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ABSTRACT

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity

waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography

consists of periodic obstructions; a Green function method is used to construct the scattered wavefield. The

calculations extend the previous results of Balmforth et al. for subcritical topography (wherein waves

propagate along rays whose slopes exceed that of the topography everywhere), by allowing the obstacles to

be arbitrarily steep or supercritical (so waves propagate at shallower angles than the topographic slopes and

are scattered both up and down). A complicated pattern is found for the dependence of energy conversion on

e, the ratio of maximum topographic slope to wave slope, and the ratio of obstacle amplitude and separation.

This results from a sequence of constructive and destructive interferences between scattered waves that has

implications for computing tidal conversion rates for the global ocean.

1. Introduction

The generation of internal waves as the barotropic

tide flows over topography on the ocean floor has lately

received wide interest in view of observations by satel-

lite altimetry (e.g., Egbert and Ray 2000) and the sug-

gestions that the breaking of such waves could play an

important role in setting up large-scale ocean circula-

tion (Munk and Wunsch 1998); Garrett and Kunze

(2007) offers a general review. A key issue is how much

energy is converted into internal waves, a problem that

has spawned a number of recent theoretical studies.

Here we add some more results to this literature.

A previous article (Balmforth et al. 2002) explored a

two-dimensional model of the generation process,

building on earlier work by Bell (1975a,b). The topog-

raphy was taken to be periodic, of gentle inclination, and

lie underneath an ocean of infinite depth—assumptions

that simplified the mathematics of the problem. The

steepness of the topography can be quantified in terms of

an important dimensionless parameter e, which is the

ratio of the maximum slope of the topography to the

slope of the rays along which the radiated gravity waves

propagate. As they are forced at the tidal frequency v,

these waves propagate along slopes that are fixed purely

by the local buoyancy frequency N and Coriolis fre-

quency f, which are independent of the shape of the

scattering obstacle. Explicitly,

e 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � v2

v2 � f 2

s
max(jh

x
j), (1)

where z 5 h(x) denotes the two-dimensional topo-

graphic surface, and hx [ dh/dx.

In terms of e, Bell’s theory applies when e � 1. The

work of Balmforth et al. (2002) applies when e , 1, or

when the topography is ‘‘subcritical.’’ However, neither

approach can be used when e . 1, or when the topog-

raphy is ‘‘supercritical.’’ Our goal in this article is to

extend the results to the supercritical regime.1 To ac-

complish the task, we exploit the Green’s function
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1 Our current definition of e is slightly different to that given by

Balmforth et al. (2002). They defined this parameter in terms of a

topographic height rather than the slope. We prefer (1) because it

gives the criticality condition as e 5 1.
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techniques outlined by Petrelis et al. (2006) and

Nycander (2006), who considered isolated, ridgelike

topography in an ocean of finite depth and periodic

knife edges in an infinitely deep ocean, respectively.

The results offer estimates of the rate at which baro-

tropic tidal energy is converted into the internal tide,

which can be compared with analogous results for iso-

lated geometries (Llewellyn Smith and Young 2003;

St. Laurent et al. 2003; Petrelis et al. 2006), and the nu-

merical simulations of sinusoidal topography (Khatiwala

2003) and isolated steep topography (DiLorenzo et al.

2006). Importantly, by considering a periodic array of

bumps, our study considers spatially extended topogra-

phy that is more realistic than Nycander’s (2006) knife

edges and explores how conversion from a richer bottom

structure is not merely akin to superposing isolated

bumps. Altogether, our results serve to complete and

unify several preceding articles.

2. Mathematical formulation

a. The wave equation

Our two-dimensional, horizontally periodic ocean

model has infinite depth and constant buoyancy fre-

quency N and Coriolis frequency f. The mathematical

problem surrounds solving the internal wave equation

(c
xx

1 c
zz

)
tt

1 N2c
xx

1 f 2c
zz

5 0, (2)

subject to the condition

c(x, h, t) 5 Uh(x)cosvt, (3)

applying on the topography [located at z 5 h(x)]2, an

outgoing radiation condition for z / ‘, and periodicity

in x. Here, U is the tidal speed, v is a tidal frequency,

and the dependent variable c(x, z, t) is the stream-

function from which we may rebuild the velocity field

and buoyancy perturbations via

u 5 �c
z
, w 5 c

x
, and b

t
5 �N2c

x
. (4)

This formulation is inviscid, following the earlier studies

of tidal conversion. Details of the derivation of these

equations can be found in, for example, Balmforth et al.

(2002).

We cast the problem into a convenient dimensionless

form by setting

X 5 kx, Z 5 kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � v2

v2 � f 2

s
, and

c 5 Uh
m

Re[e�ivtu(X, Z)], (5)

which incorporates the periodic time dependence at the

tidal frequency expected in the steady-state scattering

problem. The topography has a horizontal wavelength

given by 2p/k, and the characteristic height hm is defined

such that the dimensionless topography

H(X) [
h(x)

h
m

(6)

has a maximum slope of unity. Therefore,

u
XX

5 u
ZZ

, (7)

subject to the periodicity conditions u(0, Z) 5 u(2p, Z)

and uX(0, Z) 5 uX(2p, Z), the inviscid boundary con-

dition on the topography

u[X, eH(X)] 5 H(X), (8)

and the outgoing radiation condition applying for Z / ‘.

Though by no means essential, the topography H(X)

is assumed to satisfy the reflection symmetry H(X) 5

H(2X). The explicit example that we use is the ‘‘peri-

odic Gaussian’’:

H(X) 5
eg(cosX�C

g
)ffiffiffiffiffiffiffiffiffi

gC
g

q and C
g

5
1

2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 4g2

p
� 1

� �
,

(9)

as introduced by Balmforth et al. (2002), although the

current definition ensures that max(jHXj) 5 1. Note that

the dimensional peak-to-peak amplitude of the topog-

raphy b is given by

b 5 h
m

[H(0)�H(p)]. (10)

The parameter g controls the degree of isolation of the

periodic bumps; in the limit g / 0, the topography

converges to a sinusoid, whereas H(X) increasingly re-

sembles an array of widely separated and nearly

Gaussian bumps as g is increased.

b. The Green function solution

By suitably arranging an array of sources along the

topography, the solution of (7) and (8) can be concisely

expressed in terms of a Green function,

u(X , Z) 5

ðp

0

G[X, X9, Z, eH(X9)]G(X9)dX9, (11)

2 Note that this nonlinear boundary condition prevents one from

linearly superposing solutions, which is a key simplification for the

calculation of conversion rates of the global ocean using Bell’s

approximation (Nycander 2005).

1966 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



where G(X, X9, Z, Z9) is the Green function and G(X) is

the source density. We use the Fourier series formula

G5 �
‘

p51

cospX cospX9

pp
(e�ipjZ�Z9j � e�ipjZ1Z9j)

1
i

2p
(jZ 1 Z9j � jZ � Z9j); (12)

much more information about this function is given in

the appendix. Suffice to say that the formula automati-

cally incorporates the periodicity requirement in X and

applies the outgoing radiation condition for Z / ‘.

The source density is fixed once we impose the in-

viscid boundary condition (8), which furnishes the in-

tegral equation

H(X) 5

ðp

0

G[X, X9, eH(X), eH(X9)]G(X9)dX9. (13)

With the Fourier series (12) and a clever numerical

quadrature scheme, we can solve (13) by discretizing

and turning that equation into a straightforward matrix

inversion. Some care is needed because the Green

function has logarithmic singularities, and we follow

the guidelines set down by Petrelis et al. (2006). The

singularities can be removed by first dividing up

the interval 0 # X, X9 # p into a grid fX
m

, X9
n
g (for 0 #

m and n # N for some N), and then integrating (13)

over each of the resulting segments. Provided the

grid is sufficiently fine, we arrive at the approximate

system

1

2
D(H

m
1H

m�1
)

5 �
N

n51
G

n�1
2

ðX
m

X
m�1

ðX
n

X
n�1

G[X ,X9, eH(X), e H(X9)]dX dX9,

(14)

where Gn�1/2 5 [G(Xn) 1 G(Xn�1)]/2. The integrals can

be evaluated straightforwardly to complete the matrix

inversion problem using the approximations

H(X) ’ H
m�1/2

1 H9
m�1/2

X �X
m�1/2

� �
and

H(X9) ’ H
n�1/2

1 H9
n�1/2

X9�X
n�1/2

� �
,

where the subscripts n�½ and m�½ indicate averages

over the nth and mth segments, or, just as accurately,

the values at the midpoints. Typically, we used about

103 spatial grid points [max(n)] and 104 terms in the

Fourier series [max(p)].

c. The conversion rate

Along horizontal sections above the crests of the to-

pography, the solution simplifies to the series,

u 5 �
‘

p51

1

p
Ĝ

p
cospXe�ipZ 1

ie

p

ðp

0

H(X9)G(X9)dX9,

(15)

where

Ĝ
p
(e, g) 5

1

p

ðp

0

G(X) cospX[eipeH(X) � e�ipeH(X)]dX.

(16)

This alternative form of the solution is useful in calcu-

lating the conversion rate.

Following Balmforth et al. (2002), the (dimensional)

conversion rate can be determined to be given by

C5
rU2h2

m

2iv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N2 � v2)(v2 � f 2)

q ðp

0

(uu
Z
*� u*u

Z
)dX.

(17)

Using the decomposition (15), we rewrite this in the

form of

C5
prb2U2

8v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N2 � v2)(v2 � f 2)

q
M(e, g), (18)

where

M(e, g) 5
4h2

m

b2
�
‘

p51

1

p
jĜ

p
j2 (19)

contains the detailed dependence on the topographic

shape through both the Fourier coefficients Ĝp(e, g),

and the prefactor 4h2
m/b.

Along the lines pointed out by Petrelis et al. (2006), an

alternative formula for M(e, g) follows from inserting the

definition of Gp into (19) and using the integral (13), giving

M(e, g) 5
h2

m

b2

ðp

0

H(X)G
r
(X)

dX

p
, (20)

where Gr [ Re(G). A comparison of numerical values of

(19) and (20) offers a useful check of computational

accuracy.

3. Results

a. The sinusoid (g 5 0)

Figure 1 shows a sample calculation for supercritical

sinusoidal topography. The source density develops
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sharp, singular peaks that can be traced to upward and

downward propagating wave beams that leave the to-

pography at the points with critical slope, and, in par-

ticular, where these beams subsequently reflect off the

bottom. The beams, which dominate the radiated

buoyancy field, are formally divergent in inviscid wave

theory, as noted by previous authors (Balmforth et al.

2002; Petrelis et al. 2006). In the numerical calculations,

the buoyancy perturbations are actually made finite by

the truncation of the spatial and Fourier sums in (12)

and (14). A more controlled smoothing procedure is to

add explicitly a viscous correction (cf. Peacock et al.

2008). In the graphical representation of the radiated

buoyancy field, the shading levels saturate well below

the extremal values reached, rendering the plot inde-

pendent of the precise truncation used (or, equivalently,

the size of any viscous correction).

Note that wave beams can only be emitted from the

uppermost points of critical slope, where the topogra-

phy is convex. Also, with a smooth bottom profile, the

downward propagating wave beams must always even-

tually encounter a subcritical slope and therefore be-

come reflected back upward, thereby escaping any to-

pographic traps.

Sample conversion rates M(e, 0) for the sinusoidal

topography are shown in Fig. 2. The results for sub-

critical topography match the earlier calculations of

Balmforth et al. (2002) and increase from unity at e 5 0

(Bell’s limit) up to about 1.56 at criticality. The con-

version rate increases a little farther beyond e 5 1, up to

a maximum value just above 2 but then abruptly de-

clines and begins a series of decaying oscillations with e.

As illustrated by the top row of wavefields in the figure,

the conversion rate peaks when all the upward pro-

pagating wave beams follow similar paths and have a

common overall phase at levels above the crests of the

topography. The minima of M(e, 0), on the other hand,

correspond to instances wherein the beams follow sim-

ilar paths but have an opposite overall phase (the lower

row of wavefields). Thus, we conclude that the peaks

and troughs are caused by constructive and destructive

interferences among the beams within the scattered

wavefield, as found for other topography by Petrelis

et al. (2006) and Nycander (2006). Note that, although

the beams are merely following characteristic lines at

458, it is the concentration of the wavefield in these

structures that is key to the patterns of interference,

which become increasingly complex with increasing e,

as shown in Fig. 2.

b. The periodic Gaussian

A sample solution for a periodic Gaussian (with g 5 10

and e 5 2) is shown in Fig. 3. Note that the Green function

solution can also provide a solution for ‘‘inverted’’ to-

pography, corresponding to scattering by a periodic array

of trenches. The second panel of Fig. 3 illustrates both

wavefields.

Conversion rates for periodic Gaussians are shown in

Fig. 4. For e / 0, the conversion rate converges to a

g -dependent value between 1 (the rate for a sinusoid,

given by g 5 0) and 4/p (the conversion for an isolated

Gaussian bump with g / ‘). Sufficiently far above

criticality, the conversion rate again passes through a

sequence of constructive and destructive interferences.

For the more widely separated obstacles (g 5 4 and

higher), the conversion rate initially flattens out close to

2 before the beginning of the interference sequence,

which is the value expected for an isolated knife edge

(Llewellyn Smith and Young 2003; Nycander 2006).

FIG. 1. Scattering from supercritical sinusoidal topography with e 5 1.5. (a) Shown is G(X) and (b) a snapshot of the

dimensionless buoyancy perturbation Re(2iuX) at t 5 0. Note the residual noise in G(X), generated by the inade-

quacy of the numerical scheme to cope properly with the sharp features in G(X) occurring where the beams intersect

the topography. The shading levels used to plot the buoyancy perturbation in (b) are chosen so that saturation occurs

well below the extremal values reached by the solution. This device is used in all subsequent plots of radiated

buoyancy fields and is essential to removing the dependence of the plot on the truncation of the sums in (12) and (14),

which renders the solution finite.
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Conversion rates for Gaussian ridges and trenches are

compared in Fig. 5. When the topography is subcritical,

the conversions are identical, as noted by Balmforth

et al. (2002). However, once the slopes become super-

critical, this no longer remains the case. As is clear from

Fig. 3, the trench suffers a more complicated pattern of

interferences than the ridge, leading to faster oscilla-

tions in the conversion rate. The conversion is on the

whole much less for the trench than the ridge. It is also

almost independent of g once the obstacles are suffi-

ciently far apart (g sufficiently large), reflecting how the

scattering is localized and directed away from neigh-

boring trenches, with interference occurring only within

each trench.

FIG. 2. The dimensionless conversion rate and a series of snapshots (at t 5 0) of the buoyancy perturbation of the

wavefield for the sinusoidal topography. Arrows indicate the e values of the snapshots, and the circles show the

subcritical results of Balmforth et al. (2002).

FIG. 3. Scattering from periodic Gaussian topography with e 5 2 and g 5 10. (a) Shown is the buoyancy pertur-

bation of the up-going wave field Re(2iuX). (b) Shown is a magnification around the Gaussian bump and both the

up-going wavefield from a Gaussian bump and the down-going wavefield from a Gaussian trench.
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Despite the oscillatory structure in the conversion

rates introduced by the interference sequence displayed

in Figs. 2, 4, and 5, the overall trend is for M(e, g) to

decrease for large e (the curves for g 5 20 and 100 in

Fig. 4 follow the trend only for higher values of e than

those shown, as do the ridge conversion rates shown in

Fig. 5). This fall off with topographic amplitude (as in-

corporated in e) is deceiving in view of the dimensional

prefactor of the complete conversion rate C in (18),

which contains b2. To emphasize the main dependence

on topographic amplitude, we must extract the b2 from

the prefactor in a suitable dimensionless form and

then include that combination in M(e, g). Following

Nycander (2006), we write the dimensional conversion

rate in the alternative form

C5
rU2

vk2
(v2 � f 2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v2 � f 2)

(N2 � v2)

s
I(B, g), (21)

where

I(B, g) 5
p

8
B2M(e, g), and (22)

B [ kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � v2

v2 � f 2

s
5

eb

h
m

(23)

FIG. 4. Conversion rates, M(e, g), for periodic Gaussian topography with g 5 1, 2, 4, 10, 20, and 100. The points

show a computation for an isolated Gaussian (g / ‘) obtained using the methods of Petrelis et al. (2006). The two

insets focus in on conversion rates for near-critical topography and for a peak in the conversion rate.

FIG. 5. The dimensionless conversion rates for periodic Gaussian ridges and trenches with

g 5 10 and 20. The two sets of results for different g are distinguishable only for the case of

Gaussian ridges, where the conversion for g 5 10 is higher than that for g 5 20.
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is a new dimensionless parameter giving the topogra-

phic amplitude in terms of an alternative vertical length

scale based on the separation of the obstacles scaled by

the wave slope (and which is used in the new prefactor

of C).

The function I(B, g) expresses a new dimensionless

conversion rate in terms of B and the shape parameter g

and is shown in Fig. 6 for the periodic Gaussian ridges.

The oscillations of I(B, g) no longer decrease in strength

with B. Also included in the figure is the curve

I(B, g / ‘) [

ðB

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosz

cosz� cosB

r
zdz, (24)

which is Nycander’s result for a periodic array of knife

edges and the result expected for an isolated knife edge,

I 5 pB2/4 (Llewellyn Smith and Young 2003). Note

that, for a periodic array of knife edges, the positions of

the ‘‘resonant’’ peaks in the conversion rate occur when

B 5 (2m 1 1)p, whereas the minima of I(B, g / ‘)

arise for B 5 2mp. For the periodic Gaussians, the

resonance peaks are shifted with respect to Nycander’s

knife edges as a result of the finite width and slopes.3

Moreover, the peaks in conversion are finite, in contrast

to the singular peaks for the knife edge resonances,

which diverge logarithmically.

4. Summary

Once the maximum topographic slope exceeds that of

the scattered gravity waves, singular beams radiate away

from points on the topography with critical slope, which

are locally convex (which guarantees that the scattered

waves lie within the fluid). The up- and down-going

beams can interfere with one another, either construc-

tively or destructively, once the latter have been reflected

back up. The pattern of constructive and destructive in-

terference that results when one changes the height of

the topography is reflected in an oscillatory rate of en-

ergy conversion. Our main results have been for periodic

FIG. 6. Rescaled conversion rate I against the dimensionless height parameter B for (a) sinusoidal (g 5 0) and (b)

periodic Gaussian topography (g 5 1, 2, 4, 10, and 20). Also indicated are results for Nycander’s periodic array of

knife edges (dashed curve) and an isolated knife edge [dotted curve in (a)]. Note that the results for the periodic

Gaussian were computed for the range 0 # e # 20, which corresponds to varying ranges of B for different g values

(e.g., the g 5 20 curve ends just above B 5 7).

3 As pointed out to us by Jonas Nycander, a straighforward

geometrical construction furnishes the modified peak positions.
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arrays of Gaussian ridges, although we have also pre-

sented energy conversion rates for Gaussian-shaped

trenches, finding the latter to be much less efficient at

generating internal tides in supercritical regimes.

Although we have explored periodic topography, the

results indicate that the supercritical conversion rate of

extended topography depends sensitively on the details

of the geometry because this in turn controls the pattern

of interference. Consequently, in ocean settings where

the topography is nominally two-dimensional yet irreg-

ular [as in the ‘‘random topography’’ considered by

Balmforth et al. (2002)], it would be difficult to predict a

typical conversion rate. The best we can do given the

current results is to report that conversion rate I(B, g),

when averaged over an oscillation of the interference

sequence, gives a value of around 4 for each g (cf. Fig. 6).

Thus, a crude estimate in a general supercritical situa-

tion is

C ;
4rU2

vk2
(v2 � f 2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v2 � f 2)

(N2 � v2)

s
, (25)

which may prove a useful parameterization in predict-

ing tidal conversion rates of the global ocean. Note that,

as anticipated by Nycander (2006), this average con-

version rate is independent of topographic height, un-

like the results for isolated topography (e.g., Petrelis

et al. 2006).

Nevertheless, the preceding discussion fails to take

into account the fact that real topography is three-

dimensional. In such situations we envisage that the

proximity of neighboring peaks will have less of an

effect on the conversion rate because geometrical

spreading weakens the wave beams as they propagate,

unlike in two dimensions. It is not even clear whether

the conversion rate saturates with increasing height of

three-dimensional topography.

We close with a comment on a curious feature of

another topographic shape—the sawtooth profile. This

profile has the property that waves are always scattered

from each of its faces in the same direction. For sub-

critical sawtooths, the wavefield propagates upward and

generates wavefields like that illustrated in Fig. 7; the

sharp divisions emanating from the corners of the saw-

tooth develop into beams in the buoyancy field. Also

shown in the figure is the conversion rate for e , 1.

When the topography is supercritical, on the other

hand, waves always scatter downward. In contrast to

most other profiles, there is no deeper portion of the

topography with gentler slope that can reflect these

waves back upward. Thus, the lower points of the saw-

tooth become wave attractors. In this circumstance it

does not seem possible to obtain a stationary, regular

scattering state. Indeed, our computations do not con-

verge for e $ 1, and the conversion rate looks to diverge

as e / 1. It is not clear how physical this situation could

be. Nevertheless, it suggests that there may be some

interesting wave dynamics, and possibly mixing, at the

bottom of steep-sided troughs.
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APPENDIX

The Green Function

We derive two equivalent forms for our Green func-

tion that prove useful in the calculations of the main

text. We borrow heavily from previous work by Petrelis

FIG. 7. (a) Shown is the buoyancy perturbation induced by waves scattered from a sawtooth-shaped topography for

e 5 0.5. (b) Illustrated is the conversion rate for e , 1.
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et al. (2006) and Nycander (2006), although the final

form of the Green function that we use is different,

owing to the different geometry of the problem.

The Green function for a single source on an infinite

plane follows from solving the equation

G
XX
�G

ZZ
5 id(X)d(Z), (A1)

subject to the radiation condition applying for jZj/ ‘

at fixed X. By Fourier transforming, or other means, we

arrive at

G(X, Z) 5� 1

4p

ð‘

�‘

eikX�ijkZj dk

jkj

[� 1

4p
logjX2 � Z2j � i

4
Q(jZj � jXj), (A2)

where Q(x) is the Heaviside step function.

We build the solution to our full problem by first

summing Green function solutions for the original source

at (X, Z) 5 (X9, Z9) and all its periodic images:

G
P

(X �X9, Z � Z9) 5 �
n5�‘‘

G(X � 2np �X9, Z � Z9).

(A3)

We then account for the X / 2p 2X symmetry of

the profile and solution by adding more sources at the

periodic reflections, (X, Z) 5 (2np 2X9, Z9). Last,

we add negative sources at (X, Z) 5 (2np 1 X9, 2Z9)

and (X, Z) 5 (2np 2 X9, 2Z9) to ensure that the solution

vanishes wherever the topography decays and H(X) 5 0.

Thus, our complete Green function is

G(X, X9, Z, Z9) 5 G
P

(X �X9, Z � Z9)

1 G
P

(X 1 X9, Z � Z9)

�G
p
(X �X9, Z 1 Z9)

�G
p
(X 1 X9, Z 1 Z9). (A4)

The real part of this Green function contains four sets

of terms, such as

1

4p
�
‘

n51
log

4n2p2 � (X �X9� Z 1 Z9)2

4n2p2 � (X �X9� Z � Z9)2

�����
�����. (A5)

By using the relation

�
‘

n51
log 1� x2

n2

����
����5 logjsinxj � logjxj, (A6)

we may sum each of these terms explicitly, and we arrive

eventually at

G(X, X9, Z, Z9) 5G
r
(X, X9, Z, Z9) 1 iG

i
(X, X9, Z, Z9),

(A7)

where

G
r
(X, X9, Z, Z9) 5 � 1

4p
log ./(X, X9, Z, Z9)j j � 1

p
log 2,

(A8)

and

G
i
(X , X9, Z, Z9) [

1

4
�
‘

�‘
[Q(jZ 1 Z9j � jX �X9 1 2npj) 1 Q(jZ 1 Z9j � jX 1 X9 1 2npj)]

� 1

4
�
‘

�‘
[Q(jZ � Z9j � jX �X9 1 2npj) 1 Q(jZ � Z9j � jX 1 X9 1 2npj)]

(A9)

(which is a finite sum for any given distance from the original source), with

./5
sin

1

2
(X �X9� Z 1 Z9) sin

1

2
(X �X9 1 Z � Z9) sin

1

2
(X 1 X9� Z 1 Z9) sin

1

2
(X 1 X9 1 Z � Z9)

sin
1

2
(X �X9� Z � Z9) sin

1

2
(X �X9 1 Z 1 Z9) sin

1

2
(X 1 X9� Z � Z9) sin

1

2
(X 1 X9 1 Z 1 Z9)

. (A10)

Alternatively, G 5 (4p)�1 log(16./), with the understanding that (A9) offers a means to sort out explicitly how to

extract the imaginary part.

An equivalent expression comes from solving the alternative problem

G
XX
� G

ZZ
5 i[d(Z � Z9)� d(Z 1 Z9)] �

‘

n5�‘
[d(X �X9� 2np) 1 d(X 1 X9� 2np)], (A11)
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subject to the radiation condition and using a Fourier

cosine series in X [including the zero wavenumber

component, which leads to the final term in (12)]. The

result (12) can also be derived directly from (A10) by

turning the sines into exponentials and then using the

Taylor series expansion of the logarithm together with

some common trigonometric relations.
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