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The St Venant equations in conjunction with a phenomenological law for erosion are
used to explore the nonlinear dynamics of cyclic steps – linearly unstable bedform
patterns which emerge when uniform flow over an erodible bed becomes supercritical.
The instability saturates by blocking the overlying flow and creating hydraulic jumps
just downstream of the steepest part of the steps. Near onset, steadily migrating,
nonlinear step patterns are constructed and shown to suffer a short-wavelength
secondary instability that ‘roughens’ the bed and renders the staircase patterns less
regular and time-dependent. An eddy viscosity is needed to regularize both the
onset of the primary steps and the secondary instabilities. Further beyond the critical
Froude number, the steps block the flow sufficiently to arrest erosion significantly,
creating complicated patterns mixing migrating steps and stationary bedforms. The
reduction in flux also stabilizes roll waves – a second, hydrodynamic instability of
uniform supercritical flow. It is further shown that roll waves are purely convective
instabilities, whereas cyclic steps can be absolute. Thus, in the finite geometries of the
laboratory or field, it may be difficult to excite roll waves. On the other hand, the
complicated spatiotemporal patterns associated with the cyclic-step instability should
develop naturally. The complicated patterns resulting from the secondary instability do
not appear to have been observed experimentally, calling into question the validity of
the model.
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1. Introduction
Cyclic steps are upstream-migrating erosional features that have been reported

on the bed of natural streams and turbidity currents (e.g. Kostic et al. 2010) and
successfully reproduced in laboratory experiments (e.g. Koyama & Ikeda 1998; Taki &
Parker 2005). Much like many other bedform patterns in geomorphology, these steps
have been rationalized from a theoretical perspective in terms of a linear instability of
spatially uniform flow, occurring due to the interaction between the erodible bed and
the overlying fluid dynamics (Parker & Izumi 2000). As elucidated by Parker (2008),
cyclic steps are closely related to a more classical erosional instability, the antidune;
the cyclic steps are distinguished by their long-lived and long-wave character, whereas
antidunes are typically short-wave.
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FIGURE 1. Sketch of the geometry of the shallow-water model, showing the three key
dynamical variables (h, u and ζ ) and a sample sequence of theoretical cyclic-step profiles,
together with their associated hydraulic jumps.

By combining the St Venant equations of hydraulic engineering for the fluid with
a phenomenological sediment transport equation to model the bed, Parker & Izumi
(2000) established that a linear instability corresponding to cyclic steps appears when
uniform flow becomes supercritical (the Froude number, Fr , exceeds unity). The
instability operates on the relatively slow time scale of erosion and has upstream
phase propagation, highlighting its erosional and upstream-migrating character. Parker
& Izumi also constructed finite-amplitude, steady, periodic step solutions. A key detail
of their solutions is that each step modifies the overlying water flow and creates
hydraulic jumps just downstream of the steepest part of the bedforms (as sketched
in figure 1). Upstream of these shocks, flow remains supercritical and erosion (which
increases with water speed) is greatest; immediately downstream of the shocks, the
flow is subcritical, and erosion is at a minimum. It is this pattern of erosion which
drives the upstream migration of the cyclic steps (see also Winterwerp et al. 1992).
Parker & Izumi further selected the wavelength of the step sequence by demanding
that flow speeds just downstream of the hydraulic jumps lie at the threshold below
which erosion switches off, arguing that this places a natural nonlinear limit on a
developing linear step instability.

Nevertheless, no studies have been made to back up the assumption that the
nonlinear saturation of the step instability produces periodic sequences of steadily
migrating steps of this kind, and a systematic exploration of the detailed nonlinear
dynamics has not previously been given. The goal of the current article is to provide
such an exploration using the relatively simple theoretical framework of Parker &
Izumi. In fact, we find that this model does not predict the emergence of steadily
migrating, periodic step sequences, but suggests that the dynamics is much richer. The
only other theoretical works on cyclic steps, of which we are aware, proceed in a
different direction: Sun & Parker (2005) generalized Parker & Izumi’s work to include
the effects of deposition, and Fagherazzi & Sun (2003) presented a small number of
numerical computations using that theoretical model.

In addition to cyclic steps, supercritical shallow-water flow over an erodible bed
is also known to be prone to a second type of linear instability, roll waves. These
instabilities have hydrodynamic origin, operating on the relatively fast time scale of
the fluid flow, and in the nonlinear regime take the form of downstream-propagating
bores (Cornish 1910). Balmforth & Mandre (2004) presented a study of the nonlinear
dynamics of roll waves using the St Venant model, and also explored how these
waves interacted with bed topography. In particular, Balmforth & Mandre found that
roll-wave stability was significantly affected by the stationary hydraulic jumps that
often arise in flow over an uneven bed. This raises the question of how cyclic steps,
themselves a form of linear instability, might interact with roll waves given that they
also generate hydraulic jumps. The current article therefore offers a brief exploration
of the interaction between roll waves and cyclic steps. Colombini & Stocchino (2005)
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presented a related study of the competition between roll waves and other erosional
instabilities within linear theory, without the simplifying shallow-water approximation
and using a different model for sediment transport.

The article is organized as follows: in § 2, we formulate the problem mathematically.
Section 3 is then devoted to a discussion of linear stability, from both the convective
and absolute viewpoints. In § 4, we present an asymptotic analysis valid near the onset
of linear instability. In § 5, we advance further into the nonlinear regime, solving
numerically the governing equations of the model, and we conclude in § 6. The
sediment transport model used in the main text incorporates only the erosion of the
bed by the overlying flow; a more physical extension of the model which includes
the effects of deposition is discussed in appendix A. Technical details of the analytical
construction of some weakly nonlinear solutions appear in appendix B.

2. Formulation
2.1. The model equations

Our model for shallow-water flow over an inclined erodible bed couples the St Venant
model of hydraulic engineering to a sediment transport model advocated by Parker
& Izumi (2000). As illustrated in figure 1, the key variables of the model are the
water depth, h(x, t), and speed, u(x, t), and the height of the bed, −x tan θ + ζ(x, t),
where tan θ denotes the average inclination of the bed’s surface to the horizontal. With
a suitable scaling, these variables can be rendered dimensionless, and the governing
equations of the model written in the form

ht + (hu)x = 0, (2.1)

Fr2(ut + uux)= 1− |u|u
h
− hx − ζx + 1

h
(νhux)x (2.2)

and

ζt =−εE (u), (2.3)

representing conservation of fluid mass and momentum, and the empirical erosion
law (an Exner equation), with the (x, t)-subscripts denoting partial derivatives. The
dimensionless parameters are the Froude number, Fr , a dimensionless eddy viscosity,
ν (assumed constant here), and an erosion rate, ε; the dependence of erosion on flow
speed is parameterized by

E (u)=
{
(u2 − u2

∗)
m
, u2 > u2

∗,
0, u2 < u2

∗,
(2.4)

where u∗ is a threshold erosion speed and the exponent, m, is set equal to 2 here.
Note that the shallow-water equations do not incorporate any source of mass or

sink of momentum occurring when sediment is eroded off the bed. Also, (2.3)
ignores deposition; sediment suspended in the water column is assumed (somewhat
unphysically) to remain there and never return to the bed. Following Fagherazzi &
Sun (2003) and Sun & Parker (2005), one can supplement the system (2.1)–(2.4)
with a further equation for the suspended load and thereby account for deposition;
appendix A provides additional commentary of this extension of the model. However,
for the most part, we follow Parker & Izumi (2000) and consider pure erosion,
neglecting any effects of the eroded material on the flow dynamics other than through
the change in bed slope.
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To arrive at (2.1)–(2.4), we scale the water depth and bed elevation by a
characteristic mean depth, H, horizontal lengths by H cot θ and the flow speed by
U =√gH sin θ/cf , where g is the gravitational acceleration and cf is the coefficient of
the Chézy drag (the second term on the right of (2.2)). In terms of these characteristic
scales, the Froude number is Fr =√U2/gH cos θ ≡√tan θ/cf and the elevation of the
bed is −x + ζ ; the dimensionless eddy viscosity is ν = νttan2θ/

√
gH3cf sin θ , where

νt is the dimensional eddy viscosity. Moreover, the system (2.1)–(2.3) admits the
equilibrium solution

h= u= 1, ζ =−εtE (1), (2.5)

denoting a uniform flow with a steadily eroding bed.
An important difference between our formulation and that of Parker and coworkers

(Parker & Izumi 2000; Sun & Parker 2005) is the inclusion of the time derivatives
in the fluid equations and the eddy diffusion term in (2.2). Although cyclic steps
develop on a much slower erosion time scale, the hydrodynamic time derivatives are
needed to consider roll waves (see also Colombini & Stocchino 2005). The viscous
term allows us to damp very short wavelengths and smooth out any hydraulic jumps
via a physically based regularization, thereby easing numerical solution of the initial-
value problem and allowing us to explore the dynamics in the vicinity of the onset
of cyclic-step instability. We emphasize that our main intention is not to explore
the effect of different turbulence models on cyclic-step formation, and we chiefly
add the eddy viscosity term in (2.2) as a convenient regularization of the equation.
The prescription is nothing more than a crude parameterization of turbulence, and
follows similar idealizations by Needham & Merkin (1984) and Kranenburg (1992).
Nevertheless, dimensional analysis or depth averages of the fluid momentum equations
suggest that an arguably more natural (if still crude) choice for the dimensional eddy
viscosity, νt, renders that quantity non-constant and proportional to the water flux; in
dimensionless form, one sets ν = νTh|u| in (2.2), where νT = ΛFr2 tan θ ≡ ΛFr4/cf

and Λ is a constant of order unity. For the most part, and in the interest of
simplicity, our discussion treats ν as a constant parameter that is independent of
Froude number. However, we did perform a complementary set of computations in
which we incorporated the alternative eddy viscosity model with ν = νTh|u|. We
found no qualitative difference between the two models in the nonlinear evolution
of the bedforms, at least for the parameter choices we selected (with Λ chosen as
ν/Fr4, to match the eddy viscosities of the base flows), with the main quantitative
difference being that the secondary instability studied in § 5.2 became slightly more
pronounced and shorter scale; for higher Froude numbers, the primary cyclic steps also
became noticeably steeper. As discussed further in § 3.2, the modified eddy viscosity is
straightforwardly incorporated into linear stability theory with the shallow-water model
(see § 3.2). Moreover, the modification does not alter the weakly viscous, multiple-
scale analysis of § 4. In other words, provided one incorporates an eddy viscosity term
of some kind, the model is regularized in a way that is independent of the precise
form of that term.

2.2. Numerical method
We mostly solve the system (2.1)–(2.3) on a periodic domain of length L and
begin from initial conditions consisting of small, random perturbations about the
steadily eroding, uniform flow. More specifically, unless otherwise stated, h(x, 0) = 1,
u(x, 0) = 1 + ǔ(x) and ζ(x, 0) = ζ̌ (x), where ǔ and ζ̌ are low-amplitude (order 10−3),
wavy perturbations given by a random superposition of the first 20 Fourier modes.
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For the numerical solution of the initial-value problem, we use centred finite
differences on a uniform grid to deal with spatial derivatives, and then solve the
resulting system of ordinary differential equations with a standard, stiff integrator
with variable time step (DASSL; Petzold 1983). Typically, we use of the order of
103 points, verifying that there are no significant changes in the solutions if the
spatial resolution is changed. We also verified that the solutions are insensitive to
improvements in the error tolerance of the time integrator (which use the defaults of
10−3 as a relative tolerance and 10−6 as an absolute one), and do not change when the
centred differencing of the advection terms is replaced by a first-order upwind scheme.

To solve the differential eigenvalue problem for steady cyclic steps (§ 5.1), we use
MATLAB’s BVP4c solver, which uses an adaptive step strategy to reduce errors below
a predefined tolerance (we used 10−5 as a relative tolerance and 10−10 as an absolute
one). The linear stability of those solutions (see § 5.2) was determined by resampling
the solution on a uniform grid of ∼103 points and using the centred difference scheme
once again to convert the linear system into a matrix eigenvalue problem.

In practice, we fix the erosion threshold, u∗ = 0.5, and exponent, m = 2, and use
the Froude number, Fr , and domain length, L, as our main control parameters. The
eddy viscosity is mostly kept constant, though increases slightly with Froude number
in order to ensure that solutions remain well resolved (see also the discussion at the
end of § 2.1). We fix ε = 0.1 for many of the calculations; this value for erosion is
artificially large in comparison to most physical situations. However, we make this
selection to avoid overly long integration times when studying the erosion dynamics
(which is characterized by time scales of order ε−1), and have verified, by performing
complementary calculations with smaller values for ε, that the predictions are not
dependent on that choice. Similarly, we have run computations with different values
for the erosion threshold to demonstrate that the qualitative character of the solutions
is also not dependent on that parameter.

Near the conclusion of our study, we also consider non-periodic domains; we delay
describing the salient details of those calculations until § 5.4.

3. Linear stability
3.1. The dispersion relation

To test the linear stability of the uniformly eroding equilibrium solution, we look for
normal modes of the form

h= 1+ ĥeikx+λt, u= 1+ ûeikx+λt, ζ =−εE (1)t + ζ̂eikx+λt, (3.1)

where k is the wavenumber and λ the growth rate. A little algebra generates the
dispersion relation

D(k, λ)= Fr2λ3 + λ2(2+ νk2 + 2ikFr2)+ λ[k2(1− Fr2)+ ik(3+ νk2 − α)]
+αk2 = 0, (3.2)

where α = εE ′(1).
The limit ε� 1 and λ = O(ε), with all other parameters of order one, corresponds

to the ‘quasisteady’ limit of the problem often explored in geomorphological studies
(e.g. Parker & Izumi 2000), in which case

D(k, λ)→ λ[k2(1− Fr2)+ ik(3+ νk2)] + αk2 ≈ 0 (3.3)
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FIGURE 2. Growth rates for (a) Fr = 1.5 and (b) Fr = 2.5, ε = 0.01 and the three values
of ν indicated. In (a), only cyclic-step modes are unstable, the dots show the growth rates
predicted by the α � 1 approximation of the dispersion relation in (3.4) and the vertical
dotted line indicates the most unstable wavenumber (k ≈ √3/ν). In (b), both cyclic-step
modes and roll waves are unstable; the former are insensitive to the choice of ν for the
wavenumbers shown. In (a) and (b), the large-wavenumber limits of the inviscid growth rates
are indicated by horizontal dashed lines (λ→ α/(Fr2 − 1) and λ→ (Fr − 2)/(2Fr2) for
cyclic steps and roll waves, respectively).

or

λ≈ α[k
2(Fr2 − 1)+ ik(3+ νk2)]

k2 (Fr2 − 1)
2+ (3+ νk2)

2
. (3.4)

3.2. Stability boundaries and growth rates
Neutral stability conditions follow by introducing λ=−ikc, where c is the wave speed.
Separating real and imaginary parts of (3.2) then furnishes the possible values for c,
together with the critical Froude number, Fr = Frc:

(2+ νk2)c2 − c(3+ νk2 − α)− α = 0, (1− c)2 Frc
2 = 1. (3.5)

For α � 1 and ν � 1 (the physical regime of interest), the two roots provide
the stability conditions, (c,Frc) ∼ (3/2, 2) or (c,Frc) ∼ (−α/3, 1). The first is the
classical roll-wave instability threshold (Jeffreys 1925), whilst the second corresponds
to Parker & Izumi’s (2000) cyclic steps. In both cases, instability appears when the
Froude number is raised above the threshold value. Roll waves travel downstream
faster than the flow, whereas the cyclic steps migrate slowly upstream. No other types
of instability are apparent from the dispersion relation or neutral stability curves;
the exploration of more classical erosional instabilities of the dune or antidune type
requires a different model for sediment transport and the relaxation of the shallow-
water approximation for the fluid (cf. Colombini & Stocchino 2005).

Growth rates for the two instabilities are illustrated in figure 2. Figure 2(a) shows
cyclic-step growth rates for Fr = 1.5, roll waves being stable at that Froude number.
figure 2(b) displays the growth rates of both instabilities at Fr = 2.5. For both cyclic
steps and roll waves, the viscous term in the momentum equation stabilizes modes
with large wavenumber, leading to a maximum in the growth rates as a function
of k. The roll-wave growth rates acquire a cutoff that limits the range of unstable
wavenumbers. By contrast, for cyclic steps all wavelengths become unstable when
Fr > 1.
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FIGURE 3. (a) Stability boundary, Fr = Frc, and (b) growth rates against k for ν = 0.02
and ε = 0.1. In (b), the growth rates are plotted for the three values of Fr indicated. The
dots indicate the wavenumbers for a periodic domain of length 2 (k = nπ, n = 1, 2, . . .). The
dashed lines in (a) and (b) indicate the corresponding results using the alternative model for
eddy viscosity, ν = 0.02Fr4h|u| (equivalent to replacing ν by 0.02Fr4 in (3.2)–(3.5)).

More disturbingly, if ν = 0, one can compute the maximum growth rate from (3.4),
Re(λ)= α/(Fr2 − 1), which occurs for short waves with k� 3/(Fr2 − 1) and diverges
at onset. This problematic behaviour is regularized if ν 6= 0: the maximum growth rate,
Re(λ) = α(Fr2 − 1)/[12ν + (Fr2 − 1)

2], arises for a wavenumber of k = √3/ν and
remains finite at onset. Thus, in order to explore pattern formation in this regime and
regularize the dynamics, it is important to include the viscous term.

As displayed in figure 3, the cyclic-step instability also extends to Froude numbers
slightly below unity. Indeed, for k→ 0 and α � 1, the critical conditions in (3.5)
indicate that Frc ≈ 1−α/3≡ 1−ε for m= 2 and u∗ = 0.5 (implying α = εE ′(1)= 3ε).
Figure 3 also illustrates how, for Frc < 1, the range of unstable wavenumbers is
finite.

Note that if one adopts the alternative eddy viscosity model with ν = νTh|u|,
the linear stability theory is unchanged but for the replacement, ν = νT = ΛFr4/cf ,
in (3.2)–(3.5). For given Λ and cf , the viscosity parameter is therefore dependent on
the Froude number, obscuring the neutral stability conditions in (3.5). However, for
the range of Froude numbers covered in figure 3, the repercussions on the stability
properties are not significant, as illustrated by the additional data for ν = 0.02Fr4 that
are also included in the figure.

3.3. Convective and absolute instability

For roll waves without erosion, one expects instability to be convective: when flow
is supercritical (Fr > 1), the Riemann invariants of the characteristic problem for the
St Venant equations are propagated purely downstream, indicating that any disturbance
must be swept along with the flow. On the other hand, in the linearized erosive
problem, the slow ‘sediment mode’ propagates upstream even under supercritical
conditions, leading one to suspect that it is an absolute instability. To expose these
features more clearly, we look for saddle points of the dispersion function D(k, λ) (cf.
Briggs 1964).

For ν� 1, it turns out to be possible to rule out the existence of saddle points with
real frequency: in this limit,

∂D

∂k
= 2iλ2Fr2 + λ[2k(1− Fr2)+ i(3− α)] + 2αk. (3.6)
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Setting ∂D/∂k = 0 and λ= iω then indicates that

k = ω
2

[
2iωFr2 + 3− α
α + iω(1− Fr2)

]
. (3.7)

Introducing this wavenumber back into the ν = 0 dispersion relation and separating the
imaginary part leads to the impossible condition 2 + Fr2 = 0. Thus, there cannot be a
transition to absolute instability at any Froude number, indicating that roll waves must
be convective (except possibly at very short wavelengths, for which νk2 is of order
one).

The picture is not so straightforward for cyclic steps, however, as we illustrate by
taking the limit, α � 1 and λ ∼ α, with ν 6= 0. In this limit, the dispersion relation
reduces to (3.3) and

∂D

∂k
≈ D

k
+ k[α + λ(1− Fr2)+ 2iνλk]. (3.8)

Setting D= ∂D/∂k = 0 implies that

12νλ2 + [α + λ(1− Fr2)]2 = 0 and k = i
2νλ
[α + λ(1− Fr2)] = ±

√
3
ν
, (3.9)

so that

Re(λ)= α(Fr2 − 1)

12ν + (1− Fr2)
2 . (3.10)

Thus, there is a saddle point of the dispersion relation with positive growth rate for
Fr > 1. Moreover, that solution corresponds to the most unstable mode from (3.4)
described earlier. Note that this point behaves irregularly in the limit ν→ 0, which is
why it does not appear earlier in the ν = 0 analysis. We conclude that cyclic steps are
potentially unstable in an absolute sense if Fr > 1 (the existence of the saddle point is
necessary, but not sufficient, for absolute instability; see Briggs 1964). We confirm this
prediction later using numerical computations.

4. Multiple-scale analysis
Yu & Kevorkian (1992) and Balmforth & Mandre (2004) presented multiple-scale

analyses describing the onset of roll-wave instability for the St Venant equations with
a fixed bed. In this section, we generalize those asymptotic expansions to include
erosion.

4.1. Asymptotic expansion
To describe the dynamics close to the onset of instability, we set ∂t → ∂t + δ∂T ,
where t is the relatively fast (order-one) time on which a neutrally stable disturbance
propagates, T is the slow time on which that wave-like disturbance will amplify and
δ is the small parameter used to organize the asymptotic expansion. We displace
parameter settings from the marginal values by putting Fr2 = Frc

2 + δf and fix ν = δν1

to ensure a weakly viscous solution. We then introduce the asymptotic sequences

h= 1+ δh1(x, t,T)+ δ2h2(x, t,T)+ · · · , u= 1+ δu1(x, t,T)+ δ2u2(x, t,T)+ · · · ,
(4.1)

ζ =−εE (1)t + δζ1(x, t,T)+ δ2ζ2(x, t,T)+ · · · (4.2)

into the governing equations and solve the resulting hierarchy order by order in δ.
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At leading order,

h1t + h1x + u1x = 0, (4.3)
Frc

2(u1t + u1x)+ h1x + ζ1x − h1 + 2u1 = 0, (4.4)
ζ1t + αu1 = 0. (4.5)

These equations have solutions with the form of neutrally stable waves: introducing
h1 = h1(x− ct,T), u1 = u1(x− ct,T) and ζ1 = ζ1(x− ct,T), we find

u1 =−(1− c)h1, ζ1x = αc (1− c)h1 (4.6)

and then

[1− Frc
2 (c− 1)2]h1x +

[
2c− 3− α

c
(1− c)

]
h1 = 0, (4.7)

which is satisfied automatically by virtue of the ν = 0 critical conditions in (3.5).
At the following order, we obtain

h2t + h2x + u2x =−h1T − (h1u1)x, (4.8)

Frc
2(u2t + u2x)+ h2x + ζ2x − h2 + 2u2 = ν1u1xx − f (1− c)u1x − Frc

2(u1T + u1u1x)

− u2
1 + 2h1u1 − h2

1, (4.9)

ζ2t + αu2 =−ζ1T − βu2
1, (4.10)

where β = εE ′′(1)/2. Using the critical conditions and again searching for wave
solutions with dependence x− ct, we may then eliminate the second-order variables, h2,
u2 and ζ2, to arrive at the equation[

1+ 2 (1− c)2

c
− 2∂x

]
h1T = (1− c)3 fh1xx − ν1 (1− c)2 h1xxx − 3

2
(1− c) (h2

1)xx

− (1− c)2
[

3− c+ β
c
(1− c)

]
(h2

1)x . (4.11)

This equation generalizes those derived by Yu & Kevorkian (1992) and Balmforth
& Mandre (2004) for roll waves. Indeed, for Fc → 2 and c→ 3/2, we recover
their equations. However, the model also describes weakly unstable cyclic-step modes
and includes an additional nonlinear term. Balmforth & Mandre presented numerical
solutions of the erosionless model that illustrate how linearly unstable disturbances
steepen into nonlinear roll-wave trains. If the wave spacings are relatively small, these
wave trains subsequently coarsen as the component waves collide with one another
and merge. On the other hand, when the spacings are too wide, new roll waves grow
within the gaps to reduce wavelengths. In between these limits, wave trains with
intermediate spacings are stable. Thus, roll-wave patterns develop with a range of
preferred wave spacings.

4.2. Nonlinear wave solutions
We place (4.11) into a canonical form by defining the new variables

x= c(ξ − τ)
1+ 2 (1− c)2

, T =− 2cτ

(1− c)3 f [1+ 2 (1− c)2] ,

h1 = 1
3
(1− c)2 fϕ(ξ, τ ),

 (4.12)
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giving

(1− 2∂ξ )(ϕτ + ϕϕξ )+ ϕξ + µϕξξξ + γ ϕϕξ = 0, (4.13)

where

µ=−2ν1[1+ 2 (1− c)2]
c(1− c)f

,

γ =−1−
[

3− c+ β
c
(1− c)

]
4c(1− c)

3[1+ 2 (1− c)2] .

 (4.14)

For roll waves with c = 3/2 and β→ 0, the final nonlinear term disappears because
γ → 0. For cyclic steps, γ →−1.

In periodic domains of length 2π/k, the model (4.13) predicts instability for µk2 < 1,
with the longest wave in the domain becoming unstable first as one decreases
the viscous parameter µ. A straightforward weakly nonlinear analysis (given in
appendix B) predicts that nonlinear waves bifurcate supercritically at this threshold.
It is also possible to look for solutions to (4.13) representing non-diffusive (µ = 0),
steady waves with ϕ = ϕ(ξ − Cτ) and speed C. As discussed in Balmforth & Mandre,
these solutions contain shocks that develop when instabilities amplify and steepen. The
steady-wave profiles are given by

ϕ = Ae(1+γ )(ξ−Cτ)/4 + C(1− γ )− 2
1+ γ , 0< ξ − Cτ < L, (4.15)

with

C = 2L(1+ γ )− 16 tanh[(1+ γ )L/8]
L(1− γ 2)+ 32 tanh[(1+ γ )L/8] , A= 4(1+ γC)

1+ γ [1+ e(1+γ )L/4]−1
, (4.16)

where L is the wavelength and the shocks are located at ξ − Cτ = 0 and L. For
γ →−1, these formulae reduce to C = 0 and

ϕ = 1
2(ξ − 1

2 L). (4.17)

A numerical solution of a sample initial-value problem using (4.13) with γ = −1 is
shown in figure 4. This solution is computed by using the fast Fourier transform to
compute derivatives on a uniform spatial grid with 2048 points, and then integrating
the resulting ordinary differential equations for the solution at each grid point using
DASSL (Petzold 1983). The computation begins with a low-amplitude initial condition
taking the form of the most unstable linear mode (in this case with five periods in
the domain), plus a small correction to generate other wavenumbers. After a transient,
the instability saturates into a nonlinear wavetrain with five, smoothed shocks. The
perturbations with different periodicities continue to grow, however, disrupting that
wavetrain and prompting the individual waves to collide and merge. This coarsening of
the pattern continues until only a single shock remains.

Calculations like those outlined by Balmforth & Mandre further indicate that the
dynamics of the nonlinear steady states for (4.13) with γ =−1 is rather different from
their roll-wave relations: the periodic states with a single shock do not appear to lose
stability as the domain length increases. Moreover, periodic solutions with multiple
shocks never appear to become stable, always suffering wave mergers that generate
the gravest wave train. In other words, the dynamics with γ = −1 takes the form
of uninterrupted coarsening, as in some other model problems like the Cahn–Hilliard
and real Ginzburg–Landau equations (e.g. Balmforth (1995)). However, we have not
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FIGURE 4. An initial-value problem using (4.13), with µ = 0.1, γ = −1, L = 25 and
ϕ(ξ, 0) = 10−3 sin(10πξ/L) + 10−4 sin(12πξ/L) (the most unstable mode, plus a smaller
higher mode). Panel (a) shows ϕ(ξ, τ ) as a density on the (ξ, τ )-plane. Panel (b) compares
the final solution (with the shock translated to ξ = 0; solid line) with the steady state to
which the solution eventually converges over times past 100 (dashed line). The dots show the
inviscid equilibrium (4.17) and the dotted line shows the intermediate, period-five solution at
t = 25.

found any mathematical arguments to confirm this observation from a more rigourous
viewpoint. In any event, the reduced model (4.13) appears less useful for cyclic steps
than roll waves because it fails to capture key secondary instabilities that the nonlinear
states suffer beyond onset. Instead, we provide a numerical exploration of the full
system in (2.1)–(2.4).

5. Nonlinear cyclic-step dynamics
5.1. Cyclic-step patterns near onset

We explore the dynamics near onset by fixing the Froude number near its critical value
and initiating initial-value computations by exciting at low amplitude (order 10−3) one
of the unstable linear modes. To gauge the strength of flow perturbations, we use the
amplitude measure

A=
√
〈(h− 1)2〉, (5.1)

where the angular bracket denotes spatial average,

〈· · ·〉 =
∫ L

0
(· · ·) dx

L
. (5.2)

Figure 5 shows sample results for Fr = 0.96 in a domain of length 2. At these
parameter settings, the three most unstable modes correspond to the lowest three
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FIGURE 5. Three initial-value problems for Fr = 0.96, L = 2, ν = 0.02 and ε = 0.1. The
computations are initialized with h = u = 1 and ζ = 10−3 sin(jπx), with j = 1, 2 and 3. Panel
(a) shows time series of the amplitude, A =

√
〈(h− 1)2〉 (solid), together with the expected

linear growth for each mode (dashed). The inset shows the mean flux, 〈q〉 ≡ 〈hu〉. The dots
(j = 1), stars (j = 2) and circles (j = 3) mark the times of the three snapshots shown in (b–d),
respectively; for each case, h is plotted on the left, u in the centre and 1+ ζ − 〈ζ 〉 on the right.
The dotted triangle in (b) indicates unit slope.

wavenumbers, πj, j = 1, 2 and 3 (see figure 3), and, in the three computations of
figure 5, these modes are (separately) kicked into action. For each case, the amplitude
saturates at a steady level once nonlinear effects terminate the initial exponential
growth. For the two modes with higher wavenumbers (j = 2 and 3), saturation occurs
at an appreciable, but not excessive, level, with perturbations in depth and flow speed
less than a quarter of the mean values. The gravest mode (j = 1), on the other hand,
even though it is very close to onset and weakly unstable, grows to a relatively strong
amplitude; the depth and flow speed perturbations are over one-half of the mean, and
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and q = hu, respectively. Panel (d) shows a similar picture for part of the solution at t = 240
from figure 12(c); the dotted lines show the inclined bed and water surfaces for the solution at
t = 480.

are sufficient to arrest erosion over part of the domain. However, the arrest of erosion
is not critical to the nonlinear saturation process, as is clear from the computations
with j = 2 and 3. Moreover, if the solutions are recomputed with a smaller value
for u∗, even the gravest mode saturates without breaching the erosion threshold.

A different perspective on the solutions is shown in figure 6. This figure plots the
surfaces of the final inclined bed, ζ − 〈ζ 〉 − x, and water, h + ζ − 〈ζ 〉 − x, along with
the water speed, u, and flux, q = hu. At least for the first two modes, these plots
emphasize how (viscously smoothed) hydraulic jumps accompany the cyclic steps.
Moreover, for the gravest solution, the rearrangement of the bed almost completely
levels out the topography away from the sharp step.

The saturated states in figure 5 do not persist indefinitely, as it turns out; their longer
time evolution will be described shortly. However, the emergence and longevity of
these states indicate that they must be close to steady equilibria. This can be confirmed
by using the final profiles in figure 5 as trial solutions for computations that explicitly
construct the steady travelling waves. These solutions, with h =H (χ), u = U (χ),
ζ = Z (χ) − εt〈E (U )〉 and χ = x − ct, have constant wave speed, c, and flux in
the moving frame of the wave, q̌ = (u − c)h. The wave profile satisfies the nonlinear
eigenvalue problem

U = c+ q̌

H
,

dZ

dχ
= ε

c
[E (U )− 〈E (U )〉] (5.3)

and

Fr2q̌
dU

dχ
=H −U 2 −H

dH

dχ
−H

dZ

dχ
+ d

dχ

(
νH

dU

dχ

)
. (5.4)
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FIGURE 7. Bifurcation diagram and sample nonlinear waves for L= 2, ν = 0.02 and ε = 0.1.
Panel (a) shows the solution branches, A =

√
〈(h− 1)2〉 versus Fr , for the lowest three

modes (j= 1, 2 and 3); the inset displays the corresponding wave speeds, c. The dashed lines
show analytically constructed, weakly nonlinear solutions (see appendix B). To the right of
the points marked by diamonds, the states suffer the short-wavelength secondary instability.
To the right of the point marked by the square along the third branch, the coarsening
instabilities disappear. Panels (b,c) show h = H (x − ct) for the j = 1 and 2 solutions at
the Froude numbers marked by stars in (a) (wave amplitudes increase as one progresses along
the solution branches).

After demanding that the solution be periodic, the eigenvalues, c and q̌, follow on
breaking the translational invariance (by demanding, for example, that H (0)= 1) and
imposing the mass-conservation constraint, 〈H 〉 = 1.

For ε� 1 and c = O(ε), it is sufficient to take q ≈ q̌ and u ≈ q/h in (5.3)–(5.4),
in which case the system reduces to a form equivalent to the viscous generalization
of the equations considered by Parker & Izumi. However, we do not include the extra
condition that u→ u∗ at a point downstream of the smoothed hydraulic jump, which
Parker & Izumi exploited to determine the wavelength of the cyclic steps. Instead, the
wavelength here is determined simply by the length of our periodic domain, and the
flow speeds take whatever values are required to satisfy (5.3)–(5.4).

By continuing the solutions to different Froude numbers and exploiting the
amplitude measure A, we may construct bifurcation diagrams for the steady waves.
Diagrams for the solutions corresponding to the end-states of figure 5 are shown in
figure 7. The amplitudes of the two solutions with higher wavenumbers smoothly
decline to zero at their respective critical Froude numbers, highlighting how they
emerge supercritically at onset. The solution branch of the lowest mode, however,
bifurcates subcritically (as found for antidunes by Colombini & Stocchino 2008) and
only switches back to higher Froude numbers after a saddle-node bifurcation near
Fr ≈ 0.836. Given also that this mode is the first to become unstable, we conclude
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instabilities disappear to the right of the squares marked on the j= 2 and 3 branches.

that the onset of cyclic steps is likely to be relatively abrupt, as noted earlier for the
initial-value computations of figure 5.

The details of the bifurcation diagram in this window of parameter space is
somewhat sensitive to the erosion parameter, ε: as illustrated in figure 8, there are
quantitative, if not qualitative, changes to the structure when we reduce this parameter
further and more closely approach the asymptotic, quasisteady limit. In particular, in
that limit, the second (j = 2) branch also becomes subcritical and all the wave speeds
c scale with ε (see figure 8). However, our overall conclusion regarding the relatively
sudden onset of step patterns remains unchanged.

5.2. Secondary instabilities
Continuation of the computations of figure 5 to longer times reveals how the saturated
states are not actually stable; see figure 9. As predicted by the asymptotic model of
§ 4, the states with higher wavenumbers suffer a coarsening instability that prompts
collisions of the component waves, leading to a single dominant structure in the
domain. Unlike the predictions of that model, however, both the gravest state from
figure 5 and the coarsened solutions display another, short-scale secondary instability.
The secondary instabilities propagate at different wave speeds to the primary steps,
leading to time-dependent patterns in all frames of reference.

Both the coarsening and short-wavelength instabilities can be confirmed by a direct
linear stability analysis of the steady-wave states: we set

h=H (χ)+ ĥ(χ)eλt, u=U (χ)+ û(χ)eλt, ζ =Z (χ)− εt〈E (U )〉 + ζ̂ (χ)eλt,

(5.5)

where λ is the growth rate. Introducing this decomposition into the model equations
and then linearizing in the perturbations amplitudes, ĥ(χ), û(χ) and ζ̂ (χ), leads to the
normal-mode problem

λĥ− c
dĥ

dχ
+ d

dχ
(ĥU +H û)= 0, (5.6)
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x − Vt refers to the frame travelling with the initial wavetrain (respectively, V ≈ −0.02,
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Fr2

[
λû− c

dû

dχ
+ d

dχ
(U û)

]
= U

H 2
(2H û−U ĥ)− dĥ

dχ
− dζ̂

dχ

+ 1
H

d
dχ

(
νH

dû

dχ

)
(5.7)

and

λζ̂ − c
dζ̂
dχ
=−εE ′(U )û, (5.8)

which can be attacked numerically (cf. the comments in § 2.2).
The most unstable modes of the three states at Fr = 0.96 are shown in figure 10.

The gravest solution has a short-wavelength instability that corresponds to the
finely scaled features seen in figure 9(a). The most unstable modes of the j = 2
and 3 states, on the other hand, take the form of localized perturbations to the
cyclic steps that translate those structures with respect to each other, prompting
coarsening collisions. The j= 2 state also suffers a weaker short-wavelength instability
(the two most unstable modes for j = 3 are both coarsening instabilities). Further
computations demonstrate that both kinds of secondary instabilities (coarsening and
short-wavelength) have growth rates, Re(λ), which scale with ε in the quasisteady
limit.

By tracking the unstable modes along the solution branches, we find that the
short-wavelength instabilities disappear at sufficiently low Froude numbers (marked by
diamonds in figures 7 and 8). For the gravest solution at ε = 0.1, the short-wavelength
secondary instability sets in very close to the saddle-node bifurcation that stabilizes

http://journals.cambridge.org/flm
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λ≈ (1.3+ 5.7i)× 10−2 and (0.4+ 5.4i)× 10−2 in c).

this branch beyond its subcritical birth. Thus, that solution exists as a stable steady
state only over a very narrow range of Froude numbers. At lower erosion rates, we
find that the gravest mode is never stable (figure 8). Hence, since the solution branches
with j > 1 suffer both coarsening and short-wavelength instabilities, steady states are
rare at best, and time-dependent cyclic-step patterns are more prevalent near onset.
Despite this, the strength of the coarsening instabilities declines as one proceeds along
the j = 2 and 3 solution branches and, for sufficiently high values of Fr , those modes
actually become stable (see figures 7 and 8), indicating that coarsening no longer plays
a key role in the dynamics at higher Froude numbers.

To understand the origin of the short-wavelength instability, we consider the limit,
ε � 1 and (c, λ) = O(ε), in (5.6)–(5.8). On discarding the terms with λ and c
in (5.6)–(5.7) and retaining only the derivatives of the perturbation amplitudes in
view of their short wavelength, we find

U ĥ+H û≈ 0, ν
d2û

dχ 2
− 3U

H
û−

(
Fr2U − H

U

)
dû

dχ
≈ dζ̂

dχ
. (5.9)

To deal with the erosion equation (5.8), we first note that the frequencies of the short-
wavelength modes are relatively large (for the j = 1 solutions displayed in figures 7
and 8, the scaled frequencies at Fr = 0.96 are Im(λ)/ε ≈ 20, 24 and 25 for ε = 0.1,
0.01 and 0.001, respectively). Thus, the spatial derivative, dζ̂ /dχ , is chiefly balanced
by the frequency term, which implies a transformation back to the laboratory frame
from the wave frame. In other words, the short-wavelength instability propagates much
more slowly than the cyclic steps, a feature that is also very prominent in the nonlinear
initial-value computations (the solution presented in figure 12 below provides the
clearest illustration). Hence, we set

λ= ikc+ εΛ, ζ̂ = eikχB(χ), (5.10)

where |kc| � |Λ|, and the (more slowly varying) amplitude, B(χ), satisfies

ΛB− c

ε

dB

dχ
≈ kE ′(U )B

k(Fr2U −H /U )− i(νk2 + 3U /H )
≡∆(χ)B, (5.11)

given that dû/dχ → ikû to leading order. If k is an integer multiple of 2π/L, then
B(χ) must be periodic and we may solve (5.11) and establish Λ = 〈∆〉. The growth
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FIGURE 11. (a) A comparison of the real part of the most unstable eigenfunction,
Re[ζ̂ (χ)] (dotted line), with the corresponding short-wavelength prediction (solid line)
from (5.10)–(5.11), for the gravest cyclic-step solution (illustrated in b) with Fr = 1.1,
ν = 0.02, L = 2 and ε = 0.001. The eigenfunction and its approximation are normalized
so that 〈|ζ̂ |2〉 = 1, and the phases are matched at χ = 0. Panel (c) shows the ‘driving density’,
Re(∆), from (5.11); the shaded region indicates where the local Froude number, FrU /

√
H ,

exceeds unity.

rate is therefore

Re(εΛ)= 1
L

∫ L

0

αk2(Fr2U −H /U ) dχ

k2 (Fr2U −H /U )
2+ (νk2 + 3H /U )

2
, (5.12)

where α = εE ′(U ). The integrand of (5.12) is a local growth rate for perturbations
with wavenumber, k, evolving about an equilibrium with u = U and h =H . In
fact, it is nothing more than the generalization of (3.4). In other words, the modal
growth rate of the secondary instability is simply the spatial average of the growth rate
for the erosional instability, computed using the nonlinear cyclic-step solution. Thus,
the physical mechanism that drives the instability of the original cyclic step is also
responsible for the secondary instability.

In figure 11, the short-wavelength prediction from (5.10)–(5.11) is compared to
the numerically computed, most unstable eigenfunction, ζ̂ , for the gravest cyclic step
with ε = 0.001 and the other parameter settings quoted. For this particular mode,
the eigenfunction exhibits 32 spatial oscillations over the domain and the frequency
is positive. Hence, we take k = −32π, given that L = 2 and c < 0. We then use
Λ = 〈∆〉 to estimate λ/ε ≈ 0.105 + 25.12i, which compares well with the computed
value of 0.114 + 25.10i. The eigenfunction also compares surprisingly well with the
approximation from (5.10)–(5.11), even though the modal wavelength is not that much
smaller than the spatial scale characterizing the steepest part of the cyclic step.

Figure 11(c) plots the ‘driving density’, Re(∆), which determines the growth
rate in (5.12). The cyclic-step bedform modifies the flow such that the local
Froude number, FrU /

√
H , falls below unity over most of the domain, reflecting

how nonlinearity saturates the original step instability. However, the flow remains
supercritical near the sharp face of the step, which is also where the erosion rates,
and α = εE ′, are highest. Short-wavelength modes are able to take advantage of this
localized driving region to precipitate secondary instability.

Note that the preceding arguments can be extended to indicate that the strongest
secondary instabilities arise at the shortest wavenumbers as ν→ 0, a feature that we
also observed in suites of initial-value computations with varying ν. The mathematical
difficulties encountered in the inviscid limit of the linear problem near onset are
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FIGURE 12. (Colour online) Cyclic steps at Fr = 1.1, ν = 0.02, L = 10 and ε = 0.1. Panels
(a,b) plot the amplitude, A, and means, Q = 〈q〉 and 〈u〉, against time; the shading in the
second graph indicates the range of flow speeds within the domain. Panel (c) shows ζ − 〈ζ 〉
as a density in the (x, t)-plane; the horizontal dashed lines indicate the times of the snapshots
shown immediately below (with the later-time solution plotted as a dashed line), and indicate
the shading scheme.

therefore also likely to carry over to the nonlinear dynamics, and viscosity is again an
essential regularization.

5.3. Further from onset
To explore the dynamics further from onset, we consider a selection of Froude
numbers and a wider domain (L = 10), beginning the initial-value problems from
a uniform flow with additional, low-amplitude, random perturbations (see § 2.2). A
solution at Fr = 1.1 is shown in figure 12 (part of this solution is also illustrated in
figure 6). The instability is dominated by the most unstable linear modes, which have
about 18 wavelengths in the domain in this example, and saturates without breaching
the erosion threshold. Beyond saturation, there are a small number of coarsening
events, but the pattern largely maintains its scale until it eventually degrades due to
a short-scale, slower moving, secondary instability. Thus, the dynamics mirrors that
found at smaller Froude numbers, except that the wavelength of the cyclic steps
that appear initially is dictated largely by the fastest linear instability rather than
the domain length (and, again, not by the erosion threshold). Over longer times,
the cyclic-step patterns remain time-dependent, creating spatiotemporally complicated
states characterized by a blend of the primary and secondary wavenumbers.

On raising the Froude number to 1.5 (figure 13), the character of the cyclic-
step dynamics changes: the emergent patterns become sufficiently strong that they
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FIGURE 13. (Colour online) Cyclic steps at Fr = 1.5, ν = 0.05, L = 10 and ε = 0.1. Panel
(a) shows ζ − 〈ζ 〉 as a density in the (x, t)-plane; the final snapshot is shown in (b). Also
plotted (dashed) is the final snapshot of u.

appreciably block the water flux. (In periodic geometry, the St Venant equations
conserve total mass,

∫ L
0 h dx, but not total flux,

∫ L
0 hu dx.) The stress on the bed is

then reduced to the point that erosion is arrested over sections of the domain. A
collage of migrating steps and static bedforms thereby develops with a complicated
spatiotemporal pattern. The migrating steps gradually erode into the stationary
bedforms to destroy those features, but the steps also deposit other, short-scale,
bedforms in their wakes via the remnant of the secondary instability found at smaller
Froude number.

By Fr = 2, the growth of the step instability blocks the flow so much that erosion
is almost completely arrested (see figure 14). This leaves nearly stationary bedforms
whose pattern reflects the structure of the linear instability and its modulation by the
initial conditions. Over the sharper downward slopes, however, the flow speed can
remain above threshold and some of the bedforms suffer further incision, steepening
them into steps that slowly migrate upstream. However, the overall pattern bears little
resemblance to a periodic cyclic-step sequence.

The preceding computations show no evidence of roll waves. As we raise the
Froude number, the growth rate of these waves eventually exceeds that of the cyclic
steps (whose time scale is controlled by ε), allowing roll waves to outgrow the cyclic
steps from an arbitrary initial condition. This situation is the setting of the computation
shown in figure 15. Initially, a roll wave grows out of the random initial perturbations
and saturates into a steady nonlinear wave. However, bed erosion continues regardless
of the relatively fast-moving disturbance in the overlying flow, and cyclic steps grow
over a much longer time scale. The steps eventually reach sufficient amplitude to
block the flow and destroy the roll wave. The reduction in flux switches off erosion
altogether, leaving behind a stationary bedform. Note that the erosional instability is
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FIGURE 14. (Colour online) Cyclic steps at Fr = 2, ν = 0.1, L = 10 and ε = 0.1. Panel
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the horizontal dashed lines in (c) indicate the times of the two snapshots shown immediately
below.

relatively violent at this Froude number, generating a bedform pattern taking the form
of a sequence of pools connected by shallow chutes.

5.4. Non-periodic staircases
A key feature of the dynamics uncovered above surrounds how cyclic steps block
the water flux, thereby arresting erosion and stabilizing roll waves. Unfortunately,
computations with periodic boundary conditions allow the reduction in water flow to
recycle through the domain and permanently diminish the mean flux thereafter. To
avoid such a global suppression of the flow, fluid must be allowed to enter the domain
with a fixed flux through the upstream boundary. To explore this more physical
scenario, we therefore abandon periodic boundary conditions and study the formation
of non-periodic staircases.

To this end, we consider a domain of length L = 100 with fixed inflow conditions:
u(0, t) = h(0, t) = 1. We allow fluid to leave the domain whilst generating as little
disturbance as possible by adopting ‘natural’ outflow conditions: hx(L, t)= ux(L, t)= 0.
Moreover, to further reduce any effect of the downstream boundary, we introduce
an adjacent ‘sponge layer’ over which we increase the dissipation by replacing the
constant eddy viscosity with ν(1 + ex−90). This sponge layer effectively removes any
cyclic-step instability triggered by the exit conditions. Instead, to initiate the staircase,
we begin initial-value computations with a uniform water flow (h(x, 0) = u(x, 0) = 1)
over a more centrally perturbed bed: ζ(x, 0)= ζ0(x) exp(− (x− 50)2), where ζ0(x) is a
random superposition of the first 12 wavenumbers. We also terminate the computations
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FIGURE 15. (Colour online) Roll waves and cyclic steps at Fr = 3, ν = 0.2, L = 5 and
ε = 0.01. Panels (a,b) plot the amplitude, A, and means, Q = 〈q〉 and 〈u〉; the shaded region
in (b) shows the range of flow speeds. Panels (c,d) show snapshots of h(x− Vt, t) in the frame
of the roll wave (snapshots are spaced by 20 in c and 40 in d), for the times, 0 6 t 6 800 and
800 6 t 6 2280, respectively. Panel (e) shows ζ − 〈ζ 〉 as a density on the (x, t)-plane, with the
final bed structure and flow depth shown immediately on top.

once the steps reach the inflow; continuing beyond this moment is problematic for two
reasons. First, the disappearance of the steps at the inflow triggers flow variations that
rapidly sweep downstream to affect the entire staircase. Second, our numerical scheme
experienced difficulty in accurately and stably capturing the collision of large steps
with the boundary.

Figure 16 displays an initial-value computation with Fr = 1.1. In this instance, the
localized initial perturbation in the bed generates a slowly varying train of cyclic-step
waves that migrate largely upstream, but also develop downstream. The steps spread
out and grow in amplitude as they propagate, with the strongest steps appearing near
the front of the train. These bedforms once again cut down the flux and trap water,
creating a distinctive ‘shadow’ in q = hu downstream. This weakens the growth of
the trailing steps, which, as a result, remain shallower, and a distinctive jump in
the physical variables develops across the staircase. Only the stronger steps in the
vanguard of the train amplify sufficiently to arrest erosion and, just before t = 400,
the leading steps also suffer a short-wavelength secondary instability. Many of these
features are in broad agreement with the periodic dynamics.

Qualitative changes are observed in the dynamics as one continues on to higher
Froude numbers, some of which again echo our findings in periodic geometry. First,
the steps now emerge relatively suddenly, generating significant interruptions in the
water flux and prompting the formation of an upstream-propagating bore; see figure 17.
The bore provides the primary blockage to the flow, severely reducing erosion in
its wake for Fr = 1.5 and switching it off entirely for Fr = 2. This creates the
wedge-like structure in the snapshots of ζ − x in the figures, with the staircase
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FIGURE 16. (Colour online) Staircases for Fr = 1.1, ν = 0.1 and ε = 0.1 in a non-periodic
domain of length L = 100. Panel (a) shows snapshots of ζ − x every 10 time units (lighter
grey); the darker solid lines indicate the final bed profile and the water surface (ζ − x and
ζ + h− x at t = 500). The inset shows u(x, 500) (solid) and q(x, 500) (dashed), along with the
erosion threshold (dotted; u∗ = 0.5). Panels (b,c) show h and q as densities in the (x, t)-plane:
(a) ζ(x, t)− x and ζ(x, t)+ h(x, t)− x; (b) h(x, t); (c) q(x, t).

emerging only much further downstream. For Fr = 1.5, a mix of migrating and
static bedforms characterizes the complex structure of the staircase. At Fr = 2, the
cyclic-step instability generates large-amplitude, stationary undulations; erosion only
takes place on their downstream faces, cutting into those features and forcing them
to retreat upstream. In both cases, fresh bedforms gradually appear at the downstream
edge of the staircase, each signalling its arrival with an interruption in water flux.

For all the solutions, the staircases spread out from the initial perturbation both
upstream and downstream. Thus, as anticipated in § 3.3, the cyclic-step instability is
evidently an absolute one. Indeed, if the computations are run long enough, roundoff
errors excite the instability throughout the domain (except for the sponge layer), and
steps appear abruptly everywhere.

6. Discussion
In this article we have explored the nonlinear dynamics of cyclic steps in a

simple model of shallow-water flow over eroding topography (the St Venant equations
coupled with an empirical Exner equation for sediment transport). These bedforms
arise from a linear instability generated by the interaction between the flow dynamics
and the erodible bed, and are expected once the flow becomes supercritical (Parker &
Izumi 2000). Using a combination of analytical and numerical methods, we studied the
nonlinear saturation of this instability, in order to quantify the cyclic-step patterns that
form and gauge how they interact with roll waves, a hydrodynamic instability expected
under similar physical conditions.

Previous work on cyclic steps has largely concentrated on constructing steadily
propagating step patterns with the form of periodic wavetrains. These patterns consist
of regular sequences of relatively abrupt steps in the bed with coincident hydraulic
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jumps in the overlying flow. Just beyond the onset of instability, we do observe
patterns of this kind once the primary cyclic-step instability saturates. However, these
states do not remain steady, but suffer short-wavelength secondary instabilities driven
by the same mechanism that creates the steps themselves. As a result, complicated
spatiotemporal patterns form that do not resemble regular step sequences, except,
perhaps, very close to the critical Froude number. Further from onset, the formation
of bedforms can reduce the water flux sufficiently to arrest erosion, leading to fixed
patterns imprinted in the bed that coexist with migrating steps. The blocking of the
flux also suppresses roll waves.

A key feature of our model for sediment transport is that it accounts only for
erosion, not deposition. We have, however, made a brief exploration of an extension
of the model that incorporates deposition (Sun & Parker 2005); details are given in
appendix A. The main conclusion is that deposition does not change the dynamics
outlined above in any significant way. On the other hand, the linear cyclic-step
instability of Parker & Izumi (2000) is reliant upon the form of the erosion law; the
transport law used by Colombini & Stocchino (2005), for example, furnishes no such
instability, and generates the classical antidunes instead. We have sedulously avoided
much discussion of this unfortunate consequence of empirical parameterization, and
our main focus has been to explore the dynamics contained in the Parker &
Izumi model without questioning its physical foundation. Our model also contains
parameterizations of turbulent stresses; we have, at least, been able to demonstrate
that the dynamics is insensitive to the form of the eddy viscosity used to regularize
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hydraulic jumps and short-wave instabilities (we adopted a constant eddy viscosity, but
the alternative choice in which this viscosity is proportional to water flux does not lead
to significantly different results).

We close by contrasting the results with the experiments reported by Taki & Parker
(2005). They observed recurrent isolated steps migrating slowly up a flume and saw no
roll waves, despite favourable physical conditions. The lack of roll waves may well be
due to their convective nature, implying that a constant agitation at the inlet is required
to excite them. The recurrent steps, on the other hand, can be explained naturally
in terms of the absolute cyclic-step instability. The experiments also show little sign
of fine-scale secondary features superposed on the primary steps, suggesting that
there are no short-wavelength secondary instabilities. We have no clear explanation
for why such features are so prevalent in the model but not in the experiments; in
all likelihood, they reflect inadequacies in the shallow-water approximation and the
erosion law, and expose key limitations of the model.
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Appendix A. Deposition
We include the effects of deposition by adding a new variable representing the

depth-averaged concentration of the suspended load, s(x, t), and then including a
sedimentation term in the Exner equation (2.3):

ζt =−εE (u)+ ws, (A 1)

where w is the sedimentation speed. The concentration satisfies the transport law

h(st + usx)= εE (u)− ws+ (κhsx)x, (A 2)

where κ is a turbulent diffusivity, which in practice we take to be the same as the eddy
viscosity, κ = ν (i.e. the turbulent Schmidt number is unity). As discussed in § 2, an
alternative choice for κ might make this coefficient depend on water flux (specifically,
κ =ΛFr4h|u|/cf ); however, we have not explored such modifications in any detail.

Now the system of governing equations admits a uniform equilibrium solution in
which erosion balances deposition:

h= u= 1, ζ = 0, s= εE (1)
w

. (A 3)

A linear stability analysis of this state furnishes the dispersion relation

0= Fr2λ3 + λ2(2+ νk2 + 2ikFr2)+ λ[k2(1− Fr2)+ ik(3+ νk2 − α)]
+αk2 − iαwk(λ+ ik)

λ+ ik + w+ κk2
, (A 4)

which differs from (3.2) only by the last term. For α � 1 and λ = O(α), (A 4)
simplifies to

λ≈ αk2(iκk − 1)

(ik + w+ κk2)[3+ νk2 + ik(1− Fr2)] . (A 5)
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If we also take (ν, κ)k2→ 0, we find the growth rate

Re(λ)∼ αk2[k2(Fr2 − 1)− 3w]
(w2 + k2)[9+ k2 (Fr2 − 1)

2]
. (A 6)

Thus, deposition stabilizes the long-wavelength modes, as further illustrated in
figure 18. Note that the main differences with the purely erosive case arise at
wavelengths that are longer than the computational domains considered in the main
text. Thus, deposition does not modify the corresponding linear dynamics.

To discover the effect of deposition on the nonlinear dynamics close to the onset
of instability, we repeat the asymptotics of § 4, including the distinguished parameter
selections, κ = δκ1 and w= δw1, and sequences

ζ = δζ1(x, t,T)+ δ2ζ2(x, t,T)+ · · · , s= εE (1)
w
+ δs1(x, t,T)+ δ2s2(x, t,T)+ · · · .

(A 7)

The result of the asymptotic machinations, including the rescalings in (4.12), is then
the canonical amplitude equation

(1− 2∂ξ )(ϕτ + ϕϕξ )+ ϕξ + µϕξξξ + γ ϕϕξ + Υ ϕ = 0, (A 8)

where

Υ =− 2αw1

f (1− c)2[1+ 2 (1− c)2] . (A 9)

The effect of the final deposition term on the nonlinear dynamics described in § 4.2
can be gauged by solving (A 8) numerically with Υ 6= 0. A key result is that wave
coarsening is arrested even if γ =−1. Thus, deposition also exerts a nonlinear control
on wavelength selection.

To explore the effect of deposition on the dynamics further from onset, we
numerically solved the full St Venant model in conjunction with (A 1) and (A 2),
taking w = ε = 0.1 and ν = κ = 0.02, and then varying Fr . The results were in both
qualitative and quantitative agreement with those for pure erosion. Thus, we conclude
that, for the range of parameters chosen, the dynamics described in the main text is
largely unchanged by the inclusion of deposition.
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Appendix B. Weakly nonlinear expansions
We construct steady, weakly nonlinear solutions to the asymptotic model (4.13) by

introducing the asymptotic sequences µ= µc + ε2µ2 and

ϕ = εAei(kx+ε2ωτ) + ε2Be2i(kx+ε2ωτ) + c.c.+ · · · , (B 1)

where ε is a small parameter that we exploit to organize the asymptotics, µc denotes
the critical value of µ, k is the basic wavenumber and ω is a frequency correction. We
substitute these expressions into the governing equations and solve order by order. At
order ε, we find the critical condition µck−2 = 1. At next order, the equations demand
that

B= 1
6(1+ 2γ − 4ik)A2. (B 2)

Finally, at O(ε3), the terms involving exp i(kx− ωt) provide an amplitude equation that
predicts

|A |2 =−3
4
µ2

[
1+ (1+ γ )(2− γ )

8k2

]−1

. (B 3)

Because the solution ϕ = 0 is linearly unstable for µ < µc (µ2 < 0), and γ ≈ 0 or −1
for our two instabilities, the weakly nonlinear branch is therefore supercritical.

A similar expansion can be performed for travelling-wave solutions to the full
erosive St Venant model, which satisfy (5.3)–(5.4). We set

Fr2 = Fr2
c + ε2f2, (B 4)

c= c0 + ε2c2, (B 5)
q= (1− c0)+ ε2q2, (B 6)

H = 1+ εa sin kχ + ε2(a2 sin 2kχ + a3 cos 2kχ), (B 7)
U = 1+ εb sin kχ + ε2(b2 sin 2kχ + b3 cos 2kχ + U2)+ ε3b4 cos kχ. (B 8)

The amplitude parameter defined in (5.1) is related to a by |A |2 = ε2|a |2 /2 + O(ε4).
After eliminating Z and demanding that (5.3)–(5.4) are satisfied up to and including
terms of order ε3, we recover the critical conditions in (3.5) with c= c0, and determine
the coefficients, {c2, q2, a2, a3, b, b2, b3,U2, b4}, and the amplitude equation, f2 = Γ |a |2,
where the coefficient, Γ , is a lengthy algebraic expression that we omit for sake of
brevity. In this case, we find that the bifurcation can be subcritical, indicating that the
weakly nonlinear limit does not commute with the asymptotic limit taken in § 4.
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