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Experiments are conducted exploring the flow of Carbopol past obstacles in a narrow slot and
compared with predictions of a model based on the Herschel-Bulkley constitutive law and the con-
ventional Hele-Shaw approximation. Although Carbopol is often assumed to be a relatively simple
yield-stress fluid, the flow pattern around an obstacle markedly lacks the fore-aft symmetry expected
theoretically. Such asymmetry has been observed previously for viscoplastic flows past obstacles in
unconfined geometries, but the narrowness of the Hele–Shaw cell ensures that the stress state is
very different, placing further constraints on the underlying origin. The asymmetry is robust, as
demonstrated by varying the shape and number of the obstacles, the surfaces of the cell walls, and
the steadiness of the flow rate. The results suggest that rheological hysteresis near the yield point
may be the cause of the asymmetry.

I. INTRODUCTION

Slow viscous flow around an obstacle is a classical prob-
lem in fluid mechanics, illustrating the so-called Stokes
paradox and its resolution. When placed into the con-
fines of a narrow slot - a Hele–Shaw cell - the flow problem
becomes (at leading order) equivalent to two-dimensional
potential flow around an obstacle. For either unconfined
or Hele-Shaw flow, the problem has fore-aft symmetry
owing to the reversibility of the steady flow field.

Here, we are concerned with the generalization of these
flow problems to the situation in which a complex fluid
flows around an obstacle. In particular, following recent
work on soft matter and complex fluids [1, 2], we ad-
dress the problem of viscoplastic flow around an obsta-
cle in a Hele–Shaw cell. The practical applications are
widespread, particularly for drilling and fracture prob-
lems in the oil and gas industries where unwanted block-
ages are a key consideration [e.g. 3–5]. Flow around ob-
stacles placed in a Hele–Shaw cell provides the simplest
possible idealization of how a spatial non-uniformity in a
slender conduit can create such blockages.

Viscoplastic flows around obstacles have previously
been considered in unconfined geometries, both theoret-
ically and experimentally [e.g. 6–9]. For the flow around
cylinders and spheres, the yield stress ensures that fluid
motion becomes localized around the obstacle, alleviat-
ing the Stokes paradox without recourse to inertia. More-
over, theory based on the Herschel-Bulkley constitutive
law again predicts fore-aft symmetry. In detail, the flow
pattern consists of a ‘bubble’ of yielded material sur-
rounding the obstacle, with triangular or conical plugs
attached to its front and back. By contrast, experiments
show the surprising feature that the flow and attached
plugs are not fore-aft symmetrical. Viscoelastic liquids
also display such asymmetry, an effect attributed to the
visco-elastic relaxation of the stress [10]. Following on
for viscoplastic fluid, non-ideal rheological effects such as
elasticity or thixotropy have been proposed to explain

!

"

PSEUDO-PLUG PLUG

PLUG   PLUG   PLUG

(a)

(b)

(c)

#

$

%

&' (

FIG. 1. Viscoplastic flow through a Hele-Shaw cell containing
an obstacle. The plane of the cell is shown in (a), where the
grid represents the mosaic pattern used to create composite
images of the flow field. A velocity profile for flow down a
uniform, unobstructed cell, with a central rigid plug, is shown
in (b), while the corresponding profile through the centerline
of the obstructed cell (y = 0) is shown in (c), with a shaded
pseudo-plug that widens to fill the cell and become truly rigid
near the obstacle.

the asymmetry [7, 11, 12]. Similar asymmetry has been
observed in the flow of floating foam rafts around obsta-
cles, which has been modelled as two-dimensional elasto-
viscoplastic flow [11].

In a narrow slot (figure 1a), the situation is very dif-
ferent in two important ways: the flow is forced to yield
against the walls in order to move through the slot, and
the shear across the slot dominates the strain-rate tensor
of the fluid. These differences are well known, and their
implications are demonstrated in the expected flow pro-
files illustrated in figure 1. For unidirectional flow down
a uniform cell, the profile is characterised by shear-layers
against the walls, together with a central rigid plug, as
shown in figure 1b. When the flow encounters an obsta-
cle in the slot, however, the fluid must slow down and
be diverted sideways, preventing the central region from
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remaining truly rigid. Instead, stresses in the plane of
the slot become important to break the plug and hold
the central region marginally above the yield stress. The
flow profile across the slot remains plug-like, and the cen-
tral region better referred to as a ‘pseudo-plug’ [1, 13].
As illustrated in figure 1c, the thickness and speed of the
plug-like flow varies along the slot, widening in the vicin-
ity of the obstacle. Eventually, the pseudo-plug can grow
to fill the cell, at which point the slot becomes spanned
by a genuine rigid plug. The distinction between a rigid
plug filling the cell and a central, moving pseudo-plug
bounded by sheared fluid is a key detail of these flows,
ensuring that there is no “lubrication paradox” of the
sort that has been mistakenly proposed in the past [1].

Confined viscoplastic flow down a narrow slot is there-
fore rather different than the unconfined flows previ-
ously studied; the flow is directed primarily along the
slot, rendering it quasi-two-dimensional, but the shear
occurs mainly across the slot according to a known pro-
file. Thus, unlike in an unconfined geometry where all
the velocity gradients must be measured, the velocity in
the cell’s midplane provides a direct gauge of the key
strain rates. In addition, the shear stresses across the
slot provide the main resistance to flow, weakening any
effects of the extensional stresses, and further simplify-
ing the expected rheological behaviour. In other words,
the Hele–Shaw cell provides a transparent and definitive
setting in which to assess non-ideal rheological effects in
complex flows (cf. [14]).

The current work follows on from a theoretical study
[13] exploring the flow of Bingham fluid around cylindri-
cal obstacles in Hele-Shaw cells. As for the unconfined
problem, the theory again predicts that the flow field is
fore-aft symmetric. Moreover, the pseudo-plugs do in-
deed expand to fill the cell over confined regions at the
front and back of the obstacle. The goals in this paper are
to explore the experimental counterpart to this predicted
flow structure for a wider array of different kinds of ob-
stacles, and to identify any fore-aft asymmetry and con-
strain its origin. In addition, to provide a more detailed
theoretical comparison to these experimental results, we
generalize the theory of [13] to a Herschel-Bulkley fluid
and perform further computations (the details of the
theoretical formulation and numerical approach can be
found in that paper).

II. EXPERIMENTAL METHOD

All results reported in this work were obtained in a thin
rectangular channel, formed between two acrylic plates
(of length L = 105 mm and width W = 64 mm) sepa-
rated by a height H = 1 (±0.05) mm; see Fig. 1a. The
flow was generated by a syringe pump delivering a flow
rate Q with a maximum of 3 mL/min (and providing
inlet flow velocities of order 10−4 m/s). To place obsta-
cles in the cell, we either drilled holes in the plates and
inserted a cylinder, or 3D printed shapes with the thick-

Concentration τY K n G′ G′′

(wt/wt %) (Pa) (Pa sn) (Pa) (Pa)

0.055 0.10 0.23 0.64 3.0 0.9

0.060 0.20 0.39 0.57 4.2 0.7

0.075 1.43 1.53 0.46 16 2.0

TABLE I. Herschel-Bulkley fits of the Carbopol solutions.
Also listed are shear storage and loss moduli (G′ and G′′)
measurements taken from small amplitude oscillatory rheom-
etry at a frequency of 1Hz and a strain amplitude of γ = 1%
(below which we confirmed that the two moduli where inde-
pendent of γ).

ness of the channel. The shapes, with cross-sections of
a circle, square or stadium (each with a shortest cross-
sectional length of D = 11 ± 0.01 mm), were printed
with internal compartments to house a magnet, so that
the obstacles could be suitably positioned and orientated
inside the cell.

The working fluids were three different aqueous sus-
pensions of Carbopol-940. These fluids were well de-
scribed by the Herschel–Bulkley constitutive law and
showed little sign of hysteresis in their measured flow
curves above the yield stress (Fig. 2). Near that thresh-
old, the flow curves display the hysteresis commonly
found when performing controlled ramps in shear stress,
an effect attributable to elastic deformation [1, 15]. The
flow-curve data in Fig. (2) suggest that the fluids do not
display any thixotropy of the kind previously found for
other Carbopol gels [16, 17]

Moreover, the fluid was also pre-sheared before injec-
tion into the cell, to eliminate the initial non-ideal rheo-
logical effects reported in sedimenting sphere experiments
[7].

The Herschel-Bulkley fits of the yield stress τY , consis-
tency K and power-law index n are summarized in table
I.

Also listed are measurements of the shear storage and
loss moduli, G′ and G′′, from oscillatory rheometry; G′ is
somewhat larger than G′′ for all three fluids, suggesting a
linear viscoelastic relaxation time below the yield stress
that is less than a second or so [15]. This estimate for
the relaxation time was consistent with additional stress
relaxation tests and with previous rheometry of Carbopol
gels with similar concentration [9].

In addition to these Carbopol suspensions, we also con-
ducted a small number of tests with two others fluids: a
glycerol-water mixture and a polyethylene oxide (PEO)
solution. The former provides a direct comparison with
a Newtonian Hele-Shaw flow; the latter with a proto-
typical visco-elastic liquid characterized by a relaxation
time of a few seconds [18].

Particle-image velocimetry (PIV) was conducted us-
ing a swept-field laser-scanning confocal microscope at
an imaging frequency of 30 Hz. A 4X-objective lens with
working distance of 16 mm captured the motion of 3 µm
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FIG. 2. Flow curves for the three different Carbopol sus-
pensions used in this work (0.075% (black), 0.06% (blue) and
0.055% (red)). The curves are obtained using a rheometer
with roughened parallel plates (MCR501, Anton Paar), and
correspond to ramps in shear stress, proceeding first up and
then down with a ramp-rate of 0.05Pa/s. The dashed lines
give the Herschel-Bulkley fits in Table I.

diameter fluorescent beads which were seeded at concen-
tration of 0.005 (wt/wt%). The position of the observa-
tion plane was controlled by a motorized stage and fixed
on the central horizontal plane of the cell. Because the
field of view of the lens (2 mm × 2 mm) was too small
to capture the whole cell, the full flow field was visual-
ized by stitching together a series of pictures to create a
composite image (see Figure 1a). This limitation had the
drawback that we were only able to map the full flow field
for a subset of the experiments, focussing on features at
the front or back of the obstacles for the full set of tests.

Each experiment was conducted by first cleaning the
walls of the cell. In most cases with isolated disks,
the walls were also chemically treated to reduce wall-
slip, as described by [19]. Carbopol was then pumped
through the cell for approximately 20 minutes before
flow-visualization commenced. Given the flow rate and
rheological parameters, we define the Bingham number
(the dimensionless strength of the yield stress) by

B = τYK
−1 (WH2/Q

)n
.

To verify the velocity profile across the cell, we under-
took some separate studies of flow down a uniform slot
with treated walls, combining Optical Coherent Tomog-
raphy (Thorlabs TEL1300V2-BU) with particle tracking
velocimetry [20, 21]. Sample profiles are presented in
figure 3, together with theoretical predictions based on
the prescribed flow rate and rheological parameters [13].
These results confirm the removal of any effective slip by
the chemical treatment, and demonstrate how the theory
and experiment are in quantitative agreement. By con-
trast, and in line with other studies [22], the Carbopol
was observed to slip somewhat when the walls were left
untreated. As illustrated figure 3, the slip velocity is
relatively small (less than about 25% of the maximum
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FIG. 3. Experimentally measured velocity profiles for 0.06%
Carbopol in a uniform cell with chemically treated plates at
the three Bingham numbers (flow rates) indicated (red). The
solid black lines show corresponding theoretical predictions
given the fluxes and the rheological parameters in Table I. A
profile from a cell with untreated plates for B = 1.2 (green)
is also shown.

velocity over the range of experimental parameters, as
estimated by a linear extrapolation of the particle track-
ing data to the wall position) with the flow profile largely
maintaining the same form as with treated plates.

A related concern was the potentially destructive im-
pact on the wall treatment by the introduction and re-
arrangement of obstacles placed in the cell, which was
achieved by moving magnets and involved dragging the
obstacles over the tightly fitting walls. To avoid any
possibility that mechanical contact might interfere with
the surface treatment, when we explored flows around
squares, stadia or multiple disks, we resorted to the use
of cells with untreated walls, notably in reconstructing
the full flow field (cf. Fig. 4). Before proceeding down
this path, we did, however, verify that, for isolated cylin-
ders inserted through drilled holes in the walls, there were
no significant differences with results for flows down cells
with treated walls (see Fig. 7(c) and the relevant discus-
sion in §III.B).

III. RESULTS

A. Plug phenomenology

Sample experimental results for cells with different ob-
stacles are presented in Fig. 4, while a selection of com-
plementary numerical solutions are presented in Fig. 5.
Fig. 4(a) shows a control experiment in which a Newto-
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FIG. 4. PIV images showing speed, normalised by the incident speed Uc = Q/WH, and streamlines (all flowing left to right)
along the midplane of the slot around various obstacles. (a) The flow around a disk for a glycerol-water solution (31 wt/wt%) at
Q = 0.05 mL/min; dashed lines show the corresponding potential-flow solution. (b) Flow field for a viscoelastic PEO solution
(0.75 wt/wt%) with Q = 0.16 mL/min. (c)–(k) Flow fields for a Carbopol solution (0.06 (wt/wt%), untreated walls) with
B = 3.1 (c,g,h) and B = 2.7 (d,e,f,i,j,k). The upper limit of the colorbar was set at X = 2.8 for (a,b), X = 2 for (j,k), and
X = 1.6 for (c–i). (l) An average image near the plug at the front of a disk (0.075% Carbopol solution, B = 2.3, treated
walls). The solid lines indicate the edge of the plug according to edge-detection (green) or a velocity threshold (red); the
dashed line shows the estimated plug length `p. White lines in (c–k) show the yield surfaces detected using a velocity threshold
of 0.0005 mm/s.

nian fluid (a glycerol-water solution) was pumped around
a disk. The flow pattern is fore-aft symmetric and com-
pares well with the potential-flow theoretical solution
that is also plotted.

The symmetry is preserved when test is repeated with
the PEO solution (Fig. 4(b)). For the unconfined con-
figuration, the flow pattern in such a fluid is expected to
become asymmetrical owing to visco-elastic relaxation,
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FIG. 5. Speed (shading; scaled by the incident speed Uc) and representative streamlines (solid black lines) along the midplane
of the slot for computations of Herschel-Bulkley fluid around the grey-shaded obstacles, for n = 1

2
and B = 4. The range of

the colorbar matches that used in Fig. 4(c)–(k). The white lines show yield surfaces, given by the threshold U/Uc = 1 × 10−3.

which pushes the maximum shear stresses downstream
of the top and bottom of the obstacle [10]. For the ex-
periment shown in Fig. 4(b), one might expect that a
similar relaxational effect arises and suppresses the plug
in the wake. However, no asymmetry is observed for
PEO, a result that extends to a range of flow rates and
polymer concentrations. On further consideration [14],
the absence of fore-aft asymmetry in this visco-elastic
flow is not surprising: for the sheared flow in the narrow
geometry of our Hele–Shaw cell, the extensional stresses
are suppressed and the Weissenberg number is relatively
small (typical shear rates are 0.1 s−1, in comparison to
the O(1s) relaxation time).

Fig. 4(c) shows the analogous experiment with Car-
bopol, which differs in two ways to the Newtonian and
PEO tests. First, unyielded plugs spanning the cell ap-
pear at the front and rear of the disk, and this fea-
ture of the flow is mirrored in the theoretical solutions
(Fig. 5(a)). In detail, however, the structures in the flow
field, and in particular the dimensions and shapes of the
experimental plugs, differ from their theoretical counter-
parts. Notably, the experimental plugs have a roughly
right-angular form, whereas their theoretical counter-
parts thin to a pronounced cusp-like nose. This discrep-
ancy may arise because the Hele–Shaw theory breaks
down on lengthscales comparable to the height of the
slot (here, H ∼ 1 mm, which is comparable in size to the
discrepancy between theory and experiment) or by the
complications in defining the edge of the plug due to un-

detectable velocities. Such possibilities cannot, however,
rationalize the second difference between the Carbopol
and earlier tests, which is that there is a marked fore-aft
asymmetry in the flow pattern, with the plug at the front
being larger than that at the rear, and mirrors findings
for unconfined flows [7, 8].

Fig. 4(d–k) show more experiments with different
shapes or combinations of obstacles (all with the 0.06%
Carbopol). Plugs again appear in almost all cases, ex-
cept when the front or rear of the obstruction has the
form of a relatively sharp corner (Fig. 4(h)). Once again,
there is some qualitative agreement with complementary
theoretical results for different obstacles (see Fig. 5(b-
f)). However, in every case the experimental flow pat-
terns display a clear fore-aft asymmetry that is absent in
the theoretical predictions. There are also quantitative
differences with the theoretical predictions for the plugs
that are again suggestive of inadequacies in the Hele–
Shaw approximation (for example, there are small plugs
at the front and back corners of the diamond-shaped ob-
stacle in the computations, but not the experiments).

The limitation of the Hele-Shaw approximation is cer-
tainly responsible for the substantially faster flows that
arise against the top and bottom of the obstacles in the
theoretical solutions; see Fig. 6(a). In particular, in
this approximation, fluid is permitted to slide along the
boundary of the obstacle, whereas in reality any slip is
either much reduced or eliminated entirely, depending on
the degree of surface interaction. Consequently, to cor-
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FIG. 6. (a) Scaled theoretical (top) and experimental (bottom) speeds, U/Uc, for flow around a disk with n = 0.57 and
B = 2.3, corresponding to panel (l) in figure 4 (and using the same scheme for the colormap as that figure). In (b), the
theoretical (solid lines) and PIV (dots) speeds are plotted along the sections indicated by the vertical dotted lines in (a).
The notable disagreement in the velocity profiles past the top and bottom of the disk is a result of a local break-down of the
Hele-Shaw approximation over a distance of the order of the slot thickness from the disk, as discussed in the main text.

rect the theory a boundary layer of thickness H is needed
that sheathes the obstacle and adjusts the surrounding
velocity field to accommodate the true surface condition.
The boundary layer is visible in all the experimental im-
ages of Fig. 4, as are the excessive high-speed regions in
the solutions of Fig. 5. The maximum speeds attained
in the theory are therefore too high in comparison to
the experiments. In fact, as shown in Fig. 6, because
the experimental slot is not that narrow (H/D ≈ 0.1),
the high-speed regions predicted theoretically are almost
completely smeared out, rendering the faster flows more
distant and broader. Otherwise, the sections of speed
across the slot shown in Fig. 6(b) compare fairly well be-
tween theory and experiment (modulo the fore-aft asym-
metry in the latter).

Note that, for multiple disks and stadia, both the ex-
periments and theoretical computations display a “cloak-
ing” effect similar to that reported by [23]: when such ob-
stacles are orientated broad-side on, the unyielded plugs
at the front and back mask the precise differences in
shape, such that the surrounding flow field becomes es-
sentially the same (cf Fig.4(j) and (k), or Fig. 5(d) and
(f)). Only when the yield stress (i.e. B) is sufficiently
small do the plugs fail to cloak the front or back surface,
unveiling the true shape differences. (This feature is seen
particularly clearly in the theoretical plots of Fig. 8(a)
below). If the broad side of the obstacles is orientated
either with the flow or at 45◦, no such cloaking effect is
possible as the surface of the obstacle is always exposed
to unyielded fluid. Nevertheless, in the Hele-Shaw geom-
etry, the yield surface of the plugged-up cavity for the
double disks acts somewhat like the straight sides of the

stadium, shielding the surrounding flows and rendering
similar their patterns (compare panels (d) and (e), or (f)
and (i), of Fig.4).

The Carbopol experiments also display weak
symmetry-breaking in the direction transverse to
the flow for obstacles with a symmetry plane along the
midline of the cell (i.e. up-down symmetry in Fig. 4; cf.
the magnification of the forward plug in Fig. 4(l) and
the speed sections in Fig. 6). We interpret the broken
symmetry to arise from imperfections in the cell geome-
try and inflow, which apparently become accentuated by
the yield stress of the fluid (neither the Newtonian nor
viscoelastic experiments were noticeably asymmetrical).
These imperfections are not systematic from experiment
to experiment, and separate velocimetry measurements
across the slot upstream of the obstacle indicate that
the incident flow is fully developed.

B. Plug lengths

To quantify the plug size for the bluff obstacles, we
measure the perpendicular distance `p from the apex of
the triangular plug to the obstacle surface; see Fig. 4(l).
This measure is unambiguous and convenient for all but
the double disks aligned perpendicular to the flow in
Fig. 4(k); for those, we define `p as the shortest dis-
tance from the apex of the plug to the vertical line drawn
between the frontmost or rearmost points of the disks.
The plug itself is identified either from edge detection
in the average of the images recorded (in which station-
ary tracer particles appear as bright points whereas mov-
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FIG. 7. (a) Dimensional plug lengths `p of the configurations shown in Fig 4, with the conventions indicated by the legend.
The walls of the cell are treated to remove slip for the isolated disks, but for the squares, stadia and multiple disks, the walls
are untreated in view of the potentially destructive method of insertion or rearrangement. (b) Scaled plug lengths `p/`c, where
`c is chosen as indicated in the main text for the three groupings of obstacles. The lines show theoretical results for isolated
disks, calculated using the numerical method of [13] for the Herschel-Bulkley model with n = 0.5 (black solid) and n = 1 (red
dashed). (c) A comparison of the plug size for flow of 0.06% Carbopol around disks with treated and untreated acrylic sheets.
In all three panels, we plot `p as positive for the plugs at the front, and `p < 0 for those at the back. The error bars indicate
the standard deviation from three repetitions of each experiment.
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2
;

in (c) data are shown for isolated disks and the three values of n for the experimental fluids, as well as results for n = 1
2

and
for a Bingham fluid (n = 1) [13], for reference.

ing tracers become blurred into grey streaks), or from a
noise-based threshold in the velocimetry. The two meth-
ods give comparable results (see Fig. 4(l)). To further
reduce any experimental uncertainty, tests were usually
repeated three times, and we report error bars based on
the resulting standard deviations which can be as large
as 15%.

A systematic survey of plug length as a function of Car-

bopol concentration, inlet flow rate, and blockage config-
uration is shown in Fig. 7, with analogous theoretical
computations shown in Fig. 8. All the experimental re-
sults for disks, squares and stadia, spanning roughly two
decades of Bingham number (0.1 6 B 6 10), are assem-
bled in Fig. 7(a). The fore-aft asymmetry is very clear
in these results, with the plug lengths roughly fall into
three groups. In particular, the plug lengths for single
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disks are similar to those of two disks or stadia that are
either aligned with or at 45◦ to the flow. The plug lengths
for double disks or for a stadium aligned perpendicular
to the flow are somewhat different, but are similar to one
another. The square is different again, with a plug length
somewhere between those of the other two groups. Al-
though there is no fore-aft asymmetry in the theory, the
plug-length data do again fall into the same three groups,
with the computations otherwise qualitatively capturing
the trend of the experimental measurements. More quan-
titatively, the prediction of the plug length is somewhat
low, curiously aligning more with the data for the rear
plugs than those at the front (see Fig. 7(b)).

We achieve some collapse of all the data for the 0.06%
Carbopol by scaling the plug length according to a simple
algorithm, which crudely identifies the length of the ob-
stacle over which the incident flow forms an angle greater
than 45◦: for obstacles with rounded leading or trailing
faces (Fig 4(c)-(f),(i)) we scale `p with the radius of cur-
vature of the front or rear; i.e. `c = R ≡ D/2. For
obstacles with a square front or rear face, we scale `p
by the length of that face; for the square obstacle in
Fig 4(g); this corresponds to a scaling of `c = 2R. For
double disks and stadia aligned perpendicular to the flow
(Fig 4(j)-(k)), we compose a scaling length from the ra-
dius of curvature of the top and bottom of the obsta-
cle plus the square length of the section inbetween; i.e.
`c = 3R. Fig. 7(b) shows the scaled plug lengths, `p/`c.
The success of the collapse is reinforced by Fig. 8(b),
which performs the same scaling of the theoretical re-
sults. The simple algorithm also rationalizes the lack of
plugs in the tilted square in Fig. 4(h), where no part of
the obstacle is sufficiently inclined against the incident
flow.

For different Carbopol concentrations and isolated
disks, Fig. 8(a,b) also indicates that the plug length is
fairly insensitive to the power-law index n. Neverthe-
less, at the higher Bingham numbers, the plug lengths
for the highest concentration are noticeably lower, sug-
gesting that the plug size may increase with decreasing
n. Indeed, such a trend is demonstrated by the results of
theoretical computations, as shown in Fig. 8(c).

Finally, we report the results of experiments for a sin-
gle disk in a cell with untreated plates and a range of
flow speeds to examine the importance of effective slip.
Poumaere et al. [22] have previously suggested that wall
slip can create complexity in the flow dynamics down nar-
row conduits. As illustrated in Fig. 7c, although there is
a small quantitative effect on plug lengths, the degree
of fore-aft asymmetry remains unchanged, implying that
surface interaction is not the cause of this asymmetry,
and that wall slip does not appear to introduces qualita-
tively different flow dynamics in our Hele–Shaw cells.

C. Constraining the origin of asymmetry

To further constrain the origin of the fore-aft asym-
metry, we conducted some additional tests. First, we
examined steady flow around two disks aligned with the
flow, but with varying separations (Fig. 9). The varying
separation implies that fluid elements progress along La-
grangian trajectories of different lengths as they deflect
around the disks, such that any rheological evolution of
fluid elements should be reflected in differences in the
overall flow pattern. An increase in the separation dis-
tance between the disks leads to no observable effect on
either the length of the plug at the front of the first disk
or on that at the rear of the second disk. Furthermore,
once the intervening distance between the plugs is suffi-
ciently long that the stagnant plug bridging the gap has
broken up, the front and rear plugs of the second disk are
essentially the same length as those of the first. These ob-
servations limit the rheological changes that must occur
along the streamlines to those that occur over distances
of order the diameter of the disks. That is, the distance
between the top of the disk and its front or back, which
is a few millimetres and corresponds to a typical transit
time of ten or so seconds, given that typical inlet flow
speeds are order 10−4m/s.

Despite this, the data in Fig. 9 demonstrate that the
plug bridging the gap can be longer than the combined
length of the plugs at the front and back of an isolated
disk. The leading obstacle must therefore cast a shadow
on its follower, which increases the length of the front
plug attached to that second obstacle just after the bridge
is broken. These more quantitative details of the flow
adjustments induced by the interaction of the obstacles
are obscured by the scatter in the experimetnal measure-
ments, but are more clearly identified in theoretical com-
putations, even though the fore-aft asymmetry is lost (see
Fig. 9(b)). Note that such interactions are very different
from those occuring in unbounded flows around cylinders,
where the yielded regions are localized to the obstacles
and the surrounding plugs can sometimes (though not
always) suppress any interaction [24].

Next, we conducted tests designed to constrain, in a
different way, any microstructural ageing or relaxation:
for the flow around an isolated disk, we varied the inlet
flux Q in a step-wise fashion over time, and extracted
the time-dependent plug length at the front of the disk.
As seen in Fig. 10, this length adopts its steady value
after an undetectably rapid adjustment to the switch in
flow rate. We repeated this test using a number of dif-
ferent protocols to increase or decrease the flow rate and
found similar results. Thus, the characteristic relaxation
time for rheological changes must be less than about ten
seconds, the interrogation time for determining the plug
size. This is consistent with both the lack of any larger-
scale asymmetry in the flow patterns around separated
disks, and the absence of any noticeable hysteresis above
the yield stress in the up-down flow curves of Fig 2.

To emphasize this last point, we also prepared a



9
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(iii)

(i)

(ii)

(iii)
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Broken bridging plug

!
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FIG. 9. Plug lengths for two disks aligned with the flow as
a function of the centre-to-centre separation L, for exper-
iments with untreated sheets and numerical computations;
B = 2.7 and n = 0.57 (0.06% Carbopol), The images (i)–(iv)
below correspond to the separations identified in the main
panel, with the symbols corresponding to the plug locations
indicated, and show scaled speed maps (with colorbars as in
Fig. 4) and streamlines. Given the lack of any apparent trend
with L, the scatter in the experimental data for the leading
plug length (filled red circles), with a standard deviation of
about 15%, gives a sense of the overall uncertainty in the
measurements.

different viscoplastic suspension by vigorously stirring
0.1% wt/wt Carbopol gel with a sharp blade at 1200
rpm for around two and a half minutes, motivated by
previous observations of the development of significant
thixotropic behaviour from a similar method of prepara-
tion [17]. Flow curves measured for this suspension did,
indeed, exhibit significant hysteresis (Fig. 11a). With
this second type of Carbopol in the obstructed Hele-Shaw
cell, the flow patterns were still fore-aft asymmetric and
the plug lengths were strongly time-dependent after step
changes in flow rate (Fig. 11b). In fact, experiments with
this fluid were generally unreproducible and depended on
the stress history of the fluid, in clear contrast to the main
results reported in this paper.

IV. DISCUSSION

In this paper, we have provided an experimental study
of the flow of a yield-stress fluid around obstructions in
a thin slot. We also complemented these experiments
with theoretical computations that generalize our pre-
vious analysis of flows of Bingham fluid in Hele-Shaw
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FIG. 10. Time dependency of the plug size on the front and
back of an isolated disk subject to a flow rate Q(t). The tests
were performed with 0.06% carbopol solution and treated
sheets. The solid and dashed horizontal lines represents the
average and standard deviation of the steady state values re-
ported in Fig 7(b).
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FIG. 11. (a) Thixotropic flow curves for an 0.1% Carbopol
suspension that was very highly sheared during mixing (mea-
sured using the same rheometer as in figure 2, but with an
up-down ramp controlling the shear rate). (b) Time series of
the plug length after a step change in flow rate behind a cir-
cular obstruction in the Hele-Shaw cell using the same fluid
(with flow rate Q = 0.05 ml/min after the step change).

cells [13]. Both the experiments and theory demonstrate
the appearance of stagnant plugs spanning the slot at-
tached to the front and back of the obstacles, together
with high-speed flows to either side. A number of trends
observed in the experiments are successfully predicted
by the theory. The theory also confirms an algorithm
to estimate the size of the stagnant plugs attached to
differently shaped obstacles, which may have practical
application when controlling plug size is of importance.
However, the experiments are strikingly different from
the theoretical predictions in the fore-aft asymmetry of
both the flow field and the size of the unyielded plugs.
The asymmetry is not present in experiments with either
a Newtonian fluid or, unlike in an unconfined geometry,
a simple visco-elastic fluid. We find that the asymmetry
is insensitive to effective slip over the walls of the slot,
and must be connected to some sort of rheological hys-
teresis of the Carbopol suspension that was used. The
experiments suggest that the hysteresis arises over flow
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distances of a few millimetres given the typical flow rates
through the cell (O(10−4)m/s), which translates to tran-
sit times of ten or so seconds.

Carbopol suspensions have been observed to possess
non-ideal rheology in previous studies, either close to
the yield stress or across a wider range of shear rates
[7, 16, 17, 25]. Nevertheless, the viscoelastic relaxation
times expected for our Carbopol suspensions (given by
the measurements of G′ and G′′ provided in Table 1) are
about a second or less. Thus, linear viscoelasticity below
the yield stress does not appear to be capable of gener-
ating any fore-aft asymmetry, much as seen for an exper-
iments conducted with a standard viscoelastic liquid (a
PEO solution). Moreover, when we prepared a different
suspension of Carbopol by vigorous mixing (Fig. 11), a
pronounced thixotropy arose that significantly affected
the flow patterns observed in the Hele-Shaw cell. How-
ever, the Carbopol that we used in most of our experi-
ments exhibited no discernible hysteresis above the yield
stress (Fig. 2), while still showing strong fore-aft asym-
metry.

A key detail of viscoplastic Hele–Shaw flow is the flow
structure across the cell: the yield stress establishes shear
layers against the walls of the cell which border a central
plug-like flow spanning the midplane of the slot (Fig. 1).
Material inside that pseudo-plug region is held slightly

above the yield stress in order to accommodate the weak
extension or shearing in the plane of the cell that permits
flow around an obstruction [1, 13]. This feature aside,
strain rates and stresses in the plane of the cell are less
significant than the shear rates and stresses across it. A
significant fraction of the fluid across the slot is therefore
always close to its yield stress throughout the quasi-two-
dimensional flow pattern. Indeed, the thickness of the
pseudo-plug at any point is dictated by the local shear
stresses across the slot, which can be directly inferred
from the midplane velocity. The measurements in Fig. 4
imply that the pseudo-plug thickens as fluid approaches
the front of an obstacle, then thins more substantially
as the material is swept through the high-speed regions
at the top and bottom of the obstacle, before thickening
once more in the wake. The pronounced fore-aft asym-
metry observed in our flow patterns most plausibly arises
either from relaxation over the shear layers or from hys-
teresis near the yield stress, which becomes embedded in
the erosion or growth of the pseudo-plug and affects the
macroscopic flow patterns. The lack of any noticeable
hysteresis above the yield stress in the flow curves of the
Carbopol suggests that relaxation over the shear layers
is not responsible. However, further rheological work is
required to identify the precise origin.
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