Introduction

We investigate a layer of very viscous fluid that flows down a uniform slope due to gravity.
However, instead of the usual free surface, the fluid is covered by an elastic plate.

elastic skin
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FIGURE 1: (a) ‘Ropy’ pahoehoe lava. (b) The configuration studied:

A pahoehoe lava flow may be crudely modelled by such an elastic-skinned gravity current:
as a flow advances, it solidifies and forms a crust at the surface whilst remaining molten in
the interior. Many such flows exhibit a complex surface structure because of the multitude
of stresses acting upon them; an example is shown in figure 1a. As an idealization of the
wrinkling process, we present a theoretical model describing a viscous fluid flowing down an
incline beneath an elastic skin, and apply it to the simple geometry shown in figure 16. The
model consists of Stokes equations for the fluid coupled to the nonlinear Foppl-von Karman
plate equations for the skin.

The governing equations

A duct of square cross-section, with half-width and -depth yg, is inclined at an angle 6 = 45°
to the horizontal. The side walls and inclined plane are solid; the upper surface is an elastic
plate of halt-thickness d, Young’s modulus £ and Poisson ratio v. Fluid, of viscosity p and
density p, flows under the force of gravity alone. The z-direction is directed down-slope, the
y-direction across-slope and the z-direction perpendicular to the slope.

We present the governing equations in non-dimensional form where lengths have been rescaled
by 19, velocities by U = pg cos Gyg [, time by yo /U, fluid stresses by pg cos 0y and elastic

stresses by 2dE /(1 — v?). We set

0 =d/yy

where the latter measures the relative strength of the shear forces induced by the fluid on
the plate compared to the elastic forces.

G = pgy%(l — V2) cos0/2dFE,

The fluid

The interior flow is assumed inertialess and incompressible, thus

V-u=0, —Vp+Vu+(1,0,—1)=0, (1)

where p is pressure and u = (u, v, w) the velocity field. The inclined plane and the side walls
are no-slip: u=0on z = —1 and y = £1.

The crust

The crust is modelled as a thin, Hookean elastic plate. Its upper face is free while the
fluid exerts a traction, t = (tx,ty,tz) on its lower face, generating in-plane stresses and
displacements which in turn induce buckling. The Foppl-von Karman equations are the
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simplest plate equations that can capture such behaviour.

The plate displacement is denoted by the vector, (£, 7, (), each component of which is a
function of the undeformed position, (X, Y), of the plate (located on the Z = 0 plane); after
deformation, the plate is located at the position (X + &, Y + 7, (). Assuming deformations
are slow, so elastic accelerations can be neglected, the in-plane and out-of-plane motions are
ogoverned by

V'N_G(i;()’ %52V4<:—Gtz+v.(N.V(j), (2)
respectively, where the in-plane stresses, N, and associated nonlinear in-plane strains, e, are
given by ,

N=vtr(e)l+ (1 —v)e, ezﬁ(Vé—FVST—l—VCVC). (3)

At the lateral edges of the plate we impose clamped boundary conditionsé =71 = = (y =0
on Y = +£1.

Matching conditions

A key assumption of the Foppl-von Karman equations is that in-plane displacements are
small. As a result, the relation between the two coordinate systems, x and X can be simpli-
fied: (x,y) = (X,Y)+ (&,n) = (X,Y) and {(X,Y,t) =~ ((x,y,t). That is, we may ignore
any difference between the two coordinate systems.

Continuity of velocity now requires (ignoring the production of crust and under the
assumptions of Foppl-von Karman)

Se=u,  m =0, Gt = w, (4)

and the matching of the stresses implies that

A

tX:El-O-H, tY:EQ-O'-ﬂ, tz=n-0 -1, (5)

where 1 is the unit normal to the base of the plate, and t ;j (J = 1 and 2) are the corresponding
tangents aligned with the x— and y—axes, respectively.

Wrinkling instability

We consider a base state with no out-of-plane displacement of the elastic plate, no variation
in x and having v = w = 0. The solution of the system (1)—(5) is shown graphically for
the down-slope velocity and down-slope displacement in figure 2a and b respectively. The
velocity is identical to that found at zero Reynolds number in a rectangular duct, while the
down-slope displacement in the plate is almost parabolic, with maximal shear in the plate at
its lateral edges.
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FIGURE 2: The base state down-slope (a) fluid velocity contours and (b) plate displace-
ment for v = 0.3 and G = 1.

Perturbation

To consider the out-of-plane displacement induced by this base flow, we perturb the base state
by an infinitesimal amount decomposed into a normal mode proportional to e!** =t Uging
0 (1) superscripts to denote the base (perturbation) values, we find the equations governing
the perturbation become

5007 Gy — 26°y + KW + G — k(1 = )" ¢V — aGul — Gpl) =,

for the plate with ¢(1) = ¢!V = 0 at y = +1,

v.-ul =0 0=-vp v,

with conditions ul) = 0 on y==+1, z=—1 and

o) = 0

ut ugo> C<1> =0, : wt) = —iw§<1> on z = 1.
We solve the perturbation equations numerically using a Chebyshev collocation scheme.
Sample growth rates of the most unstable modes are shown in figure 2. Above a critical
value of the gravitational parameter, G, a finite window of unstable wavenumbers is found at
moderate k. Both short- and long-waves are stabilized by the bending stiflness of the plate,
which prevents buckling in the x- and y-directions respectively. The mode with largest growth
rate is symmetric. The structure of the modes described below implies that the displacement
in the central region decreases as k increases, thus the symmetric and antisymmetric modes

have almost identical growth rates as k becomes large.
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FIGURE 3: The growth rate, S(w), as a function of wavenumber for the most unstable
modes for G =3, 0 = 0.1 and v = 0.3.

Mode profiles for the most unstable mode at approximately the most unstable wavenumber
are shown in figure for G = 3, £ = 8 and 0 = 0.1. The largest amplitude deflection occurs
away from the centre-line and edges. This is to be expected since the base-state stress is
zero at the centre, while the clamped boundary conditions prevent deformation at the edges.
Where k and G are small the maximum amplitude is at the centre-line, while for increasing
GG or k the maximum is progressively closer to the clamped edges. The induced flows are
confined to a relatively thin layer close to the plate.
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FIGURE 4: (a) The out-of plane perturbation profiles as functions of  and y for the
most unstable mode. (b) Cross-sections of the out-of-plane displacement (exaggerated)
and cross-sectional velocity fields. The parameters are G = 3, k = 8, 0 = 0.1 and

v =0.3.

Discussion

We have presented a model for describing an elastic-skinned gravity current that is capable
of capturing flow-induced wrinkling. We have investigated the linear stability of a simple
cgeometry, however slight modifications may also be applied to consider fingering of the front,
flow-induced compression at the front and more complex geometries in which shear induces
buckling.




