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We consider the linear stability and nonlinear evolution of two-dimensional shear flows
that take the form of an unstratified plane Couette flow that is seeded with a localized
‘defect’ containing sharp density and vorticity variations. For such flows, matched
asymptotic expansions furnish a reduced model that allows a straightforward and
computationally efficient exploration of flows at sufficiently high Reynolds and Péclet
numbers that sharp density and vorticity gradients persist throughout the onset, growth
and saturation of instability. We are thereby able to study the linear and nonlinear
dynamics of three canonical variants of stratified shear instability: Kelvin–Helmholtz
instability, the Holmboe instability, and the lesser-considered Taylor instability, all of
which are often interpreted in terms of the interactions of waves riding on sharp
interfaces of density and vorticity. The dynamics near onset is catalogued; if the
interfaces are sufficiently sharp, the onset of instability is subcritical, with a nonlinear
state existing below the linear instability threshold. Beyond onset, both Holmboe and
Taylor instabilities are susceptible to inherently two-dimensional secondary instabilities
that lead to wave mergers and wavelength coarsening. Additional two-dimensional
secondary instabilities are also found to appear for higher Prandtl numbers that take
the form of parasitic Holmboe-like waves.
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1. Introduction
Stratified shear flow instability plays a key role in a wide range of geophysical

phenomena, in particular as a route to turbulence and hence enhanced mixing (see
for example the recent review of Ivey, Winters & Koseff 2008). The most commonly
observed and explored variant is the Kelvin–Helmholtz (KH) instability, popularly
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known for its overturning billowing patterns and its ability to mix effectively (although
not necessarily particularly efficiently; cf. Peltier & Caulfield 2003). However,
stratified shear flows are also susceptible to a number of other, much less-commonly
considered instabilities.

The mechanism behind the KH instability is sometimes described in terms of
the interaction of waves riding on localized, strong gradients, or interfaces, of
vorticity. With the inclusion of additional interfaces of sharp density variation, two
other prominent shear flow instabilities can be classified (Baines & Mitsudera 1994;
Caulfield 1994; Carpenter, Balmforth & Lawrence 2010a): the Holmboe instability,
arising due to the interaction between a ‘vorticity’ wave and a wave riding on
a density interface (Holmboe 1962; Alexakis 2005); and the ‘Taylor’ instability
(considered in Taylor 1931) due to interaction between interfacial density waves
and coupled by the ambient shear flow. Of these second two instabilities, only
the Holmboe case has received detailed attention, with numerical simulations (e.g.
Smyth, Klaassen & Peltier 1988; Smyth & Winters 2003; Carpenter et al. 2010b)
and laboratory experiments (e.g. Thorpe 1971; Yoshida et al. 1998; Zhu & Lawrence
2001; Hogg & Ivey 2003; Tedford, Pieters & Lawrence 2009) elucidating some of its
character. By contrast, aside from Taylor’s 1931 original paper, a much later analysis
outlining its linear stability properties (Caulfield 1994), a speculative experimental
observation (Caulfield et al. 1995) and a brief numerical exploration (Lee & Caulfield
2001), the Taylor instability remains unexplored.

Although it is neither necessary nor, at times, useful to characterize stratified shear
instability in terms of different kinds of interfacial wave interactions, the notion proves
convenient in view of the common occurrence of ‘staircases’ in geophysical flows:
stacked sequences of unstratified layers separated by sharp interfaces of high density
gradient (e.g. Linden 1979; Schmitt 1994). With this in mind, the current study is
aimed at providing a compact exploration of the three kinds of instabilities listed
above. For this task, rather than attacking the full, governing equations of stratified
fluid dynamics, a long-winded numerical exercise at best, we exploit some convenient
idealizations and simplifications.

First, we restrict attention to two spatial dimensions which, in view of the known
dynamics of three-dimensional KH instability (Caulfield & Peltier 2000; Smyth &
Moum 2000; Staquet 2000), likely limits the applicability of our solutions to the initial
stages of the development of all three instabilities, and precludes us from studying
any kind of turbulent transition. Second, we focus on specific kinds of stratified shear
flows for which asymptotic methods can be used to reduce the governing equations
to a more manageable form. These stratified vorticity ‘defects’, motivated originally
by Gill (1965), are illustrated in figure 1; the flows consist of an unstratified, uniform
shear flow that is seeded with an embedded, localized region (the defect) containing
finely scaled vorticity and density variations. The defect structure allows one to exploit
matched asymptotic expansions to furnish a reduced model of the dynamics, and
has been successfully applied to studies of unstratified shear flows (Balmforth, del
Castillo-Negrete & Young 1997; Balmforth 1998). The key simplifications afforded by
the ‘defect approximation’ are a compact and tractable version of linear theory and a
swifter construction of analytical and numerical nonlinear solutions.

The current, stratified defect analysis leads us to our relatively concise exploration
of the dynamics of two-dimensional KH, Holmboe and Taylor instabilities. We
summarize the key features of these ‘primary’ instabilities, surveying, in particular,
how the instabilities first appear, and document a variety of secondary instabilities that
they suffer. Although our calculations are restricted to two dimensions, we believe
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FIGURE 1. A stratified defect. The first picture shows the overall geometry, with an
illustration of the expected vortical structure (actually a solution of the defect equations).
The other graphs illustrate the horizontal velocity and buoyancy of equilibrium defects.

it is still valuable to document these secondary instabilities, as numerical evidence
(see for example Mashayek & Peltier 2011b) demonstrates that inherently two-
dimensional secondary instabilities (such as subharmonic merging, or the secondary
shear instability predicted by Corcos & Sherman 1976 to occur in the ‘braid’ between
neighbouring primary KH billow cores) develop and ‘compete’ with inherently
three-dimensional secondary instabilities in stratified shear layers. Our discussion is
organized as follows: in § 2, we develop the stratified defect formulation. Section 3
presents linear stability calculations for inviscid, non-diffusive defects, demonstrating
that the model captures salient details of all three primary instabilities. In § 4, we
investigate numerically the initial-value problem for flows prone to each of the three
primary instabilities. Section 5 draws some brief conclusions.

2. Defect formulation
We begin with the vorticity–buoyancy–streamfunction formulation for two-

dimensional stratified fluid in the Boussinesq approximation: we denote the
streamfunction, vorticity and buoyancy by ψ̂(x̂, ŷ, t̂), ζ̂ (x̂, ŷ, t̂) and b̂(x̂, ŷ, t̂),
respectively, where t̂ is time, and the fluid is described by a Cartesian coordinate
system, (x̂, ŷ), in which ŷ points vertically upwards. The governing equations are

ζ̂ = ψ̂x̂x̂ + ψ̂ŷŷ, (2.1)

ζt̂ + ψ̂x̂ζ̂ŷ − ψ̂ŷζ̂x̂ = b̂x̂ + ν̂(ζ̂x̂x̂ + ζ̂ŷŷ), (2.2)

b̂t̂ + ψ̂x̂b̂ŷ − ψ̂ŷb̂x̂ = κ̂(b̂x̂x̂ + b̂ŷŷ), (2.3)

where ν̂ is the kinematic viscosity and κ̂ the diffusivity. The velocity field is given
by (u, v) = (−ψ̂ŷ, ψ̂x̂), and the density perturbations are ρ0b̂/g, with g being gravity
and ρ0 a reference density.

To render the system dimensionless, we introduce a characteristic length scale, L,
and speed, U, chosen as follows: we consider an infinitely deep fluid with an ambient
shear flow that is largely linear in height: u ≈ sŷ, where s is a prescribed shear rate.
Hence, we may define U = sL, given L. In earlier studies (Balmforth et al. 1997;
Balmforth 1998), the problem was couched in a channel of finite width, introducing
one choice for L. Here, however, we consider an infinitely deep flow (or at least a
very tall channel for which the channel height is irrelevant), seeded with a vertically
localized defect (figure 1) that we centre at the origin of our coordinate system (ŷ= 0).
We further consider spatially periodic flows in the horizontal, which allows us to use
the domain length as a more natural characteristic scale. In particular, by setting the
domain length equal 2πL, we couch the instability problem in a dimensionless domain
of length 2π. The defect, on the other hand, is much shallower, and we define ε � 1
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to be the ratio of the vertical thickness of the defect and L (see figure 1). In this sense,
our theory is a long-wave one, and ε is the small parameter we use to organize an
asymptotic analysis.

Given these characteristic scales, we define the dimensionless variables,

(x, y)= L−1(x̂, ŷ), t = L−1Uε t̂, (2.4)

ψ̂ =−1
2

ULy2 + ε2ULψ(x, y, t), ζ̂ = U

L
+ ε2 U

L
ζ(x, y, t), b̂= ε2 U2

L
b(x, y, t). (2.5)

By scaling time, streamfunction, vorticity and buoyancy in this way, we prepare
the equations for the asymptotic expansion given in the next section; from the
physical perspective, the scaling focuses attention on the relatively long and weakly
nonlinear evolution of the defect, filtering any dynamics from outside that region. The
dimensionless versions of (2.1)–(2.3) are then

ψxx + ψyy = ζ, (2.6)

yζx + εζt + ε2ψxζy − ε2ψyζx − ε3ν(ζxx + ζyy)= bx, (2.7)

ybx + εbt + ε2ψxby − ε2ψybx − ε3κ(bxx + byy)= 0, (2.8)

and the scaled, inverse Reynolds and Péclet numbers are

ν = ν̂

ε3UL
, κ = κ̂

ε3UL
, (2.9)

which are tuned so that the leading-order effect of viscosity and diffusion appears in
the defect theory simultaneously with unsteadyness and nonlinearity.

The leading-order terms on the left of (2.7)–(2.8) account for advection by the
background linear shear; as demonstrated shortly, the shorter vertical scale of the
defect promotes some of the other terms to balance this advection over that region.
Notably, although the vorticity is order ε2 outside the defect, it increases to O(ε)
within the defect, and its vertical gradient is order unity there. These features mirror
the original defect theory. The extension we make here is to add stratification, taking
the density to be largely uniform outside the defect, but rapidly varying within it.
Thus, from outside, the defect appears very much like a vortex sheet and a density
interface.

2.1. Matched asymptotics

Equations (2.7)–(2.8) can be attacked using the method of matched asymptotic
expansions. There is an outer region, outside the defect, where y is order one.
The inner region, the defect, must be resolved by introducing a new, inner
coordinate, η = y/ε. With the current defect structure, the matched asymptotics are
a straightforward generalization of those used by Balmforth et al. (1997), and, for the
most part, we require only the leading-order terms of the equations in each of the
regions.

2.1.1. Outer solution; y= O(1)
For the leading-order outer problem, we discard higher-order terms in (2.6)–(2.8), to

arrive at

y (ψxx + ψyy)x ∼ bx and ybx ∼ 0. (2.10)
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We therefore take bx ∼ O(ε) outside the defect and solve the resulting Laplace
equation for the streamfunction using a Fourier series:

ψ =
∞∑

n=−∞
Φn(t)einx−|n|y + ψ̄(y, t), (2.11)

where the horizontal average, ψ̄(y, t)= ∫ 2π
0 ψ(x, y, t) dx/(2π), and

Φ(x, t)=
∞∑
−∞

Φn(t)einx (2.12)

is a limiting streamfunction amplitude at the defect. This solution contains a jump in
vertical derivative of

[ψy]y=0+
y=0− =−2

∞∑
n=−∞
|n|Φneinx + [ψ̄y]y=0+

y=0−, (2.13)

which accommodates the spatially confined vorticity inside the defect.

2.1.2. Inner equations, η = y/ε = O(1)
Within the defect, η = y/ε is of order one, and we introduce the rescalings,

ψ = ϕ(x, η, t)= ϕ0(x, t)+ εϕ1(x, η, t), ζ = ε−1Z(x, η, t), b= B(x, η, t). (2.14)

The inner form of the vorticity–streamfunction relation is then

Z = ε−1ϕηη + εϕxx ∼ ϕ1ηη. (2.15)

The promotion of the vertical derivatives in this relation is key in dictating that the
streamfunction be independent of η to leading order; the match with the outer solution
then determines that leading order term (i.e. ϕ0(x, t) = Φ(x, t) + ψ̄(0, t)). The jump in
the vertical derivative of the outer solution, given by (2.13), must also be matched to
the corresponding jump of the inner solution across the defect: from (2.15) it follows
that

[ϕ1η]η→∞η→−∞ ≡
∫ ∞
−∞

Z(x, η, t) dη. (2.16)

Hence, after subtracting off the horizontal average,∫ ∞
−∞

Z(x, η, t) dη − 〈Z〉 = −2
∞∑
−∞
|n|Φneinx =:LΦ, (2.17)

where

〈· · ·〉 = 1
2π

∫ ∞
−∞

∫ 2π

0
(· · ·) dx dη. (2.18)

Finally, we introduce (2.14) into (2.7)–(2.8), then retain only the leading-order terms,
to arrive the defect vorticity and buoyancy equations,

Zt + ηZx +ΦxZη − νZηη = Bx, (2.19)
Bt + ηBx +ΦxBη − κBηη = 0. (2.20)

Equations (2.17)–(2.20) constitute the reduced equations for stratified vorticity
defects. In addition to periodicity in x, the requirement to match with the outer
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solution furnishes the boundary conditions,

Zx→ 0, Bx→ 0 as η→±∞. (2.21)

The system offers a concise description of linear stability of the defect, and allows
us to explore its nonlinear dynamics with numerical computations. Note that the small
parameter no longer appears in the defect formulation, and the key field variables,
Z(x, η, t) and B(x, η, t), are defined in terms of the stretched vertical coordinate
η = y/ε. Only when the original vorticity and buoyancy fields are reconstructed does ε
reappear, and provided that parameter is taken sufficiently small for the reconstruction,
the defect approximation remains valid. The most serious challenge to maintaining the
fidelity of the approximation during the reconstruction is when the dynamics generates
overly fine horizontal scales in the defect solutions (requiring ε to be made smaller to
preserve the shallow aspect ratio).

2.2. The ν = κ system
The system in (2.17)–(2.20) cannot be reduced any further if κ 6= ν, leaving us with
three equations for the defect variables, Φ, Z and B (i.e. the appropriately scaled
streamfunction, vorticity and buoyancy, respectively). However, if the Prandtl number,
ν/κ , equals unity, then the variable,

Z (x, η, t)≡ Z(x, η, t)+ Bη(x, η, t), (2.22)

satisfies the reduced system,

Zt + ηZx +ΦxZη − νZηη = 0, LΦ =
∫ ∞
−∞

Z (x, η, t) dη − 〈Z 〉, (2.23)

which is identical to the model for unstratified defects and is closely related to
the Vlasov–Poisson system of plasma physics (e.g. Nicholson 1983; Balmforth et al.
1997).

Although the reduction to (2.23) suggests a major simplification of the system, it
is not as useful as it might at first seem: one must still solve (2.19)–(2.20) in order
to reconstruct the vorticity and buoyancy fields. The precise physical meaning of the
combination in Z is somewhat opaque, but this quantity is evidently able to capture
the main interplay between the outer shear and the fine structure of the vorticity and
buoyancy distribution in the defect. As we shall see in the next section, ideal (inviscid
and non-diffusive) instability hinges solely on the equilibrium distribution of Z . Thus,
all three types of instability (KH, Holmboe and Taylor) in the defect model are merely
different forms of the instability of the Z distribution.

2.3. Conservation laws and nonlinear waves
Both (2.19) and (2.20) take the form of advection equations in the inviscid and
non-diffusive limit, (ν, κ)→ 0, with a total streamfunction given by

Ψ =Φ − 1
2η

2. (2.24)

There are a number of conservation laws:

d
dt
〈Z〉 = 0,

d
dt
〈ηZ〉 = 0, (2.25)

and

d
dt

〈
1
2
(η2 −Φ)Z − ηB

〉
= ν〈Z〉, (2.26)
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FIGURE 2. Sample defect equilibria for (a) profiles (3.4), (b) profiles (3.12) and (c) profiles
(3.14), all with f = 4 and γ = 2. In each case, the solid line shows the broken-line version
of the profile using (3.5), the dashed line shows the Lorentzian case with (3.6) and δ = 0.05,
and the dotted line is (3.7) with δ = 0.1. The inset in (a) sketches the overall velocity profiles,
U(y), suggested by the vorticity defects in the main panel with ε = 1/4.

which correspond to conservation of vorticity, horizontal momentum and energy (at
least when ν = 0). In addition to conservation of mass, 〈B〉t = 0, when there is no
viscosity or diffusion of density (ν = κ = 0), there are an infinite number of invariant
functionals:

d
dt
〈ZC (B)〉 = 0,

d
dt
〈D(B)〉 = 0, (2.27)

where C (B) and D(B) are arbitrary functions of the defect density.
In the same limit, the steady travelling-wave equilibria are given by

Ψc =Φ(x− ct)− 1
2 (η − c)2, B=B(Ψc), Z =Z (Ψc)− (η − c)B′(Ψc), (2.28)

where c is the wavespeed. The functions B(Ψ ) and Z (Ψ ) are arbitrary, although
together with the streamfunction Φ(x − ct), they must still satisfy the consistency
condition (2.17). Here we solve the defect system numerically as a (nonlinear) initial-
value problem (§ 4), extracting the form of Z (Ψ ) and B(Ψ ) for any nonlinear waves
that emerge. Before doing that, we summarize the linear stability theory of the defects.

3. Linear stability theory for inviscid, non-diffusive defect
For ν = κ = 0, the defect system (2.19)–(2.17) admits steady, horizontally

homogeneous equilibria with profiles of vorticity and buoyancy given by Z = F(η)
and B = G(η). Specific examples of basic defect profiles, F(η) and G(η), are shown
in figure 2; our chief interest is in the instabilities suffered by the corresponding
equilibrium states.

To study linear perturbations about the equilibria with the normal mode form, we set

Φ = aeik(x−ct), Z = F(η)+ z(η)eik(x−ct), B= G(η)+ β(η)eik(x−ct), (3.1)

where the horizontal wavenumber k is integral for our periodic domain, and the
(complex) wavespeed is c= cr + ici. The infinitesimal amplitudes, a, z(η) and β(η) are
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related by the linearizations of (2.19) and (2.20):

z=− aFη
η − c

− aN2

(η − c)2
, β =− aN2

η − c
, (3.2)

where N2 = Gη is the square of the (dimensionless) defect buoyancy frequency, N.
The introduction of these relations into (2.17) furnishes Φn = aδkn and the dispersion
relation,

0= D(c) := 2k −
∫ ∞
−∞

[
Fη
η − c

+ N2

(η − c)2

]
dη ≡ 2k −

∫ ∞
−∞

(F + N2)

(η − c)2
dη. (3.3)

The dispersion function D(c) in (3.3) is a straightforward generalization of that for
unstratified defects, and the technology summarized by Balmforth et al. (1997) for
extracting general features of the stability problem can be immediately carried over
to the current problem; the stability criteria that previously hinged on the form of
F(η) (including necessary and sufficient conditions for instability), now rely on the
combination F + N2 ≡ F + Gη (i.e. the equilibrium distribution of Z ).

3.1. Symmetrical Kelvin–Helmholtz and Holmboe instabilities
For a defect version of the equilibrium profiles suffering the classical combination of
KH and Holmboe instability (i.e. the piecewise linear profiles considered originally by
Holmboe 1962, or the more recent smooth profiles considered by Alexakis 2005) we
adopt

F = 1
2 f [Θ(η − 1)−Θ(η + 1)], G= 1

2γΘ(η), (3.4)

where the step-like function Θ(η) is given by either

Θ(η)= sgn(η), (3.5)

or the smoothed relatives,

Θ(η)= 2
π

tan−1
(η
δ

)
(3.6)

and

Θ(η)= tanh
(η
δ

)
. (3.7)

Here, f and γ measure the strength of the vorticity defect and its stratification, and
δ is the characteristic distance over which the discontinuity of (3.5) is smoothed by
either (3.6) or (3.7); see figure 2(a). Note that, according to the non-dimensionalization
in (2.4)–(2.5), Bη ≡ L2b̂ŷ/(εU2). Therefore, γ = Rib/ε can be interpreted as a scaled
relative of a bulk Richardson number, Rib, comparing the characteristic buoyancy
frequency inside the defect to the background shear (the defect vorticity is order ε
smaller). Given that γ is assumed order one, this emphasizes how the bulk Richardson
number is relatively small in the defect theory.

Both (3.5) and (3.6) lead to convenient analytical results; the velocity and density
profiles corresponding to (3.5) take the form of ‘broken lines’ (with Dirac delta-
functions for Fη and N2), whereas (3.6) leads to a Lorentzian form for Fη and N2.
The third case in (3.7) is less analytically accessible in the linear stability theory (the
integral in the dispersion relation can be expressed in terms of polygamma functions
but is not particularly transparent), but is superior to the Lorentzian profiles (3.6) for
nonlinear computations because of the faster decay outside the defect.
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FIGURE 3. Eigenvalues of the symmetrical KH–Holmboe problem for (a) the broken-
line profiles (3.5) and (b) the Lorentzian profiles (3.6), plotted against γ for k = 1,
f = 2 and δ = 0.25. In (b), modes disappear when γ = γc, as given by (3.10), or for
γ = 2δ2(f − k − kδ2)/(1 + δ2). In both cases, modes with purely imaginary c combine
into complex pairs for the value of γ given by (3.9).

For the broken-line profiles (3.5), the integral in the dispersion relation can be
integrated to yield

C4 −
(

1− f

k
+ γ

2k

)
C2 + γ

2k
= 0, (3.8)

where C ≡ c. Thus, there are four solutions for c for all choices of the parameters;
these modes can be complex provided that γ is not too large, implying instability.
If the phase speed, cr, is zero, the unstable modes are commonly referred to as having
Kelvin–Helmholtz character, but if cr 6= 0 they are referred to as Holmboe instabilities.
We will also use this classification, although it is not completely definitive near the
parameter settings where the phase speed first becomes finite (Carpenter et al. 2010a),
which can be shown to occur for

γ = 2k

(√
f

k
− 1

)2

. (3.9)

For the Lorentzians (3.6), the integral again can be evaluated to furnish (3.8), but
this time with C = c + iδsgn(ci), reflecting how the integral of the dispersion relation
in (3.3) is not, in general, an analytic function of c. The origin of the non-analyticity
is the continuous spectrum of singular eigenmodes that exists for all real values of c.
The presence of sgn(ci) in (3.8) generates inconsistent solutions for c for certain ranges
of the parameters; these solutions must be discarded as genuine normal modes. Despite
this, the dependence of the unstable modes on the system parameters is very similar
to the broken-line case: figure 3 displays sample eigenvalues for varying stratification
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FIGURE 4. Contours of constant growth rate, kci, on the (k, γ )-plane for (a) symmetrical
KH/Holmboe instability and (b) one-sided Holmboe instability, using Lorentzian profiles,
f = 2 and δ = 0.1. The dotted line in (a) shows (3.9). The regions shaded black are stable.
The contour levels are 0.1n, n = 1, 2, . . . . (c,d) Similar pictures for f = 1/2, δ = 0.05 and
contour levels of 0.05n, n= 1, 2, . . . .

strength, γ . Unstable modes exist in both cases provided that γ < γc, where

γc = 2k

(√
f

k
− 4δ2 + 1

)2

, (3.10)

and

cr =±
√

1
2

(
1− f

k
+ γ

2k

)
+ δ2 (3.11)

is the corresponding phase speed, with δ = 0 providing the broken-line result. The
main difference between the broken-line and Lorentzian cases arises when the normal
modes intersect the continuum and cr → 0. For the former, the modes combine into
neutrally stable, propagating waves. For the Lorentzian, the neutral modes merge with
the continuous spectrum and cease to exist as regular discrete eigenmodes.

Figure 4 presents results in which we also vary the wavenumber k. Although k is an
integer for our periodic defect, the results in figure 4 interpolate between those digits
in order to display growth rate as a continuous function over the (k, γ )-plane. In this
way, we reveal the many similarities between the predictions of the defect model and
the classical solutions of the Taylor–Goldstein equation (e.g. Carpenter et al. 2010a).
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FIGURE 5. Eigenvalues for the one-sided Holmboe example (3.12) with the broken-line
profiles (3.5), and the Lorentzian profiles (3.6), plotted against γ for k = 1, f = 1/2 and
δ = 0.05. The dashed lines in (a) shows the Lorentzian growth rates for k = 2, 3 and 4.

3.2. One-sided Holmboe instability

As noted by Baines & Mitsudera (1994), the KH instability can be suppressed
by removing one of the vorticity jumps. To consider this case, we consider the
equilibrium vorticity and buoyancy profiles,

F = 1
2 fΘ(η − 1

2), G= 1
2γΘ(η + 1

2), (3.12)

with Θ(η) again given by (3.5)–(3.7). Once more, γ is interpretable as a scaled bulk
Richardson number.

For the broken-line and Lorentzian profiles, the dispersion relation takes the form:(
C + 1

2

)3

+
(

f

2k
− 1
)(

C + 1
2

)2

− γ

2k
C + γ

4k
= 0. (3.13)

As illustrated in figure 5, these profiles support a single modal Holmboe instability
(see also the comparison in figure 4). Again, the unstable and decaying mode pairs
are similar for both problems, but the neutrally stable propagating waves of the
broken-line profile have no analogue for the Lorentzians.

3.3. Taylor instability

For the Taylor instability, we remove the mean vorticity entirely and introduce a
two-step buoyancy profile:

F = 0, G= 1
2γ [Θ(η − 1)+Θ(η + 1)]. (3.14)

With the broken-line and Lorentzian profiles, the dispersion relation is

C4 −
(

2+ γ
k

)
C2 + 1− γ

k
= 0. (3.15)

Sample eigenvalues are illustrated in figure 6; for γ > k (1+ δ2)
2
/(1 − δ2), there

are unstable modes. Note that (3.15) is identical to the long-wave, low-Richardson-
number limit of the dispersion relation derived for broken-line profiles (density steps)
using the Taylor–Goldstein equation (Sutherland 2010); because of these inherent
approximations, the defect theory does not capture any large-stratification cut-off to the
instability.



Dynamics of vorticity defects in stratified shear flow 303

0 1 2 3 4 5 6

–1.0

–0.5

0

0.5

1.0

kci

0 1 2 3 4 5 6
–3

–2

–1

0

1

2

3

cr

Lorentzian
Broken-line

(a) (b)

FIGURE 6. Eigenvalues for the Taylor example (3.14) with the broken-line profiles (3.5) and
the Lorentzian profiles (3.6), plotted against γ or γ /k for δ = 0.1. In (a) the dashed lines show
the growth rates for modes with k = 2, 3, 4 and 5.

4. The nonlinear initial-value problem
We now solve the defect system (2.17)–(2.21) numerically as an initial-value

problem. For the defect vorticity and buoyancy, we begin from the initial conditions,

Z(x, η, 0)= F(η) and B(x, η, 0)= G(η), (4.1)

where F and G denote one of the equilibrium states explored in the previous section,
defined by (3.4), (3.12) or (3.14). The states are parameterized by f (measuring the
strength of the vorticity defect), γ (a scaled bulk Richardson number) and δ (the
interface thickness).

To kick the system into action, we typically add a small forcing term to the
vorticity–streamfunction relation in (2.17), so that

Φn = ε0te−10t2δn1 − 1
2|n|

∫ ∞
−∞

Zn(η, t) dη, (4.2)

where Zn(η, t) denotes the nth Fourier mode amplitudes of Z(x, η, t), and ε0 is a small
forcing amplitude, typically chosen to be 10−2. As a measure of the amplitude of the
modal instability, we use

a(t)=
∣∣∣∣∫ 2π

0
Φ2 dx

4π

∣∣∣∣1/2. (4.3)

For the computations, we first discretize the spatial coordinates on the truncated
domain, 0 6 x 6 2π and −η0 6 η 6 η0, where η0 is chosen to be sufficiently large
that the location of those edges plays little role in the dynamics. We then time step
the system using an algorithm based on the operator-splitting scheme of Cheng &
Knorr (1976), which breaks the advection problem into two stages. Advection in x is
accomplished along each horizontal grid level using a Fourier series decomposition of
Z(x, η, t) and B(x, η, t). To perform the advection in η, we fit splines to Z(x, η, t) for
each vertical grid line, then compute an approximation to

∫∞
−∞ Z(x, η, t) and therefore

Φ(x, t). That streamfunction is unchanged by any shift of η (as demonstrated by a
change of integration variable), fixing the amount of vertical advection. The spline
interpolation is then used to place the advected solution back on to the original grid
points in η, with any material advected into the domain from either above or below
assumed to arrive with Z = F(η) and B= G(η).

For our defect model, it is necessary to modify the Cheng & Knorr scheme in order
to incorporate the baroclinic generation of vorticity (the right-hand side of (2.19)) and
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diffusion. We include the former by modifying the advection-in-x step to

Zt + ηZx = Bx and Bt + ηBx = 0, (4.4)

for which we may write the explicit solution,

Z = Z0(x− ηt, η)+ tB0x(x− ηt, η) and B= B0(x− ηt, η), (4.5)

where Z0(x, η) and B0(x, η) denote the initial fields at the beginning of that step.
To include the diffusion, we simply add an explicit diffusion step after the vertical
advection using centred differences in η. We also control the time step, τ , such
that vertical advection never spans more than one grid interval, and by imposing
a maximum step of 5 × 10−3 or less. Given the resolutions used, we estimate that
numerical smoothing becomes as large as explicit diffusion for ν and κ of order
10−7–10−8.

4.1. Nonlinear KH dynamics
Figure 7 shows a sample computation with ν = 3κ = 10−3 for a stratified KH
instability. The pictures show the mode amplitude, a(t), together with snapshots of
the vorticity, Z(x, η, t), and buoyancy, B(x, η, t), at the selection of times indicated.
The early evolution of the amplitude a(t) is compared with the expected linear growth
in the first panel; once the linear phase of evolution ends, the amplitude oscillates due
to pulsations of the cat’s eyes originating from elliptical deformations of the associated
vortices. The pulsations decay slowly under the action of diffusion, with a smoothed,
mixed region emerging around the eyelids of the cat’s eye. Within the core of the
cat’s eye, a very slowly decaying coherent structure persists over times exceeding the
length of the computation (which ran to t = 100). These observations match previous
results extracted from numerical solution of the Boussinesq fluid equations and, for the
later times at least, are artifacts of our two-dimensional computations (e.g. Caulfield &
Peltier 2000).

Figure 7 also includes the mode amplitude for a computation with ν = κ = 10−3,
which is largely identical to the original case, with ν = 3κ = 10−3, until t ≈ 30
whereafter the increased diffusion in the density field more effectively damps the
pulsation of the cat’s eye. For the second computation, by t = 60, the oscillations
in a(t) associated with the cat’s eye pulsations have largely died out, leaving a
quasisteady, slowly diffusing state. In appendix A, we present asymptotic arguments
for ν = κ to suggest a reduction of the defect equations in the long-time limit; unlike
in a number of other shear-flow problems (e.g. Brown & Stewartson 1978; Churilov
& Shukhman 1996), however, it does not seem possible to build the final state in any
analytical fashion.

Figure 8 shows the final horizontal averages of the vorticity and buoyancy field for
the computation of figure 7. Also shown is the final average of Z = Z + Bη for the
example with ν = κ , along with a plot of Z against total streamfunction, Ψ , for all
points on the computational grid. The (Ψ,Z )-relation is largely a single function, as
expected for a quasisteady state (§ 2.3). However, the relationship does not collapse
completely for the highest values of Ψ due to the persistence of a weak coherent
structure in the core of the cat’s eye, even though it is hardly discernible in the final
snapshot of Z .

Details of the transition to KH instability are illustrated in figure 9. When γ = 0.2
and δ = 1, the ν = κ = 0 instability can be triggered by raising f (the strength of
the vorticity defect) through its critical value, f = fc ≈ 1.302, exploiting the smoothing
of the interfaces to avoid any Holmboe instability (with sharper interfaces, instability
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FIGURE 7. (Colour online available at journals.cambridge.org/flm) Numerical solution of the
KH instability for (3.4), (3.7) and (4.1)–(4.2) with f = 2, γ = 0.2, δ = 1/4 and ν = 3κ = 10−3.
The top panel shows a time series of the mode amplitude, a(t), along with the expected
linear growth (dotted line). The dashed line shows a(t) for the ν = κ = 10−3 reduced system
in (2.23). The stars mark the instants at which snapshots of vorticity, Z, and buoyancy, B,
are shown in the series of plots underneath, with Z on the left and B on the right (the
computational domain used is larger than the region shown in order to illustrate the main
features of the dynamics, a device used in all of the results presented below). The plots on the
right-hand side show the horizontal averages of Z (solid lines) and B (dashed lines).

first appears through Holmboe waves on varying f ). Beyond onset, the strength of the
emerging cat’s eye patterns increases smoothly, as can be quantified by recording the
amplitude of the first maximum in a(t) (after initial transients have subsided and the
system has locked onto the exponentially growing linear mode; see figure 9a). This
saturation measure, a∗, is plotted against f − fc in figure 9(b). Just beyond onset for
ν = κ = 10−8, we observe that a∗ ∼ (f − fc)

2, which is the ‘trapping scaling’ of O’Neil,
Winfrey & Malmberg (1971) found for the Vlasov problem, and consistent with
the critical-layer theory of Churilov & Shukhman (1987) and others (e.g. Balmforth,

http://journals.cambridge.org/flm
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(a) Two extended time series of a(t). (b,c) The final (t = 100) horizontal averages (solid
line) of Z and B for the computation with ν = 3κ , together with the initial conditions (dotted
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FIGURE 9. (Colour online) (a) Mode amplitudes for f = 1.5 and 1.8, showing the definition
of a∗, and (b) scaling data, a∗ against f − fc, for KH instabilities with ν = κ = 10−8, γ = 0.2
and δ = 1. In (a), the dotted lines show the expected linear growth and the inset shows a
snapshot of Z = Z + Bη with f = 1.8 at t = 70, with the plot to the right indicating the
x-average (solid lines) and the equilibrium profile (dotted lines). The dashed line in (b) shows
the prediction of the single-wave model; the inset shows a∗ against f , with the threshold,
f = fc, indicated by the vertical dotted line.

Morrison & Thiffeault 2012). Asymptotic reduction in this regime furnishes another
reduced description, the ‘single-wave model’, which crucially removes singularities
from the critical levels of weakly unstable modes (see Balmforth et al. 2012). The
prediction of the single-wave model is also indicated in figure 9(b) (i.e. the scaling
factor in a∗ ∝ (f − fc)

2; equation (B 17)). Note that these results partly reflect the
choice ν = κ � 1: as shown by Shukhman & Churilov (1997), stronger diffusion
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FIGURE 10. (Colour online) First maximum of the mode amplitude, a∗, against f plotted
(a) on a linear graph and (b) logarithmically, for KH instabilities of unstratified defects
with ν = κ = 10−8, ε0 = 10−3 and three values of the interface sharpness parameter, δ (as
indicated). In (a), the unstable, weakly nonlinear equilibrium, a∗ = √fc − f , of the broken-
line case (appendix B) is shown by the solid line. The dashed lines show the predictions of
the single-wave model. In (c), with f < fc and δ = 0.1, we plot mode amplitudes for a suite of
initial-value problems with different forcing amplitude, ε0 (as indicated). For ε0 = 0.675, the
stars indicate the times of the three snapshots of Z (x, η, t) shown to the right. The ‘stable’
and ‘unstable’ first maxima, A(s)∗ and A(u)∗ , are indicated; this data, for varying f , is also shown
in (a) by the crosses.

and a different Prandtl number can change the qualitative features of the dynamics
near onset.

The details of the transition also critically depend on the smoothness of the
interfaces. To demonstrate this, we focus on the unstratified problem to eliminate
the Holmboe instability altogether. Figure 10 shows the saturation measure, a∗, against
f − fc for three values of δ, the interface sharpness parameter. For the case with the
broadest interfaces (δ = 1), the transition is again relatively smooth and characterized
by the trapping scaling. The case with the sharpest interfaces (δ = 0.1), however, is
quite different, with a∗ jumping discontinuously from zero to finite values at the linear
stability threshold (see figure 10b). The intermediate case, with δ = 0.3, combines an
initial smooth onset following the trapping scaling with a subsequent sharp increase in
amplitude (although the solution branch remains continuous).

Thus, the transition is much more abrupt if the interfaces are sufficiently sharp.
In fact, in the limit δ→ 0, corresponding to broken-line equilibria, the single-wave
model does not describe the onset of instability because the unstable modes no longer
suffer critical-level singularities; instead, the weakly nonlinear description is a standard
one, as outlined in appendix B. That analysis indicates that the instability bifurcates
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subcritically, with an unstable finite-amplitude solution existing for f < fc, as drawn in
figure 10(a).

Evidently, the abruptness of the transition for small δ is connected in some fashion
to the impending subcritical bifurcation of the broken-line limit. Moreover, the finite-
amplitude states reached in the initial-value problems for f > fc likely continue to
lower f . To verify this feature numerically, and to decode the dynamics below
the linear instability threshold, we perform initial-value computations in which the
equilibrium is forced with a much stronger initial kick (i.e. larger value for ε0

in (4.2)). For f < fc, the initial-value problems display a clear threshold behaviour
with varying ε0 (figure 10c): sufficiently strong forcings, ε0, trigger a growth of the
mode amplitude up to a level, A(s)∗ , that is otherwise independent of ε0. The system
subsequently develops a pulsating cat’s eye pattern much like the states generated
in the linearly unstable regime. Below the forcing threshold, on the other hand, the
system executes regular, weakly decaying oscillations with an amplitude set by ε0, and
Z (x, η, t) develops no persistent pattern. The threshold forcing amplitude corresponds
to a first maximum, A(u)∗ that we identify as evidence of an unstable nonlinear state.
By recording the two maxima, A(u)∗ and A(s)∗ , in suites of computations with varying f ,
we then continue the data of figure 10 to f < fc; see figure 10, for δ = 0.1. The data
for A(s)∗ evidently continue a∗ from f > fc into the linearly stable regime. This ‘stable
branch’ of solutions terminates at lower f by colliding with the ‘unstable branch’
characterized by A(u)∗ . The latter also converges towards the weakly nonlinear solution
predicted for the broken-line profile as f approaches the linear instability threshold
from below.

It also turns out to be possible to trigger a transition to a finite-amplitude subcritical
state by raising the amount of diffusion (for ν = κ). We illustrate this behaviour
later for the one-sided Holmboe and Taylor instabilities, whose dynamics are similarly
affected by the sharpness of the interfaces and the degree of diffusion.

4.2. Nonlinear Holmboe instabilities
4.2.1. Symmetrical Holmboe instability

Figure 11 shows a numerical computation of a symmetrical Holmboe instability.
The initial kick to the system generates an unstable mode that grows until nonlinear
effects arrest the instability, at which point a pair of counterpropagating nonlinear
waves emerge. Simultaneously, the vorticity distribution rolls up above and below the
density interface into well-defined vortices that deform the density interface, creating
the cuspy features characteristic of nonlinear Holmboe waves. The beating of the two
counterpropagating Holmboe waves generates regular oscillations in the streamfunction
amplitude, a(t), and complicates the nonlinear dynamics (cf. Smyth et al. 1988).
Therefore, to illustrate Holmboe instability more transparently, it proves convenient to
filter one of these waves by considering the one-sided problem of § 3.2.

4.2.2. One-sided Holmboe instability
A simulation of a one-sided Holmboe instability is shown in figure 12. This time, a

single wave-vortex pattern emerges, again characterized by strong filamentation of the
vorticity distribution, Z(x, η, t), and a cusped wave crest in the density field, B(x, η, t)
(at least for times before the smoothing action of diffusion takes effect). Note the
strong baroclinic generation of negative vorticity below the vortex and the positive
vorticity generated underneath the hyperbolic point. Also, the continued roll-up of the
main vortex prompts the formation of finer-scaled features in the density field that look
much like incipient Holmboe waves.
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FIGURE 11. (Colour online) Numerical solution of symmetric Holmboe instability for (3.4),
(3.7) and (4.1)–(4.2) with f = 1/2, γ = 1, δ = 0.1 and ν = 3κ = 9× 10−4. (a) A time series of
the mode amplitude, a(t), along with the expected linear growth (dashed line). The stars mark
the instants at which the snapshots of Z and B are shown in the series of plots in (b–f ); the
horizontal averages of Z (solid lines) and B (dashed lines) are shown in the right-hand plots
(the dotted lines in the first plot shows the equilibrium profile).

Owing to the severe filamentation of the vorticity distribution, diffusion typically
becomes significant once the instability saturates. Figure 13 illustrates further details
of the effect of the dissipative parameters over longer times. Eventually, the winding
up of the fluid by the instability gives way to a protracted diffusive phase. At this
stage, the system relaxes to a quasisteady state with a slowly spreading nonlinear
wave. The limiting ν = κ state is described by Z =Z (Ψ ), as illustrated in figure 13.
The (Ψ,Z )-relation has three branches: A describes the vortex, whereas B and C
represent the regions below and above that cat’s eye pattern, respectively. All three
are connected continuously (but not particularly smoothly) across a single point of the
(Ψ,Z )-relation representing the separatrices of the cat’s eye.



310 N. J. Balmforth, A. Roy and C. P. Caulfield

0.10

0.15

0.05

0

–0.4

0 1 2 –1 0

0 1 2

3 4 5 6
–1

0

1

–0.2 0.2 0.40 0 0.2 0.4

a(t)

10 20 30 40
t

50 60 8070

0 1 2 3
x

x

4 5 6
–1

0

0

0.5

1.0

1

Z, B

(a)

(b)

(c)

(d)

(e)

(g)

( f )

FIGURE 12. (Colour online) One-sided Holmboe instability for (3.12) and (3.7) with f = 1/2,
γ = 1, δ = 0.1 and ν = 3κ = 10−4. (a) A time series of a(t), along with the expected linear
growth (dotted line) and a second computation with ν = κ = 1/3 × 10−4. The stars mark the
instants at which the snapshots of Z and B are shown in the series of plots in (b–f ), with Z on
the left and B on the right. The plots to the right show the horizontal averages of Z (solid) and
B (dashed) and the dotted lines in the first plot show the equilibrium profiles. The circles in
(a) locate the times at which the ν = κ solution for Z are plotted in (g), with the horizontal
averages (that at t = 29 is shown as dashed lines) and truncated initial profile (dotted lines) in
the right-hand plots.

Another noteworthy point is that the solutions for larger Prandtl number, ν/κ ,
display more fine-scale spatial structure than their ν = κ counterparts (as can be seen
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FIGURE 13. (Colour online) One-sided Holmboe instability for f = 1/2, γ = 1, δ = 0.1
and the values of ν and κ indicated. (a) shows a(t); the inset is a snapshot of Z and B
at t = 200 for ν = 3κ = 10−4 (marked by the star in the main panel). The final horizontal
averages of Z and B for ν = κ are shown in (b) (the profiles are steeper for the smaller
diffusion case) along with the initial conditions (dotted lines). (c–e) show details of the
final, ν = κ = 10−4 solution (marked by the solid circle in a). Shown are Z (the dotted
line is the truncated initial condition, and the dashed line shows the final average for the
computation with ν = κ = 3 × 10−4), a snapshot of Z (x, η, t), and the (Ψ,Z )-relation (with
labels indicating the main vortex, A, and the regions below and above, B and C).

by comparing equivalent snapshots in figure 12). This feature was previously noted
for the KH instability by Staquet (1995), and more recently by Mashayek & Peltier
(2011a) and Rahmani (2011), and is apparent in our solutions for all three types of
instability.

4.2.3. Onset
To explore one-sided Holmboe dynamics near onset, we pick f = 1/2, ν = κ and

δ = 0.1, then vary γ through its critical value of γc ≈ 0.228 (cf. figure 5). We again
record the first maximum of the mode amplitude, a∗, beyond the initial phase of linear
growth as a measure the level of saturation. The trend of this measure with γ is shown
in figure 14. The onset of Holmboe waves is relatively sharp, with clear evidence for
nonlinear structures existing below the linear instability threshold.

Further details of the dynamics near onset are provided in figure 15, which
shows mode amplitudes for computations straddling the linear instability threshold.
Figures 14 and 15 also plot growth rates, computed assuming that the equilibrium
profile is fixed and does not diffuse (and employing the methods outlined by
Balmforth 1998). These results demonstrate that diffusion actually destabilizes the
ideal equilibria, a result that can be established more formally using the perturbation
techniques outlined by Balmforth (1998). In fact, as illustrated by the mode amplitudes
in figure 15(a), the destabilization extends to the nonlinear dynamics: after a transient
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FIGURE 14. (Colour online) Scaling data for one-sided Holmboe instability. The main panel
shows the first maximum of the mode amplitude, a∗, against γ for f = 1/2, δ = 0.1 and the
three values of ν = κ indicated. Solutions in periodic domains of length 2π/k with k = 1, 2
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values of γ and k indicated and ν = 10−5. The shading scheme is the same for each snapshot,
and saturates over the main peak to emphasize the details of the cat’s eyes.

in which a(t) follows the growth expected for the inviscid normal modes, diffusion
accelerates that growth and expedites the entrance to the nonlinear regime (although
the eventual saturation of the instability is assisted by diffusion, lowering a∗; see
figure 14). This acceleration cannot be explained by the relatively modest enhancement
of the linear growth rate by diffusion indicated above. More significant is that, over the
time scales on which the instability grows near onset, the background profile diffuses
significantly. The viscous destabilization therefore results from the combination of
diffusion of the equilibrium and the superposed instability. Importantly, as is clear
from the examples with γ < γc in figure 15(b), this effect carries over into the linearly
stable regime, and allows modes to amplify even below the inviscid linear threshold,
thereby generating subcritical nonlinear Holmboe waves (as we remarked earlier in
§ 4.1).

The growth rates shown earlier in figure 5 indicate that additional modes with higher
horizontal wavenumber become unstable for larger γ . The nonlinear solutions that
correspond to the unstable modes with k > 1 can be computed as for the fundamental
modes (k = 1) by solving the initial-value problem in periodic domains of length
2π/k. Figure 14 includes such results for the first and second overtones, k = 2 and 3.
Note that the sharp increases in saturation measure coincide with similarly abrupt
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FIGURE 15. Mode amplitudes for (a) unstable profiles with γ = 0.23, for the four values of
ν = κ indicated and (b) stable profiles for ν = κ = 10−5 and four values of γ . The dot-dashed
line in (a) indicates the expected, inviscid linear growth, and the inset shows growth rates, ci,
against γ for the same values of ν = κ , computed assuming a fixed equilibrium profile. In all
cases, f = 1/2, δ = 0.1 and ε0 = 10−3.

increases in growth rate. For the fundamental mode, k = 1, the sharp rise in growth
rate corresponds to the onset of instability. For k = 2 and 3, however, the rise of kci is
preceded by a shallower ‘skirt’, with onset occurring at somewhat smaller values of γ .
Such skirts are a further consequence of the smoothing of the equilibrium interfaces;
the sudden increases in growth rate are the remnant of the pure interfacial interaction.
With lower diffusion, ν = κ = 10−8, the k = 3 solution branch appears to remain
continuous, whilst there are discontinuous jumps for k = 1 and 2; higher diffusion
smooths out all three branches.

4.2.4. Secondary instabilities and coarsening
Although the higher-overtone modes with k = 2 and 3 pictured in figure 14 are

stable solutions of initial-value problems computed in domains of length 2π/k, they do
not remain stable when the domains are lengthened to 2π. Instead, although the states
can be generated initially by suitably forcing the streamfunction (replacing the n = 1
forcing in (4.3) by one with n = 2 or 3), lower wavenumbers grow unstably from low
amplitude to disrupt the multiple-wave patterns. The disruption takes the form of wave
mergers that coarsen the pattern, leaving a single Holmboe wave in the domain; see
figure 16(a–d).

Coarsening dynamics is a familiar feature of the KH instability, with the celebrated
‘pairing’ instability increasing the vertical extent of a mixing layer (Winant & Browand
1974). However, there is a much greater variety in the form of coarsening instabilities,
as noted by Klaassen & Peltier (1989) and evident in the solutions shown in
figure 16. As far as we are aware, no previous studies have investigated the secondary
instabilities of nonlinear Holmboe waves (or indeed the Taylor billows of § 4.3.2).
In the one-sided Holmboe examples shown in figure 16, the overtones coarsen despite
being more linearly unstable than the fundamental. Likewise, if the computation
begins with a melange of all five unstable modes at this parameter setting (n = 1–5),
the n = 2 and 3 modes outgrow the others initially, generating a state with three
unequal Holmboe waves, but mergers again ensue and the fundamental still dominates
eventually (see figure 16e–f ).

The snapshots of the coarsening solutions in figure 16 are reminiscent of two-
dimensional vortex dynamics. Indeed, the fluid is almost homogeneous above the
density interface where the Holmboe wave vortices circulate and interact. Thus, the
wave evolution is largely a manifestation of the dynamics of the associated vortices,
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FIGURE 16. (Colour online) Coarsening computations for f = 1/2, γ = 4, δ = 0.1 and
ν = κ = 10−5, in which the streamfunction is forced by (a,b) (10−4δn1 + 10−2δn2)te−10t2 ,
(c,d) (10−6δn1 + 10−2δn3)te−10t2 and (e,f )

∑5
j=110−4δnjte−10t2 . (a,c,e) plot a (solid line) and

|Φ1| (dotted line). In (a), the dominantly forced mode, |Φ2|, is shown dashed, and |Φ3| in light
grey. In (c), |Φ3| is the dominantly forced mode and shown dashed; |Φ2| is light grey. In (e),
|Φn| for 2 6 n 6 5 are shown in light grey. The stars indicates the times of the snapshots of Z
in (b,d,f ) (the shading scheme is the same for all and saturates over the main peak).

illustrating how those structures are a defining characteristic of Holmboe waves. By
contrast, the familiar cusp-like features of the density field are simply symptomatic
of the vortices stripping material from the interface, and are not key elements in the
dynamics.

As illustrated in figure 4, the n = 1 mode is linearly unstable for γ = 4, but
a further increase of that parameter stabilizes this mode, raising the question of
whether coarsening still continues to generate the fundamental wavelength at stronger
stratifications. A key issue is that, in the absence of an instability with n = 1, there
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FIGURE 17. (Colour online) Coarsening computations for f = 1/2, γ = 8, δ = 0.1 and ν =
κ = 10−5, in which the streamfunction is forced initially by (10−2δn5 + 10−6

∑8
j=1δnj)te−10t2 .

(a) The Fourier mode amplitudes, |Φn(t)|, for n = 1, . . . , 8, with the fundamental shown by
the darker solid lines, the most unstable mode (n = 5) shown dashed, and the other modes
indicated by the lighter lines. Snapshots of the wave patterns in Z at t = 20 and 44 are shown
as insets. (b) A snapshot of Z (x, η, 150) illustrating the long-time pattern. (c,d) The mode
amplitudes, Φn, averaged over 150< t < 200, against n (circles); in (c) the black dots indicate
the result of a second computation in which all of the eight lowest modes are forced evenly at
the outset, whereas (d) shows results for γ = 4 and 12 (dominantly forcing the most unstable
mode at the outset, as in (a,b) and figure 16e,f ).

may be no nonlinear Holmboe wave with that wavenumber to provide the coarsened
end state, despite the subcritical nature of the transition to instability. In fact, we
observe that the Holmboe waves still coarsen to states dominated by the fundamental
mode for stronger stratifications, as illustrated in figure 17. Admittedly, with the
increased stratification, the higher modes become stronger, degrading the cat’s eye
pattern and enriching the Fourier mode spectrum (see figure 17c–d). Nevertheless,
other considerations suggest that it is dangerous to conclude that the one-sided
Holmboe instability always generates a solution dominated by the gravest wavelength
via an inverse cascade: the deformation of the density interface by the vortices implies
an energetic cost that might, at yet higher γ , penalize coarsening sufficiently to arrest
the process over intermediate length scales.

We have also observed a different type of secondary instability for stronger vorticity
interfaces and larger Prandtl numbers: for larger f , the Holmboe instabilities have an
enhanced effect on the density field, with the main vortex more strongly filamenting
the density field (see figure 18). Despite this, the nonlinear Holmboe wave that first
emerges has qualitative features that mirror the solutions presented earlier. Somewhat
later, however, the mode amplitude develops beating oscillations. We trace these to
the growth of a counterpropagating wave riding on the residual density interface
(see the final two snapshots in figure 18). Associated with the secondary wave is a
conspicuous vortex lying beneath the density interface that strips off lighter overlying
fluid, entraining that material below and deforming the density interface into a cuspy
form. This structure leads us to identify the secondary instability as another Holmboe
wave, growing parasitically atop the primary wave.

It is important to stress that the secondary instabilities detected above are
purely two-dimensional. As already noted in the introduction, for flow subject to
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KH instability, the two-dimensional subharmonic merging (or ‘pairing’) instability
can coexist with inherently three-dimensional instabilities. Furthermore, in certain
parameter regimes (particularly at higher Reynolds number, see Mashayek & Peltier
2011b for a fuller discussion), the small-scale two-dimensional secondary shear
instability predicted by Corcos & Sherman (1976) can also be observed to reach finite
amplitude in the braid between neighbouring KH billow cores, even in the presence of
a range of inherently three-dimensional secondary instabilities. Therefore, we believe
that it is worthwhile to catalogue the two-dimensional secondary instabilities in view
of the possibility that they may appear in three-dimensional flow for some ranges of
physical parameters, competing with three-dimensional secondary instabilities as the
flow undergoes a transition to turbulence.

4.3. The nonlinear dynamics of Taylor’s instability
4.3.1. The billows

An example of our third instability is displayed in figure 19. In this case, the
linear instability perturbs the two density interfaces towards one another, baroclinically
generating a signature in the vorticity field. The continued growth of the unstable
mode causes the intermediate layer to pinch off and contract into an elliptical patch, or
‘billow’, of roughly constant density. The billow becomes shrouded by sharp filaments
of vorticity and begins to pulsate somewhat like the cat’s eyes of the KH instability.
These features mirror previous experimental and numerical observations (Caulfield
et al. 1995; Lee & Caulfield 2001).

Over longer times, the baroclinically generated vortex filaments become increasingly
wound up around the elliptical patch; for higher Prandtl number, the filaments suffer
secondary instability, rolling up to generate significant fine structure (see figure 19f ).
For a lower Prandtl number (ν = κ = 3.33× 10−4), the solution remains smoother, and
after a sufficiently long time, develops into a slowly decaying nonlinear wave. Details
of this solution, including its (Ψ,Z )-relation, are illustrated in figure 20.

As illustrated in § 3.3, the Taylor instability can be generated by fixing the interface
thickness (δ) and then raising the stratification parameter, γ , through the threshold,
γ = γc ≈ k (for small δ, ν and κ). Once more, we track how the instability develops
in the vicinity of this onset by performing suites of initial-value problems with
varying γ . Saturation measures, a∗, are plotted against γ in figure 21, for three
cases with the values of ν = κ and δ indicated. As found for the other instabilities,
the smoother profiles display a gradual onset following the trapping scaling, whereas
sharper interfaces lead to a sudden transition that can be smoothed and extended below
the linear instability threshold by diffusion. For less diffusion, the nonlinear states
bifurcate subcritically (see also the broken-line calculation in appendix B), then turn
around at smaller γ .

4.3.2. Coarsening and other secondary instabilities
For larger γ , Taylor modes with higher horizontal wavenumber also become

unstable (cf. figure 6), highlighting the existence of further billow solutions. The
solutions with k > 1 can again be tracked by performing computations in periodic
domains of length 2π/k; the corresponding saturation measures for k = 2 and 3 are
compared with the fundamental solution branch (k = 1) in figure 22(a).

Similarly to the one-sided Holmboe waves, if the k = 2 and k = 3 nonlinear
states are generated by suitably forcing the corresponding Fourier modes of the
streamfunction in periodic domains of length 2π, they do not remain stable: as
illustrated by the two computations of figure 22 with k = 2 and 3, these structures
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FIGURE 18. (Colour online) Numerical solution of one-sided Holmboe instability for (3.12)
and (3.7), with f = 2, δ = 0.1 and ν = 3κ = 10−3. The top panels show a(t), for (a) γ = 1.5
and 2 and (b) γ = 1. In (b), the expected linear growth is shown as a dotted line, and the stars
mark the instants at which the snapshots of Z (left) and B (right) are shown in (c–g), with
horizontal averages of Z (solid lines) and B (dashed lines) displayed in the right-hand plots;
the dotted lines in the first of these plots indicate the equilibrium profiles.

again suffer longer-wavelength secondary instabilities that trigger billow mergers. In
both examples, the spatial pattern coarsens to a single billow.

Once more, the question arises as to whether coarsening continues as one further
strengthens the stratification (γ ). A partial answer to this question is provided by
initial-value computations with γ as high as 10 (and δ = 0.2 and ν = κ = O(10−3)).
In these computations, coarsening continues uninterrupted to the fundamental mode,
with varying initial forcings. For the non-propagating, symmetrical-in-η, Taylor states
(and also the nonlinear KH modes) we may bolster such results with an explicit
linear stability analysis (although different, this is based on an analysis of the Vlasov
problem by Lin 2001). The details of the analysis are provided in appendix C. In
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FIGURE 19. (Colour online) Numerical solution of the Taylor instability for (3.14) and (3.7),
with γ = 1.5, δ = 0.2 and ν = 3κ = 10−3. (a) shows a(t), along with the expected linear
growth (dotted line), and a second computation with ν = κ = 3.33 × 10−4 (dashed line). The
stars mark the instants at which the snapshots of Z (left) and B (right) are shown in (b–f ); the
circles mark the times of the two snapshots of Z shown in (g) for ν = κ = 3.33 × 10−4. The
right-hand plots show the horizontal averages of Z (solid lines) and B (dashed lines) in (b–f )
and of Z (solid lines) for the two snapshots in (g); the dotted lines indicate the equilibrium
profiles.

brief, we ignore diffusion and assume that the system has converged to a steady
nonlinear wave with a given (Ψ,Z )-relation (cf. figure 20). It then becomes possible
to show that this nonlinear wave equilibrium possesses an unstable linear normal
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FIGURE 21. Saturation measure, a∗, against γ for Taylor billows with δ = 0.2 and δ = 0.6
for ν = κ = 10−8, and δ = 0.2 for ν = κ = 3.33 × 10−4. In (a), the dashed line shows
the unstable weakly nonlinear branch given by (B 16), and the crosses display A(s)∗ and A(u)∗
for subcritical states, computed as in figure 10 and § 4.1. The solid line in (b) shows the
prediction of the single-wave model in (B 17).

mode if a certain integral is negative. The construction demonstrates the instability of
the nonlinear states emerging from the initial-value problems with γ < 10 and two
wavelengths in the domain. Unfortunately (and unlike the corresponding theory for the
Vlasov problem), the need to compute the integral precludes us from confirming that
waves with multiple wavelengths are always unstable, and there remains the possibility
that coarsening becomes interrupted for larger γ . In any event, as noted in § 3.3, the
defect theory does not capture the large-stratification cut-off to the Taylor instability.

The nonlinear waves described above are what one might call ‘pure modes’ as
they are generated by linear modes with a unique wavenumber, k. However, a wide
range of different varieties of nonlinear structures can be generated by using initial
forcings that mix the Fourier modes. For example, figure 23 illustrates a long-lived
state containing billows of unequal size generated by a mix of k = 1 and k = 2 forcing
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FIGURE 22. The top panel shows the ‘bifurcation diagram’ of the first three modes of
Taylor instability for ν = κ = 3.33 × 10−4 and δ = 0.2, computed by adopting periodic
domains of length, 2π/k. The vertical dashed lines indicate the linear stability thresholds for
ν = κ = 0. Below are two computations showing merging of Taylor billows with k = 2 and 3
in periodic domains of length 2π. In the first, with γ = 1.9, the streamfunction is forced
by (10−2δn2 + 10−6δn1)te−10t2 . For the second, with γ = 3, the forcing is 10−2δn2te−10t2 , and
round-off error excite the fundamental mode. Shown on the left are time series of a (solid
lines), Φ1 (dotted lines), Φ2 (dashed lines) and Φ3 (dash-dotted lines; second computation
only). The stars mark the times at which the snapshots of Z (x, η, t) are shown on the right.

terms. By selecting different relative strengths of the two forcing terms, it seems
possible to generate mixed modes with an arbitrary degree of asymmetry between the
billows. The transient state formed after the first merger of the k = 3 simulation in
figure 22 shows another asymmetric mode, and Lee & Caulfield (2001) simulations
with the Boussinesq equations display similar features. As for the higher-wavelength
pure modes, the mixed modes do not survive indefinitely, but again suffer coarsening
instabilities. Of course, this coarsening dynamics is purely two-dimensional, and may
not carry over to three dimensions (a limitation that applies equally to the one-sided
Holmboe dynamics summarized earlier).

A more curious kind of secondary instability is shown in figure 24, which illustrates
the later-time dynamics of the computation shown earlier in figure 19. In this case, at
the higher Prandtl number of ν/κ = 3, the Taylor billows do not persist indefinitely
like their (single-wavelength) counterparts with ν = κ shown in figure 20, which
retain their structure whilst becoming smoothed by slow diffusion. Instead, after
several pulsations the billows abruptly merge together to recreate a central mixed
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FIGURE 24. (Colour online) Continuation to longer times of the numerical solution shown in
figure 19. (a) shows a(t), along with corresponding solutions for ν = 3κ = 2 × 10−3 (dashed
lines) and 3 × 10−3 (dotted lines). The stars indicate the times of the two snapshots shown
in (b,c). The right-hand plots show the horizontal averages of Z (solid lines) and B (dashed
lines).

layer of fluid. Unlike the initial state, however, that region is now bordered by strong
filaments of vorticity and suffers secondary instabilities that resemble Holmboe waves.
Simultaneously, the longer-period pulsations of the amplitude, a(t), break down into
irregular short-period oscillations. As illustrated by the computations with varying
ν = 3κ also included in figure 24, the time of the breakdown is controlled by the level
of diffusion.
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5. Conclusion

The defect approximation furnishes a reduced model of the dynamics of two-
dimensional stratified shear instabilities. In its simplest form, the model consists of
a single evolution equation for a quantity (denoted by Z above) that combines the
main effects of the defect’s vorticity and buoyancy gradient, but is otherwise identical
to the analogous formulation for unstratified defects. The model is also equivalent to a
viscous version of the Vlasov–Poisson system of plasma physics (e.g. Nicholson 1983).
The simplifications afforded by the model allow us to perform suites of well-resolved
computations of flows with relatively sharp vorticity and density interfaces. We are
thereby able to explore the nonlinear dynamics of three canonical types of stratified
shear instability: the KH instability, the Holmboe instability and the Taylor instability.
Within the defect framework, these instabilities are analogous to the Jeans instability
of a self-gravitating sheet (Fujiwara 1981), and relatives of the bump-on-tail and
two-stream instabilities (Nicholson 1983), respectively. Our stratified defects are also
related to the ‘grooves’ and ‘ridges’ of accretion discs explored by Sellwood & Kahn
(1991) (see also Lovelace et al. 2000).

We presented detailed results regarding the onset of the three types of instability.
In particular, we outlined how the sharpness of the vorticity and density interfaces
impacts onset. Relatively smooth interfaces lead to a gradual onset, with the saturation
amplitude of instability following the ‘trapping’ scaling predicted by O’Neil et al.
(1971) and fluid critical-layer theories (e.g. Churilov & Shukhman 1987). For sharper
interfaces, however, the transition to instability is much more abrupt, and even
becomes subcritical (with a nonlinear state existing below the linear instability
threshold) as equilibrium interfaces approach the infinitely sharp (broken-line) limit.
In this situation, the smoothing action of diffusion can be destabilizing. Our prediction
of subcritical states has significant implications for the transient amplification recently
found for linear Holmboe-wave dynamics (Constantinou & Ioannou 2011).

We also explored the dynamics of instabilities with more than one spatial
wavelength. As is well-known, Kelvin–Helmholtz instabilities with multiple
wavelengths suffer a vortex-pairing instability that leads to wave mergers. Here, we
observed that Holmboe and Taylor instabilities can also suffer similar coarsening
instabilities. A key detail of Holmboe wave dynamics is that these nonlinear structures
are composed of vortices rolling up adjacent to a density interface; when that interface
is sharp, the vortices largely sit inside unstratified fluid. Hence, the tendency of the
Holmboe waves to merge is a reflection of familiar vortex dynamics. The Taylor
‘billows’ are rather different, consisting of mixed elliptical patches bordered by strong
baroclinically generated vortex sheets. Nevertheless, a compact secondary stability
theory can be provided for these nonlinear waves to demonstrate their tendency
to coarsen (appendix C). We recorded two other types of secondary instabilities
of the Holmboe waves and Taylor billows, neither of which have been previously
observed. Both secondary instabilities appear for higher Prandtl number and take the
form of additional Holmboe waves growing parasitically on the primary nonlinear
structures. The significance of these secondary Holmboe instabilities to important
practical processes such as mixing is unclear (especially given their two-dimensional
character), although they are particularly destructive in the case of the Taylor billows.
It is an interesting open question how such inherently two-dimensional secondary
instabilities might interact with three-dimensional perturbations as a real flow evolves
towards transition.
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FIGURE 25. (Colour online) Numerical solutions of unstratified KH instability for f = 2,
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Appendix A. Long-time ν = κ dynamics
Mode amplitudes for long-time computations of unstratified KH instability with

different values for ν are shown in figure 25. After the transient pulsations of
the cat’s eyes subside, the system evolves secularly in a manner that depends only
on ν through the rescaled time, T = νt. Figure 25 plots Z against Ψ = Φ − (1/2)η2

during this later viscous phase of evolution for the computation with ν = 1.25 × 10−4;
the vorticity–streamfunction relation is very tight, indicating strong relaxation to a
quasisteady equilibrium with Z = Z(Ψ ).

To rationalize these numerical observations (and those in figure 20), we introduce
the change of variables, (x, η, t)→ (x, Ψ,T), which replaces the Z -equation in (2.23)
with

Zx = ν
[
(ηZΨ )Ψ −η−1(ΦTZΨ +ZT)

]
, (A 1)

where η(x, Ψ,T) = √2[Φ(x,T)− Ψ ]. Since ν � 1, the leading-order solution is
independent of x. Introducing Z = F(Ψ ) + νZ1(x, Ψ,T), and then integrating (A 1)
in x at fixed Ψ to eliminate Z1 gives, to leading order in ν,

[IFΨ ]Ψ = ITFΨ − IΨFT, (A 2)
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where

I(Ψ,T)=
∫

C
η(x, Ψ,T) dx (A 3)

and C denotes (−π,π) for the open streamlines, or (−X,X) with Φ(X,T) = Ψ
(implying η = 0) for the closed streamlines within the cat’s eyes. From (2.17), we
also have

LΦ = 2
∫ Φ(x,T)

−∞
F(Ψ,T)

dΨ
η(x, Ψ,T)

. (A 4)

Equations (A 2) and (A 4) furnish an integro-differential system for the slowly
diffusing Z –Ψ relation.

Appendix B. Weakly nonlinear analysis
B.1. Broken-line analysis

In this appendix we perform a weakly nonlinear analysis of the inviscid defect model
for a broken-line equilibrium profile, Z = H(η) ≡ F(η) − Gη(η). For brevity, we take
H(η) to be an even function and the unstable mode to be non-propagating (as in
the KH and Taylor examples). We set the stage for the weakly nonlinear analysis
by rescaling time, T = εt, and introducing the decomposition, Z = H(η) + z(x, η,T),
where 〈z(x, η,T)〉 = 0. The inviscid defect model can then be written as

ηzx +ΦxHη =−εzT −Φxzη, LΦ =
∫ ∞
−∞

z(x, η, t) dη. (B 1)

The horizontal average, (· · ·)= ∫ 2π
0 (· · ·) dx/2π, of the first of these equations provides

εzT = (Φzx)η . (B 2)

Next, we pose the asymptotic sequences,

H = H0 + ε2H2, z= εz1 + ε2z2 + · · · , Φ = εΦ1 + ε2Φ2 + · · · , (B 3)

Introducing these into (B 1) leads, at order ε, to the marginally unstable normal mode
(with wavenumber k = 1),

z1 =−H0ηΦ1

η
, Φ = A(T)eix + c.c., (B 4)

where c.c. denotes complex conjugate, along with the marginal stability condition,

2=
∫ ∞
−∞

H0η
dη
η
≡ I1 (B 5)

(satisfied by a judicious choice of parameters).
At order ε2:

z2x =−1
η
(H0ηΦ2x + z1T +Φ1xz1η), (B 6)

indicating

z2 = z2 − H0η

η
Φ2 − H0η

η2
Φ1xT + 1

2
(Φ2

1 −Φ2
1 )

1
η

(
H0η

η

)
η

. (B 7)
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Given the symmetry of the equilibrium profile,

Φ2 =−1
4
(Φ2

1 −Φ2
1 )I3 =−1

4
(A2e2ix + c.c.)I3, I3 =

∫ ∞
−∞

H0η
dη
η3
, (B 8)

and so

z2 = z2 − H0η

η2
Φ1xT +

[
H0η

4η
I3 + 1

2η

(
H0η

η

)
η

]
(A2e2ix + c.c.). (B 9)

Also, in view of (B 4), the first non-trivial result from (B 2) is

z2T = (Φ1z2x +Φ2z1x)η =
(

H0η

η2

)
η

(|A |2)T, (B 10)

implying

z2 =
(

H0η

η2

)
η

(|A |2−|A0 |2), (B 11)

if A(0)= A0 and z2(η, 0)= 0.
Finally, at O(ε3):

z3x =−1
η
(H0ηΦ3x + H2ηΦ1x + z2T +Φ2xz1η +Φ1xz2η). (B 12)

Isolating the contribution of the right-hand side to the first Fourier mode, eix, and then
applying the second relation in (B 1) leads to the amplitude equation,

I3ATT = JA+ 1
4(I

2
3 + 2I5)|A |2 A, (B 13)

with

J =
∫ ∞
−∞

H2η
dη
η
− 2I5|A0 |2, I5 =

∫ ∞
−∞

H0η
dη
η5
. (B 14)

We now take |A0| � 1. For the Kelvin–Helmholtz case, with f = 1+ ε2f2, γ = 0 and
Hη = f [δ(η − 1)− δ(η + 1)], the integrals, I1 = I3 = I5 = 2 and J = 2f2, giving

ATT = f2A+ |A |2 A. (B 15)

For the Taylor case, with f = 0, γ = 1+ ε2γ2 and H = γ [δ(η− 1)+ δ(η+ 1)], we have
I1 = 2, J = 2γ2, I3 = 6 and I5 = 10, leading to

ATT = γ2

3
A+ 7

3
|A |2 A. (B 16)

In both cases, the nonlinear terms are destabilizing and the bifurcation is subcritical.
Note that the integrals I3 and I5 do not exist if H0(η) is a smooth function with
non-zero higher derivatives at η = 0.

B.2. Critical-layer theory
When the critical-level singularities at η = 0 cannot be removed by suitably arranging
the derivatives of H(η) to vanish, a different asymptotic scheme is needed to that
followed above. The details follow along the guidelines presented by Churilov &
Shukhman (1987) and Shukhman & Churilov (1997); a derivation more aligned to our
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defect model is given by Balmforth et al. (2012). We skip to the main conclusions: the
problems posed by the critical-level singularities force one to abandon a conventional
weakly nonlinear expansion in a narrow region around η = 0 (the critical layer) and
search for a different solution there. That solution can be matched to the standard
weakly nonlinear solution, which remains valid outside the critical layer. Unfortunately,
there is no analytical solution for the critical layer, and one must still solve a nonlinear
partial differential equation much like the original defect equation. Thus, the theory
is less explicit and demands a numerical component. Also, the scalings in ε that
are required in the theory are different to those in (B 2). In particular, z and Φ are
order ε2, whereas H = H0 + εH1; this is the trapping scaling of O’Neil et al. (1971).
After numerically solving the critical-layer problem, we find an estimate for the first
maximum in a(t):

a∗ ∼ 0.52

[H0ηη(0)]2
[∫ ∞
−∞
[H(η)− H0(η)]η

dη
η

]2

. (B 17)

Appendix C. Secondary instability
Consider a stationary nonlinear wave given by

Φ =Ξ(x), Z =F (Ψ ), Ψ =Ξ(x)− 1
2η

2. (C 1)

Normal-mode perturbations about this state with the form,

Φ =Ξ(x)+ ξ(x)eλt, Z =F (Ψ )+ σ(x, η)eλt, (C 2)

satisfy

λσ + ησx +Ξxση = ηFΨ ξx, L ξ =
∫ ∞
−∞
σ dη. (C 3)

As shown by Lin (2001), if λ is real and positive, then the first of these equations can
be solved for σ in terms of ξ using the method of characteristics. Formally, we write∫ ∞

−∞
σ dη =Kλξ, (C 4)

where Kλ is an operator that integrates ξ(x) over the characteristics, and which are
equivalent to the streamlines, Ψ = constant, of the nonlinear wave. The specific wave
solutions of interest possess two families of streamlines: the closed streamlines within
the cat’s eyes and the open streamlines above and below.

The equation determining ξ now becomes (Kλ −L )ξ = 0. Lin (2001) establishes
that Kλ (for λ real and positive) is self-adjoint. Next consider the associated
eigenvalue problem,

(Kλ −L )w=Λw, (C 5)

for which

Λ(λ)=R[w] =

∫ 2π

0
w(Kλ −L )w dx∫ 2π

0
w2 dx

. (C 6)
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Note that, from (C 3), σ ∼ O(λ−1) for λ� 1, and so the eigenvalues of Kλ −L ∼
−L are Λ ∼ 2k in this limit. Moreover, because each Λ(λ) is a continuous function,
if we can establish that the smallest associated eigenvalue, Λ0(λ), is negative for
λ→ 0 (from above), then there must be an intermediate value of λ for which that
eigenvalue vanishes. That is, there must be an unstable mode.

In the Vlasov version of the problem considered by Lin (2001), the analogue of
(C 6) contains the differential operator, ∂2

x , rather than our integral operator L . This
precludes us from exploiting the Sturmian theory of ordinary differential equations
(ODEs), which is the last piece of the proof of instability provided by Lin. Instead, to
show that Λ0(0) < 0, we use the variational form of the associated eigenvalue problem.
In particular, if the right-hand side of (C 6) can be evaluated and shown to be negative
using a suitable trial function, then the result is established since the actual associated
eigenvalue must be smaller.

Thus, we require the limiting form of Kλw for λ→ 0. This form can be found by
introducing the expansion σ = σ0 + λσ1 + · · · into (C 3). We find

ησ0x +Ξxσ0η = ηFΨwx, ησ1x +Ξxσ1η =−σ0. (C 7)

By transforming from (x, η) to a new set of coordinates based on the streamlines,
(x, Ψ ), these equations may be rewritten as

σ0x =FΨwx, σ1x =−1
η
σ0, (C 8)

where η(x, Ψ )=±√2(Ξ − Ψ ). Thus, σ0 =Σ(Ψ )+wFΨ , where the arbitrary function
of integration, Σ(Ψ ), can be determined by observing that the integral of σ1x along the
complete circuit of any of the characteristic curves must vanish. That is,

∮
σ0 dx/η = 0,

if we denote by
∮
(· · ·) dx the integral across the periodic domain (0 6 x 6 2π) or

around the closed streamlines for the two families of characteristics. To be more
definitive, suppose that there are N wavelengths of the steady nonlinear solution within
the domain. Then there are N intervals in x corresponding to each cat’s eye for a
given Ξmax > Ψ > Ξmin, which we denote as Ik, k = 1, . . . ,N (see figures 26 and 27).
For each value of Ψ within this range, Σ = −FΨWk and σ0 = (ξ −Wk)FΨ , if x ∈ Ik,
where

Wk = 2
Π

∫
Ik

w(x) dx√
2[Ξ(x)− Ψ ] ,

Π = 2
∫

Ik

dx√
2[Ξ(x)− Ψ ] = 2

∫ x2

x1

dx√
2[Ξ(x)− Ψ ] ,

 (C 9)

and I1 = [x1, x2], as in figures 26 and 27. Above or below the cat’s eyes (Ψ < Ξmin),
on the other hand, Σ = (ξ −W)FΨ with

W = 1
Π

∫ 2π

0

w(x) dx√
2[Ξ(x)− Ψ ] , Π =

∫ 2π

0

dx√
2[Ξ(x)− Ψ ] . (C 10)

We now change variables, (x, η)→ (x, Ψ ), in the double integral,
∫ 2π

0

∫∞
−∞(· · ·) dη dx,

contained in the numerator of R[w], to write

R[w] =

∫ 2π

0
w(V −L )w dx+RC∫ 2π

0
w2 dx

(C 11)
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FIGURE 26. (Colour online) Slowly diffusing, long-time, KH solution with f = 4, δ = 1,
γ = 0, ν = 10−3 and ε0 = 10−4, in a domain of length π. Two wavelengths of the final
(t = 100) solution are shown; (a) displays Ξ(x), (b) plots the potential V(x) computed using
(C 15), and (c) shows contours of constant Ψ with shading corresponding to Z(x, η, t). In
(a), the dotted curve shows the eigenfunction corresponding to the smallest eigenvalue of
(L −1V − 1)w = ΛL −1w. The vertical dashed lines in each panel show the borders of the
intervals Ik, k = 1 and 2 (I1 = [x1, x2]), for a particular value of Ψ corresponding to one of the
closed contour levels in (c).
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FIGURE 27. (Colour online) A similar picture to figure 26, but for a solution at t = 90
generated by the Taylor instability with γ = 8, δ = 0.2, ν = κ = 2 × 10−3 and ε = 10−4, in a
domain of length π.

where

V(x)=
∫ ∞
−∞

FΨ (Ψ ) dη (C 12)
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and

RC =−
∫ Ξmin

−∞
FΨW2 dΨ −

∫ Ξmax

Ξmin

FΨ

N∑
k=1

W2
k dΨ. (C 13)

Note that the nonlinear wave itself satisfies

LΞ =
∫ ∞
−∞

F (Ψ ) dη, (C 14)

implying

V ≡ 1
Ξx

∂

∂x

∫ ∞
−∞

F (Ψ ) dη ≡ LΞx

Ξx
. (C 15)

For the KH solutions, FΨ < 0 (see figure 8). Thus, RC impedes us establishing
that Λ(0) < 0. This contribution also significantly complicates efforts to work with
R[w]. To make progress, we therefore consider nonlinear waves with two wavelengths
in the domain, as in figures 26–27, and adopt trial functions for w(x) which have
the opposite symmetry to Ξ with regard to the centres of the cat’s eyes. This choice
guarantees that Rc = 0 in view of the form of the integrals Wk and W, and is
straightforward to arrange: with a suitable shift of x, both the KH and Taylor solutions
in figures 26–27 can be written as Fourier series,

∑∞
n=1Ξn cos 2nx; it then suffices to

take w=∑∞n=1wn cos(2n− 1)x. Thus, we are left with

R[w] →

∫ 2π

0
w(V −L )w dx∫ 2π

0
w2 dx

. (C 16)

A simple trial function is cos(x − xs), where xs denotes the centre of one of the cat’s
eyes. For the two solutions presented in figures 26–27, and given the potential function
V(x) computed via (C 15), we then find that Λ(0) < −1.93 or −2.3, respectively.
Note that we may further compute the actual smallest eigenvalues of the eigenvalue
problem, (L −1V − 1)w=Λ(0)L −1w using a simple discretization of x and quadrature
rule for the integral in L −1 (exploiting the Fourier series representation of this
operator). This calculation implies that Λ(0) ≈ −1.94 and −4.6; the corresponding
eigenvectors (which have the correct symmetry to ensure that RC = 0) are also plotted
in figures 26–27. For the KH example, the eigenvector’s shape is close to cos x, and
the variational estimate of Λ(0) is close to the computed eigenvalue. The estimate for
Λ(0) is rather worse for the Taylor case because of the relatively non-sinusoidal form
of its potential V(x). In any event, via a straightforward computation, we establish the
instability of the two solutions towards normal modes with twice the wavelength; i.e.
coarsening modes.

Low-amplitude waves provide another illustration of the construction of R[w]. For
these solutions, Ξ ∼ a cos Nx, and if N is even, we may take w = cos(Nx/2) to
guarantee that RC = 0. Moreover, V ∼ −2N, and so R →−N < 0. i.e. sufficiently
low-amplitude waves are always unstable to modes with twice the wavelength.
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