceeding
down that pathway. Theory of the supersonic instability, however, is higher-order in
time, and presumably contains more physics than the inflectional version. It might,
therefore, be worthwhile to pursue that version of the theory. But this is left for future
work.

The main failing of the perturbation expansions is that in the over-reflectional case,
there is no proper justification for isolating a single neutral mode and exploring its
weakly nonlinear development in isolation of the other modes of the system. This
is because as soon as there is instability, there are infinitely many instability bands
that often lie at commensurate wavenumbers. The situation is further aggravated
by finite potential vorticity gradients that substantially extend the range of unstable
wavenumbers. This makes weakly nonlinear theory extraordinarily difficult without
some sort of Draconian measure like the one adopted here.
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Appendix A. Inflectional instability
A.1. Outer solution

As pointed out earlier, the marginally unstable mode with k = kc = km has a critical
level lying at the inflection point of the profile, yc = c = 0. This solution provides the
leading-order solution about which the weakly nonlinear expansion develops.

To perturb the system and edge it into the nonlinear regime two options are open.
The domain size may be increased slightly beyond the marginal value, so that km < kc.
Alternatively, the equilibrium profiles U(y) and H(y) could be modified slightly. Here,
the domain size is fixed at the marginal value and a slight distortion introduced into
the model flow profile:

U(y) = U0(y) + εU1(y), (A 1)

where U0(y) is, for example, the tanh profile, and εU1(y) is the distortion, which
does not necessarily preserve the location of the inflection point; that is, U ′′1 (0) 6= 0.
The simplification U1(0) = 0 is taken, which is neither necessary nor important (if
U1(0) 6= 0, then the critical level is shifted at order ε, but this is easily accounted for).
The amplitude ε is the small parameter that is used to order the expansion.

Since the marginal mode is stationary, the time development of any instability is
slow and so the first step in the asymptotic calculation is to rescale time and introduce
a long time coordinate, T = εt (if the wave speed of the marginally unstable mode is
finite, two timescales are needed; the faster timescale simply corresponds to the shift
needed to move into a frame travelling with the wave speed).

Next, introduce the series,

u = ε2(u0 + εu1 + · · ·), v = ε2(v0 + εv1 + · · ·), h = ε2(h0 + εh1 + · · ·) (A 2)

and

q = ε2(q0 + εq1 + · · ·), (A 3)

into the governing equations. Terms of like order in ε are then grouped together to
generate an asymptotic hierarcy of equations.

The various scalings in (A 1)–(A 3), together with T = εt and the scaling of the
viscous terms in (2.1)–(2.3) comprise a distinguished scaling of the effects of viscosity,
nonlinearity, and the degree of instability. This choice is made to bring all these effects
into the amplitude equation at the same order of ε. From a physical perspective, the
scalings focus attention on the slow growth of the marginally unstable mode, with a
growth rate determined by the modification to the basic state, and this is controlled by
nonlinearity and viscosity inside the critical layer. The specialization to slow evolution
eliminates the relatively fast surface gravity waves from the expansion.

At leading order, h0 may be eliminated from the equations and the system may be
written in the form

q0 − U ′′0
U0

ψ0 = 0 (A 4)

and

ψ′0 − 1
2
F2(U2

0 )′ψ0 + (1− F2U2
0 )u0 = 0, (A 5)
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with

q0 = −u′0 − 1
2
F2(U2

0 )′u0 + [k2
m + F2(U ′0)

2]ψ0, (A 6)

where v = ψx defines a potential somewhat like a streamfunction. This system is of
the form

L
(
u0

ψ0

)
=

(
0
0

)
, (A 7)

with L a particular differential operator. The solution is written(
u0

ψ0

)
= A(T )

(
û0

ψ̂0

)
+ c.c., (A 8)

where the amplitude A(T ) is at this stage undetermined. This solution is displayed
for the example profile of the main text in figure 2. Note that the adjoint to the
system (A 7) is the vector (ψ̂0,−û0), once an inner product is defined as the usual
scalar product integrated over y.

At order ε2, the system of equations is

U0u1x +U ′0v1 +
1

F2
h1x = − (∂T +U1∂x) u0 −U ′1v0, (A 9)

U0v1x +
1

F2
h1y = −(∂T +U1∂x)v0 (A 10)

and

U0h1x + u1x + v1y = −(∂T +U1∂x)h0. (A 11)

These equations can be manipulated into the relations,

q1 − U ′′0
U0

ψ1 = −
(
∂T

ikm
+U1

)
U ′′0ψ0

U2
0

+
U ′′1ψ0

U0

(A 12)

and

ψ1y− 1
2
F2(U2

0 )′ψ1 +(1−F2U2
0 )u1 = F2

(
∂T

ikm
+U1

)
(U ′0ψ0 +U0u0)+F2U0U

′
1ψ0, (A 13)

with

q1 = −u1y − 1
2
F2(U2

0 )′u1 + [k2
m + F2(U ′0)

2]ψ1

+F2U ′0

[(
∂T

ikm
+U1

)
u0 + 2U ′1ψ0

]
+ F2U0U

′
1u0. (A 14)

This set of equations is of the form

L
(
u1

ψ1

)
=

(
N1

N2

)
, (A 15)

for some N1 and N2. Under normal circumstances one would now take an inner
product with the adjoint, the left-hand side then disappears leaving a solvability
condition on the leading-order solution that is tantamount to determining A. However,
in the present problem this Fredholm alternative cannot immediately be taken; the
right-hand side of (A 12) is singular as y → 0.

In fact, it is straightforward to observe that the leading-order solution has the
dependence

ψ0 = O(1), u0 = O(y) and q0 = O(1) as y → 0, (A 16)
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whilst q1 = O(y−1). Thus terms break order when y → O(ε). This signifies the
presence of a slender region around the critical level, the critical layer, inside which
the asymptotic solution described above breaks down and the equations must be
rescaled to look for another solution.

A.2. Inner solution

For the critical layer, introduce the inner coordinate, Y = y/ε. Also, set h = ε2hI and
v = ε2vI . Then, only the leading-order terms of the cross-stream momentum equation
(2.2) and the continuity equation (2.3) are of interest. These imply

hIY = vIY = 0. (A 17)

The streamwise momentum equation (2.1) indicates that

U ′0cvI +
1

F2
hIx = 0, (A 18)

where the subscript c signifies the value of the quantity at the critical level, y = 0.
Equivalently, hI = −F2U ′0cΨ , if Ψx = vI .

The definition of potential vorticity inside the critical layer gives the relation

q = ε2qI = −1

ε
uY + ε2(vIx +U ′0chI ) + O(ε3). (A 19)

Thus u must be order ε3 inside the critical layer, which is consistent with the limiting
behaviour of the leading-order outer solution in (A 16). On setting u = ε3uI , (A 19)
becomes

uIY = −qI + vIx +U ′0chI ≡ −qI +Ψxx − F2U ′0cΨ. (A 20)

Finally, the potential vorticity equation is, to leading order,

∂TqI +U ′0cY qIx +ΨxqIY − νqIY Y = U ′′′0cY Ψx +U ′′1cΨx. (A 21)

This equation implies that the limiting behaviour of qI as |Y | → ∞ is

qI ∼ U ′′′0c

U ′0c
Ψ. (A 22)

It is convenient to subtract this asymptotic value from the inner potential vorticity
variable. Hence introduce the local potential vorticity of the critical layer region,

ζ = qI − U ′′′0c

U ′0c
Ψ. (A 23)

In terms of the new variable, the potential vorticity equation is

∂T ζ +U ′0cY ζx +ΨxζY − νζY Y = −U
′′′
0c

U ′0c
ΨT +U ′′1cΨx. (A 24)

The asymptotic behaviour of the new variable is

ζx ∼ − U ′′′0c

U ′20cY
ΨT +

U ′′1c
U ′0cY

Ψx. (A 25)

Hence ζ is localized within the critical layer.

A.3. Matching

The inner and outer solutions are matched by taking the variables in turn. Since vI
and hI are, to leading order, independent of Y inside the critical layer, these variables
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may be taken to be simply the limit of the outer solution. In particular, a match with
the outer solution is achieved on taking Ψ = Aψ̂0(0). Similarly, the potential vorticity
is matched relatively simply: the outer limits of the inner solution revealed in (A 22)
and (A 25) are what is required to match the outer solution, ε2(q0 + εq1), as y → 0.

The only variable requiring more consideration is the streamwise velocity u. Equa-
tion (A 20) indicates that the inner solution has the form u ∼ ε3uI , with

uI (Y )− uI (0) = −
∫ Y

0

[
qI (x, Y

′, T )− U ′′′0c

U ′0c
Ψ

]
dY ′ −

(
Ψxx − F2U ′0cΨ +

U ′′′0c

U ′0c
Ψ

)
Y .

(A 26)
The outer solution, on the other hand, takes the form

u ∼ ε3
(
u1 + u0cy/ε

)
as y → 0± (A 27)

≡ ε3

[
u1 −

(
ψ0cxx − F2U ′20cψ0c +

U ′′′0c

U ′0c
ψ0c

)
y

ε

]
. (A 28)

The quantities in (A 27) and (A 28) must be matched in an intermediate region in
which y → 0 and Y → ∞. Let Y = 1/ε and y = ε/ε with ε → 0 and 1 � ε � ε.
Thence,

[u1]
ε
−ε = −

∫ ε/ε

−ε/ε
ζ(x, Y , T )dY . (A 29)

Or,

u1(x, 0
+, T )− u1(x, 0

−, T ) = −
∫ ∞
−∞
ζ(x, Y , T )dY , (A 30)

in the limit ε → 0. Note that, because of the far-field behaviour in (A 25) the limits
of the integral must be interpreted in terms of a principal value.

Strictly speaking, this matching is not quite compatible with a formal asymptotic
expansion: the outer solution u1, through (A 12) and (A 14), contains a term propor-
tional to log |y|, and the inner solution, through (A 20) and (A 25), a term given by
log |Y |. This indicates that the expansion should really contain additional terms of
order ε2 log ε and higher (cf. Stewartson 1978; Warn & Warn 1978). These terms show
up as apparent divergences in the inner limit of the outer solution, and the outer limit
of the inner solution. Here, these divergences are dealt with using principal values.
However, they may be explicitly taken into account in a modified expansion. Once
the solutions u1 and uI are further divided into a series in ε log ε, the logarithmic
terms are isolated and match automatically as a result of higher-order matchings.
However, with the principal value interpretations, this subtlety of the problem need
not be considered further.

A.4. Solvability

The solvability condition needed to find the equation for A can now be applied by
multiplying (A 12) by ψ̂1, (A 13) by û1, integrating over y and then subtracting the
two equations. To avoid the singularity of (A 12) at y = 0, the integral is broken into
two pieces over the intervals [−1,−ε] and [ε, 1], with ε→ 0 (as in one definition of the
Cauchy principal value). The usual manipulations can then be used to eliminate the
second-order variables ψ2 and u2. However, this cannot be done completely because
the integration by parts in the integrated version of (A 12) leaves a term involving the
jump in the second-order streamwise velocity, u2, across the critical layer; that is, the
quantity in (A 30) (or at least that part proportional to eikmx). But this connects the
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amplitude of the marginally unstable mode to the evolving potential vorticity field
inside the critical layer.

The outcome of the manipulations is the equation,

IAT − ikmΩA = ψ̂0c

∫ ∞
−∞

∫ ∞
−∞

e−ikmxζx(x, Y , T )dY dx, (A 31)

where

Ω = P
∫ 1

−1

[(
U1U

′′
0

U2
0

+
U ′′1
U0

)
ψ̂2

0 + F2U1

(
2U ′0ψ̂0 +U0û0

)
û0 (A 32)

+2F2U ′1
(
U ′0ψ̂0 +U0û0

)
ψ̂0

]
dy, (A 33)

and

I = P
∫ 1

−1

[
U ′′0
U2

0

ψ̂2
0 + F2

(
2U ′0ψ̂0 +U0û0

)
û0

]
dy. (A 34)

The symbol P denotes Cauchy principal value. Together with the inner potential
vorticity equation (A 24), this relation completes the system governing the evolution
of the marginal mode. This is a partial differential equation coupled to an ordinary
differential equation, that is, another infinite-dimensional problem.

With suitable rescaling of Y and A, the choice ψ̂0c = 1 and a redefinition of ν, the
system can be placed into the form quoted in the main text for κ = −U ′′′0c/(U

′
0c)

2 and
γ = U ′′1c/U ′0c.

Appendix B. Supersonic instability
This Appendix derives equations for the slow development of marginally unstable

modes located at the right-hand edge of the lowest-wavenumber instability band. To
begin, introduce the following:

∂t → ε∂T , U = y + εU1(y) + ε2U2(y), F2 = F2
0 + εf1, (B 1)

u = ε2ũ, v = ε2ṽ, h = ε2h̃. (B 2)

A variation in the Froude number is included in (B 1) for reasons that will become
evident. Then, on dropping the tildes, the governing equations take the form

yux + v +
1

F2
0

hx = −εuT +
εf1hx

F2
0 (F2

0 + εf1)

−εU1ux − εU ′1v − ε2U2ux − ε2U ′2v − ε2uux − ε2vuy + ε3ν(uxx + uyy), (B 3)

yvx+
1

F2
0

hy = −εuT+
εf1hy

F2
0 (F2

0 + εf1)
−εU1vx−ε2U2vx−ε2uvx−ε2vvy+ε

3ν(vxx+vyy) (B 4)

and

yhx + ux + vy = −εhT − εU1hx − ε2U2hx − ε2(hu)x − ε2(hv)y, (B 5)

to the highest, interesting orders in ε (note that the viscous terms have now been
replaced by the simpler, Laplacian form).

Now pose the asymptotic sequences

u = u0+ε1u1+ε2u2+· · · , v = v0+ε1v1+ε2v2+· · · , h = h0+ε1h1+ε2h2+· · · (B 6)

and solve order by order.
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As a final prelude, some simplifications are introduced if

U1(0) = U2(0) = U ′1(0) = U ′2(0) = 0 (B 7)

and

U ′′1 (0) = 0, U ′′′1 (0) 6= 0 and U ′′2 (0) 6= 0. (B 8)

The first two of the relations in (B 7) indicate that the critical level is not shifted on
modifying the profile; without the second two, the critical-layer coordinate Y would
need rescaling at some stage. These simplifications are not strictly necessary and do
not affect the important terms in the weakly nonlinear theory. The conditions in (B 8)
indicate that the potential vorticity gradient is order ε2 at the critical level and agree
with the form suggested by the small-α expansion of (3.7).

B.1. Order one

yu0x + v0 +
1

F2
0

h0x = 0, (B 9)

yv0x +
1

F2
0

h0y = 0 (B 10)

and

yh0x + u0x + v0y = 0. (B 11)

On taking the dependence, exp (ikmx), these may be combined into the single
equation

u0yy − k2
m(1− F2

0y
2)u0 = 0. (B 12)

The solution is written formally as

u0 = û0(y)A(T ) + c.c., (B 13)

with A(T ) the currently undetermined amplitude, and is illustrated in figure 5(a).

B.2. Order ε

yu1x + v1 +
1

F2
0

h1x = −u0T −U1u0x −U ′1v0 +
f1

F4
0

h0x, (B 14)

yv1x +
1

F2
0

h1y = −v0T −U1v0x +
f1

F4
0

h0y (B 15)

and

yh1x + u1x + v1y = −h0T −U1h0x. (B 16)

These equations combine into the potential vorticity relation,

−y(u1y − v1x − h1 −U ′1h0)x ≡ yq1x = U ′′1 v0. (B 17)

Thus q1 = U ′′1ψ0/y, where ψx = v, which is finite at y = 0 through (B 8).
Again, on taking the dependence exp (ikmx), these may be combined into a single

equation,

Lu1 = 2ikmF
2
0y(u0T + ikmU1u0)− k2

mf1y
2u0 − 1

y
U ′′′1 ψ0 − 1

y2
U ′′1 (yu0 − ψ0), (B 18)

where L is the self-adjoint operator defined by

Lu = uyy − k2
m(1− F2

0y
2)u. (B 19)
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Note that, despite the appearance of the right-hand side of (B 18), there is no critical-
level singularity at this order (the apparently divergent terms on the right of (B 18)
arise from q1y which is regular).

Equation (B 19) does not, for general f1 and U1, have a bounded solution. In
fact, this is why f1 was introduced. The modification to the profile, U1(y), changes
the position of the instability band at order ε. Hence, in principle, a perturbation
to the wavenumber km is needed in order to account for this. However, by suitably
modifying the Froude number the shift in the instability band can be countered
and the modification to km avoided. Thus, in (B 18) a solvability condition is taken
(obtained on multiplying by û0 and integrating) that fixes f1; this is equivalent to
preserving the location of the instability band:

f1k
2
m

∫ 1

−1

y2û2
0dy =

∫ 1

−1

[
1

y2
U ′′1 (ψ̂0 − yû0)− 2k2

mF
2
0yU1û0 − 1

y
U ′′′1 ψ̂0

]
û0dy, (B 20)

where ψ0 = Aψ̂0. Note that the first term on the right-hand side of (B 18) does not
appear in the solvability condition because yu0T û0 ≡ yû2

0AT , which integrates to zero.
This reflects the degeneracy of the normal-mode problem at the neutral stability point.

Once f1 is selected according to (B 20) and solvability satisfied, the relevant solution
to (B 18) is written in the form

u1 =
1

ikm
û0AT + û2A+ c.c., (B 21)

where û2 must be computed from (B 18) once U1 is prescribed. Since this function
is arbitrary up to the conditions in (B 7) and (B 8), û2 contains information on how
U1 is fixed. In other words, this part of the solution for u2 will contribute to a term
in the amplitude equation containing a free parameter. For this reason, we need not
specify the form of û2 explicitly. This is also true of some of the terms that appear at
higher order.

B.3. Order ε2

yu2x+v2 +
1

F2
0

h2x = −u1T−U2u0x−U ′2v0−U1u1x−U ′1v1 +
f1

F4
0

h1x− f
2
1

F6
0

h0x−u0u0x−v0u0y,

(B 22)

yv2x +
1

F2
0

h2y = −v1T −U2v0x −U1v1x +
f1

F4
0

h1y − f2
1

F6
0

h0y − u0v0x − v0v0y (B 23)

and

yh2x + u2x + v2y = −h1T −U2h0x −U1h1x − (h0u0)x − (h0v0)y. (B 24)

In this order the nonlinear terms appear. These are problematic because, through
resonance, they force other modes in the system. But, provided the harmonic,
exp (2ikmx), is non-resonant, that part of the solution for u2 is bounded (the bother-
some nonlinear couplings lie at higher order in the expansion). However, a solvability
condition must be enforced on the terms proportional to exp (ikmx) in (B 22)–(B 24);
these terms are denoted by the superscript (1).

In order to apply solvability, first write an equation for u2: (B 22)–(B 24) lead to
the potential vorticity equation

−y(u(1)
2y − v(1)

2x − h(1)
2 −U ′2h0 −U ′1h1)x ≡ yq(1)

2x = U ′′2 v0 +U ′′1 v1 + (∂T +U1∂x)q1, (B 25)
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or

q
(1)
2 =

1

y
U ′′2ψ0 +

1

y
U ′′1ψ1 +

1

ikmy
(∂T +U1∂x)q1. (B 26)

It is in this equation that critical-level problems appear. The right-hand side is singular
as y → 0, signifying q(1)

2 diverges. On continuing,

Lu(1)
2 = −[q(1)

2 +U ′2h0 +U ′1h1]y − k2
mf1y

2u1 + 2ikmF
2
0y(∂T + ikmU1)u1 − k2

mF
2
0yU

′
1ψ1

+F2
0 (∂T + ikmU1)

2u0 + ikmF
2
0U
′
1(∂T + ikmU1)ψ0 + 2k2

mF
2
0yU2u0 − k2

mF
2
0yU

′
2ψ0.

(B 27)

This equation is now multiplied by û0 and integrated over y. As in the expansion of
Appendix A, however, a little care is needed because u(1)

2 contains a jump across the
critical layer. The operation leads to

[u(1)
2 (x, 0+, T )− u(1)

2 (x, 0−, T )]u′0(0) = 2F2
0 û0(1)2ATT + iΩAT + ΓA, (B 28)

where Ω and Γ are integrals involving the solutions û0, û1 and the modifications to
the profile, U1 and U2. Those functions are essentially arbitrary and so there is no
need to give precise definitions here.

B.4. Inner solution and matching

The inner layer is resolved as before; pose y = εY as an inner coordinate and follow
a different expansion. To the first few orders, h and v are independent of Y , and the
leading-order part of u is a linear function of Y . These solutions are consistent with
the inner limits of the outer solution, and matching is established straightforwardly.

The important equations arise at order ε and combine into the potential vorticity
equation:

qIT + Y qIx + V0qIY − νqIY Y = U ′′′10V0Y +U ′′20V0, (B 29)

where V0 = V0(X,T ) is the leading-order term of v.
For large Y , (B 29) implies the balance qIx ∼ U ′′′10V0. This ‘constant’ is again

subtracted from the critical-layer potential vorticity to obtain the part which is
localized to this inner region: qIx = ζx + V0U

′′′
10. With this definition, the critical-layer

equation becomes

ζT + Y ζx +ΨxζY − νζY Y = −U ′′′10ΨT +U ′′20Ψx, (B 30)

where Ψx = V0.
Finally, the solutions for u must be matched. The procedure is similar to that

described in Appendix A (and again the expansion should strictly include ε log ε
terms), though here the expansion is carried to higher order. The results indicate that

u2(x, 0
+, T )− u2(x, 0

−, T ) = −
∫ ∞
−∞
ζ(x, Y , T )dY . (B 31)

Also, matching of v implies that Ψ = A(T )ψ̂0(0)eikmx + c.c. If one now selects
2F2

0 û0(1)2 = 1, rescales ζ by −û′0(0), and defines κ = −û′0(0)U ′′′10 and γ = û′0(0)U ′′20,
then one recovers the amplitude equations in (6.1)–(6.3). The only other point that is
worth noting is that if U(y) is anti-symmetrical (as in the examples of the main text),
then Ω = γ = 0.
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