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Abstract

Asymptotic analyses and numerical computations are reported for surges of viscoplastic fluid down an incline with low
inertia. The asymptotic theory applies for relatively shallow gravity currents. The computations use the volume-of-fluid
method for tracking the interface; the constitutive law is dealt with by the augmented-Lagrangian method. The anatomy
of the surge consists of an upstream region that converges to a uniform sheet flow, and over which a truly rigid plug
sheaths the surge. The plug breaks further downstream due to the build up of the extensional stress acting upon it,
leaving instead a weakly yielded superficial layer, or pseudo-plug. Finally, the surge ends in a steep flow front that lies
beyond the validity of shallow asymptotics.

1. Introduction

Viscoplastic fluids are commonly encountered in natu-
ral settings in geophysics (e.g. mud and lava) and biology
(mucus and blood clots), and feature in many engineering
processes in, for example, the food (fruit pulp, dairy prod-
ucts and chocolate confections) and petroleum industries
(drilling mud, cement and waxy crude oil). These mate-
rials flow like viscous fluid once stresses exceed a certain
threshold (the yield stress), and remain solid-like other-
wise. In fact, the most extensively used constitutive laws
for these fluids (the Bingham and Herschel-Bulkley laws)
discard any deformation below the yield stress, which com-
plicates the modelling of viscoplastic flow from a mathe-
matical perspective as it renders the stress state indetermi-
nate and the effective viscosity singular at the yield point.

The spreading of viscoplastic fluid over an inclined sur-
face has been studied experimentally in a number of pre-
vious studies, often with the goal of inferring the yield
stress from steady flows [1, 2, 3] or the shape of a final de-
posit [4, 5, 6, 7]. The most thorough and recent laboratory
studies include the transient dam-break-type experiments
of Ancey and co-workers [8, 9, 10] and a series of investi-
gations on steady viscoplastic surges on inclined conveyor
belts [11, 12, 13].

Theoretically, a model for shallow viscoplastic flow
based on Reynolds lubrication theory has been widely used
to complement such laboratory studies [14, 15, 16]. In this
model, the long, thin flow is composed of a fully sheared
region adjacent to the underlying surface buffered from the
free surface by a plug-like zone. Importantly, that zone is
not truly rigid, but deforms weakly in the direction of flow
and is plug-like in that the transverse velocity profile is
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largely independent of depth. This structure is common
in many shallow viscoplastic flows [17, 18] and results from
the separation of length scales in the directions aligned or
perpendicular to flow. The border between the fully yield
region and the plug-like zone is therefore not a true yield
surface; instead, it is often referred to as a fake yield sur-
face, and the overlying zone as a pseudo-plug. Despite
the fact that lubrication theory predicts the appearance of
pseudo-plugs in shallow flows, it is also known that gen-
uine rigid plugs can appear within these zones surrounding
points of symmetry [17, 19] or replace them in flow down
almost uniform channels [20]. This raises the question of
whether the superficial regions of a free-surface flow can
also plug up in the far upstream extent of a steady surge
flow, where the flow becomes almost uniform, as discussed
in a qualitative way by Piau [21]. Indeed, for a truly steady
surge that extends infinitely far upstream, one expects that
the flow converges to a uniform sheat flow which, for a
yield-stress fluid, is sheathed by a true plug.

The purpose of the present study is to explore models for
steady, shallow viscoplastic surges with a length that is suf-
ficiently long that the flow converges to a steady sheet flow
well upstream of the flow front; i.e. the theoretical ana-
logue of the experiments by Chambon et al. [11, 12, 13].
For this task, we reconsider the lubrication analysis of Liu
& Mei [14]. First, we consider the upstream extent of the
surge to examine how the surge converges to uniform sheet
flow, and how the corresponding superficial plug breaks as
one progresses downstream. This demands a variation of
the lubrication analysis that is designed for almost uniform
flows, and parallels theory for flow down weakly varying
channels [20]. Second, once the upstream plugged flow
gives way to a fully yielded surge with a pseudo-plug, stan-
dard lubrication theory applies; for this region, we improve
that theory by continuing the analysis to higher order in
order to account better for non-shallow effects.
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Figure 1: Sketch of the geometry of the surge in the frame of reference
in which there is no net flux and the flow is steady. The free surface
is located at z = h; the level z = Y divides a fully yield region
underneath from either a true plug or a weakly yielded pseudo-plug.
The flow divides into three regions: a plugged flow region (PF) where
the superficial layer of fluid is not yielded, a lubrication zone (LZ)
where the pseudo-plug arises, and the flow front (FF) where the
dynamics is not shallow.

We complement the shallow-flow analysis with com-
putations using the Volume-of-Fluid (VOF) method and
an augmented Lagrangian scheme to deal with the yield
stress. Such a combination of shallow-flow analysis and
computation has proven effective in our previous work
studying dambreak flows and their final shapes [22, 23].
Here, we examine the extent to which the theoretical so-
lutions match the observations of Chambon et al. and
determine the conditions for which the pseudo-plug of lu-
brication theory locks up into a true plug.

2. Formulation

2.1. Model equations

As sketched in figure 1, we consider a two-dimensional
surge of incompressible viscoplastic fluid flowing steadily
down a plane that is inclined at an angle θ to the horizon-
tal. We use Cartesian coordinates aligned with the plane
to describe the geometry; in the frame of reference of the
surge, the inclined plane travels upslope with a speed ub.
We model the rheology of the fluid using the Herschel-
Bulkley constitutive law. The governing equations for the
velocity u = (u,w), deviatoric stress tensor τ , and pres-
sure p are then

∇ · u = 0,

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ · τ + ρg

(
sin θ
− cos θ

)
,

(1)
and 

γ̇jk = 0, τI < τY ,

τjk =

(
κγ̇n−1 +

τY
γ̇

)
γ̇jk, τI > τY ,

(2)

where ρ is the density, g is gravity, τY is the yield stress,
the plastic viscosity µ = κγ̇n−1 introduces the consistency
κ and power-law index n as two further rheological param-

eters, and τI =
√

1
2

∑
j,k τ

2
jk and γ̇ =

√
1
2

∑
j,k γ̇

2
jk denote

second tensorial invariants, with

γ̇ =

(
2ux uz + wx

uz + wx 2wz

)
. (3)

Here, subscripts on the velocity components represent par-
tial derivatives.

For the boundary conditions, we assume that there is no
slip over the inclined plane, u(x, 0) = (−ub, 0), and that
the upper surface is stress free, so that

∂h

∂t
+u

∂h

∂x
= w and (τ−pI) ·

(
−hx

1

)
=

(
0
0

)
, (4)

on z = h(x, t). The surge ends at a flow front, x = X(t),
where h → 0, and extends back upstream to where the
flow converges to a uniform sheet flow.

2.2. The sheet-flow solution

In the frame of reference in which the net flux vanishes,
the steady, uniform, sheet-flow solution is given by

(p, τxz) = (1, tan θ)
(

1− z

H

)
ρg cos θ (5)

and

u = usheet(z) =
nU tan1/n θ

n+ 1
×

×

{ [
n

2n+1Y
2+1/n
∞ − (Y∞ − z

H )1+1/n
]
, 0 < z

H < Y∞,

n
2n+1Y

2+1/n
∞ , Y∞ < z

H < 1,

(6)
where H is the flow depth and

U =

(
ρgH cos θ

κ

)1/n

H. (7)

The level z = HY∞ corresponds to the yield surface above
which the fluid is plugged, with

Y∞ = 1− τY
ρgH sin θ

. (8)

Note that, because there is no net flux along the plane in
the frame of the surge, the profile in (6) demands that the
speed of the inclined plane is

ub =
nU tan1/n θ

n+ 1
Y 1+1/n
∞

(
1− nY∞

2n+ 1

)
. (9)

The scales here can be used to non-dimensionalize the
problem, as discussed later.

2.3. Volume-of-fluid computations

In our computations of the full problem, we use the VOF
method to track the fluid interface using an advected vol-
ume fraction c(x, z, t) (see [22, 23]). This scheme immerses
the viscoplastic fluid beneath a miscible ambient Newto-
nian fluid. The material properties of the bulk mixture
are set by linearly interpolating between the two phases
using c, with the density and viscosity of the Newtonian
fluid taken to be relatively small in order to minimize the
effect of the ambient flow dynamics (cf. [22, 23]).
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To solve the governing equations, we evolve the system
as an initial-value problem until a steady state is reached.
We use an augmented-Lagrangian scheme to deal with the
yield stress within a weak formulation of the problem [24,
25], as implemented in C++ using the PELICANS platform
(e.g. [26]). We refer the reader to our earlier work [22, 23])
for further computational details, including a discussion
of how we avoid any resolution issues stemming from the
no-slip condition imposed on the underlying plane. Some
additional details relevant for the present computations
(including a resolution study confirming the fidelity of the
computations) are provided in Appendix A.

The computational domain is finite, extending up to a
height Lz and to a length Lx. The top and right-hand
boundaries are chosen to be sufficiently distant that their
positions do not affect the solution; free slip conditions
are imposed to help suppress the ambient fluid dynam-
ics. On the lower boundary we impose the fixed velocity
(u,w) = (−ub, 0), where ub is chosen in a range that the
flow adapts to reach a steady flow regime; for a long thin
flow, the upstream current converges to the sheet flow so-
lution above, and so ub is given by (9).

To minimize the influence of the left-hand boundary con-
ditions and ensure that the surge is mostly long and thin,
we select domain lengths Lx that are as large as possi-
ble. To gauge the residual effect of the left-hand boundary
conditions, we compute solutions with two different condi-
tions: an infinitely long flow can be simulated by imposing
the velocity here as that given by the sheet-flow solution;
i.e. (u,w) = (usheet, 0) at x = 0. Alternatively, the back
wall of the conveyor-belt experiment of [11, 12, 13] can be
simulated by setting u = w = 0 at x = 0. Appendix A.3
summarizes the role played by these boundary conditions.

From c(x, z, t), we define the instantaneous position of
the interface of the slump from the contour c(x, z = h) =
1
2 . The surface z = h(x) plays a major role in the asymp-
totic analysis of §3.

For the computations with Bingham fluid that we com-
pare with asymptotic theory, we select parameters to min-
imize inertial effects (see §4.1 and Appendix A.2). The
Herschel-Bulkley simulations of §4.2 have parameter set-
tings matched to corresponding laboratory experiments;
inertia may play a more significant role in these examples.

3. Asymptotic analysis

The anatomy of the surge is illustrated in figure 1: the
flow body is divided into three regions. A plugged flow
(PF) region arises at the back, where the surge converges
to the sheet flow and a true plug exist on top of the fluid.
That plug then breaks to leave a fully yielded flow with
a more significant variation in the free surface. Although
there is no true plug, the flow remains relatively shallow;
in this lubrication zone (LZ), standard shallow-layer anal-
ysis applies and there is a superficial pseudo-plug. Finally,
at the flow front (FF), the free surface steepens up to ter-
minate the surge and invalidate shallow-layer theory.

To prepare the way for asymptotics, we rescale the equa-
tions to suit the shallow geometry [16]. We also focus on
the special case of the Bingham model, with κ ≡ µ and
n = 1 (the extension to Herschel-Bulkley model is straight-
forward and partly described in Appendix B), and discard
inertia. Hence, we introduce a characteristic depth H and
horizontal length L with ε = H/L� 1, and then set

z = Hẑ, x = Lx̂, u = Uû, w = εUŵ,

p = ρgHp̂ cos θ, τ = ρgHε cos θ

(
σ τ
τ −σ

)
,

U =
ρgH3 cos θ

κL
, S =

tan θ

ε
, B =

τY L

ρgH2 cos θ
.

(10)

Notice that S ∼ tan θ is assumed here. For steady flow,
the dimensionless equations now become, after dropping
the hat decoration,

px = εσx + τz + S,

pz = ε2τx − εσz − 1,

τ =

(
1 +

B

γ̇

)
γ̇,

√
τ2 + σ2 > B,

0 =

∫ h

0

u(x, z) dz,

γ̇xx = 2εux, γ̇xz = uz + ε2wx, γ̇ =
√
γ̇2xx + γ̇2xz,

(11)

with u(x, 0) = −ub and

τ + hx(p− εσ) = 0

p+ εσ + ε2hxτ = 0

}
on z = h. (12)

3.1. Plugged Flow

In the PF region, the flow is nearly uniform, so we in-
troduce the asymptotic sequences,

h = 1 + εh1 + ..., p = 1− z + εp1 + ..., (13)

τ = S(1− z) + ετ1 + ..., u = u0 + εu1 + ... (14)

and σ = σ0+ ... The leading-order terms from (11) recover
the velocity profile of the sheet-flow solution, this time in
dimensionless form:

u0 = −ub + 1
2S ×

{
z(2Y∞ − z), 0 < z < Y∞,
Y 2
∞, Y∞ < z < 1,

(15)

with
ub = 1

6SY
2
∞(3− Y∞) (16)

and Y∞ ≡ 1− B
S . At O(ε) we now obtain

p1x = τ1z + σ0x,

p1y = −σ0z,
(17)

Expanding the free surface conditions about z = 1, we find

p1 + σ0 = h1,

τ1 = Sh1,

}
at z = 1. (18)

3



Hence, p1 + σ0 = h1 throughout the fluid depth.
Over the fully yielded region underneath the plug, the

constitutive law implies that

σ0 = 0 and τ1 = u1z. (19)

It follows that p1 = h1 over this region, and so

τ1 = h1xz + T and u1 = 1
2h1xz

2 + Tz, (20)

where T (x) is not yet determined. However, in the over-
lying plug, σ0 cannot be taken to vanish and the stress
state is indeterminate, as (17) do not determine all of p1,
τ1 and σ0. Instead, the yield condition demands only that
σ2
0 < B2 − S2(1− z)2.
The stress solution for the yielded region,

τ ∼ S(1− z) + ε(h1xz + T ) and σ = O(ε), (21)

now implies that the yield surface is shifted to Y = Y∞ +
εY1, where

Y1 = S−1(h1xY∞ + T ). (22)

However, the plug speed must remain equal to 1
2SY

2
∞ as

there is no deformation in h > z > Y . This demands that
u1(x, Y ) = 0, or

T = − 1
2Y∞h1x. (23)

Finally, we impose the flux constraint,∫ h

0

u dz = 0 (24)

which gives, at O(ε),

ubh1 = 1
2SY

2
∞h1 + 1

6h1xY
3
∞ + 1

2TY
2
∞. (25)

Hence,

h1x = 2Sh1 and Y1 = Y∞h1, (26)

and so the departure from the uniform sheet solution grows
exponentially in the downslope direction, with an expo-
nent given by 2S.

3.2. Breaking the plug

Returning to (17), we now observe that, over the plug,

h1x = 2σ0x + τ1z, (27)

which can be integrated from z = Y∞ upto z = 1 to give

∂

∂x

∫ 1

Y∞

σ0 dz = 1
2Sh1(1− Y∞). (28)

Hence ∫ 1

Y∞

[σ0(x, z)]x−∞
dz

1− Y∞
= 1

4h1, (29)

which, given that |h1| grows exponentially, implies that
the net jump in extensional stress across the plug must
also increase towards the flow front. Moreover, since h1

must eventually become O(ε−1) to curve the surge, the
plug must inevitably break.

A further constraint is provided by the unyielded con-
dition of the plug (given the leading-order shear stress
τ ∼ S(1− z)),

−
√
B2 − S2(1− z)2 < σ0 <

√
B2 − S2(1− z)2, (30)

which bounds the integral on the left of (29). In partic-
ular, that integral cannot exceed 1

2πB in absolute size.
Therefore, the plug must have broken when

|h1| > 2πB. (31)

3.3. Lubrication Zone

The preceding analysis indicates that the plug breaks
when h− 1 = O(ε). Downstream, the departure from the
sheet-flow solution grows further as we enter the lubrica-
tion zone and h−1 becomes O(1). With h = h(x) 6= 1, the
leading-order solution of (11) now furnishes the standard
lubrication result for the velocity profile,

u ∼ −ub + 1
2 (S−hx)×

{
z(2Y − z), 0 < z < Y,
Y 2, Y < z < h,

(32)

where Y = Y (x) is the position of the fake yield surface.
The profile of the surge itself follows from solving

Y = h− B

S − hx
,

ubh = up
(
h− 1

3Y
) (33)

where

up = 1
2 (S − hx)Y 2 (34)

determines the speed of the overlying pseudo-plug. Over
that region, the extensional stress is given by

σ = sgn(upx)
√
B2 − (S − hx)2(h− z)2, (35)

which matches one of the limits in (30) for h→ 1 +O(ε).
Thus, the plugged flow is expected to match continuously
to the lubrication zone once the plug breaks.

Note that (33) predicts that h and Y converge exponen-
tially to the sheet flow solution as x→ −∞. In particular,

hx ∼ 1
2S(h− 1)

Y 2
∞ − 3Y∞ + 6

Y 2
∞ − 3Y∞ + 3

,

Y − Y∞ ∼ 1
2Y∞(h− 1)

Y 2
∞ − 2Y∞ + 3

Y 2
∞ − 3Y∞ + 3

.

(36)

Because 0 < Y∞ < 1, this result implies that the fake yield
surface lies above the true yield surface once we enter the
plugged flow region where h − 1 = O(ε). Thus, one does
not expect a pseudo-plug to intervene between the fully
yielded zone and the true plug (cf. [20]).
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3.4. Improving the lubrication theory

With a little effort, as described in Appendix B, the lu-
brication theory can be continued to next order to furnish
the improved model,

Y = h− B

S − hx
+ 1

2επB
2 hxx

(S − hx)3
,

ubh = up
(
h− 1

3Y
)

+ 1
2επB

2 upx
(S − hx)2

,
(37)

in place of (33). In principle, this improved model bet-
ter captures non-shallow effects. In the limit of θ = 0
and ub = 0, the system in (37) reduces to the problem
for a collapsed two-dimensional slump [22]. In the limit
ub = 0, the time dependence can be retained to furnish an
improved lubrication model for unsteady viscoplastic flow
over an inclined surface.

The plastic limit of (37) is achieved when Y → 0
throughout the surge, and permits further analytical head-
way in constructing the surface profile. Setting Y = 0 in
the first equation in (37) furnishes

h− B

S − hx
+ 1

2επB
2 hxx

(S − hx)3
= 0. (38)

Given that Y → 0 demands that B/S → 1 at the back of
the surge, the leading-order solution is

h+ log (1− h) ∼ S(x− xf ), (39)

which corresponds to the final shape of an inclined
dambreak [14, 15]. Continuing with the improved model,
(38) is equivalent to

(S − hx)h− S + 1
2επBhx = O(ε2), (40)

or

h− 1
2επB +

(
1− 1

2επB
)

log

(
1− h

1− 1
2επB

)
∼ S(x− xf ),

(41)
if x = xf denotes the front position. Note that the front
of the surge here has finite height, with h(xf ) = 1

2επB, as
found in [22]. Further discussion of the slumped shapes
predicted by (38) and (41) is provided in Appendix C.

Away from the plastic limit, we can again iterate (37)
to O(ε2) into the second-order system,

B − (h− Y )(S − hx) = 1
2επB(hx − Yx),

ubh− up
(
h− 1

3Y
)

= 1
4επBY [(2h− Y )Yx − Y hx].

(42)
Beginning from a position upstream where the surge is
close to the sheet-flow solution, this system can be inte-
grated downstream to the flow front using initial condi-
tions based on (36). Again, the surge ends at finite depth
where the free surface becomes vertical and h and Y are
O(ε). A sample solution with Y∞ = 0.2 (B/S = 0.8)
is shown in figure 2 and compared with the predictions of
the leading-order lubrication model and the corresponding
solutions in the plastic limit.
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Figure 2: Asymptotic surge solutions for (a) the plastic limit Y → 0,
and (b) Y∞ = 1 − S−1B = 0.2. The solid lines show the im-
proved lubrication solutions for h(x) plotted against S(x− xf ) with
1
2
επB = 0.2 (as given by either equations (41) and (42)); the dotted

lines indicate the predictions of the leading-order theory. In (b), the
corresponding fake yield surfaces Y (x) are also plotted. The insets
show magnifications near the flow front.

4. Numerical results

4.1. Comparison with asymptotics

In this section, we report computations with the Bing-
ham model, n = 1, for comparison with the asymptotic
analysis. Following along the lines of that theory, we also
place the problem into a dimensionless form by scaling
variables using the depth of the expected sheet flow H
and its characteristic velocity U . The stresses are scaled
by ρgH cos θ. In addition, in the computations, there is no
significance to the lengthscale L, so we set L = H which
is equivalent to taking ε = 1. Shallow surges then arise
when the longitudinal length far exceeds the depth. We
use Y∞ and θ as the main parameters, which translate to
a dimensionless belt speed and yield stress ofub =

1

6
Y 2
∞(3− Y∞) tan θ

B = (1− Y∞) tan θ
(43)

In all the computations we report in this subsection, iner-
tia is not sufficient to significantly affect the solution (see
Appendix A.2), and we use left-hand boundary conditions
given by an upstream sheet-flow solution.

Figure 3 shows a sample solution with θ = 10◦ and
Y∞ = 0.8. The plots show the deviatoric stress invari-
ant and components as densities over the (x, z)−plane.
Superposed are streamlines and the free surface, with an
upstream section of the solution not shown in order to re-
move the regions where the boundary conditions at x = 0
play a role. The shear stress τxz matches the stress invari-
ant τI throughout the lower part of the surge, but deviates
over a superficial layer adjacent to the free surface. There,
the Augmented Lagrangian algorithm detects a genuine
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Figure 3: Numerical solution for θ = 10◦ and Y∞ = 0.8 showing
(a) τI , (b) τxz and (c) τxx. The darker (blue) lines show sample
streamlines and the dotted white line is the true yield surface where
τI = B. The dashed line shows the contour level where τxz = B.

plug1 for x . 15. This plug then breaks to leave, over
15 . x . 18, a weakly yielded superficial region with
τI ∼ B; i.e. a pseudo-plug. In the numerical simulations,
the fake yield surface z = Y (x) can be picked out by de-
termining the level where τxy = B (see figure 3). The
true and fake yield surfaces are continuous at the break-
age of the plug. All this anatomy of the surge was already
anticipated by the asymptotic analysis in §3.

Figure 4 shows sample flow profiles h(x) and fake yield
surfaces Y (x), for θ = 10◦ and varying Y∞. The two pan-
els compare the simulations with the predictions of the
leading-order and improved asymptotic theories. The lat-
ter leads to a mildly better comparison of h(x), correcting
for a spread in the predicted profiles which are found in
the simulations to collapse closely to one another. How-
ever, the improved asymptotics theory does not lead to a
substantially better agreement with the simulations in the
examples shown in figure 4 because the lubrication zone in
these solutions is not particularly long, with the free sur-
face steepening up quickly from the plugged flow upstream
to the flow front.

We provide a more quantitative comparison of a numer-

1Although the stress field is indeterminate here, the algorithm
provides an admissible solution for the plug which is dictated by the
iterative scheme. The borders of the true plug are a little rough due
to grid-dependent numerical errors. However, the plugs appear to be
robustly detected given that the stress invariant τI lies significantly
below B over this part of the surge.

Figure 4: Flow profiles and fake yield surfaces for (a) numerical
simulations, (b) leading-order lubrication theory and (c) improved
asymptotic theory (using (42)), with θ = 10◦ and Y∞ = 0.4, 0.6 and
0.8. The solid and dashed lines show h and Y , with Y defined as the
contour level where τxz = B for the simulations. The flow profiles
steepen with increasing Y∞. The shaded regions in (a) show the true
plugs (which extend up to the free surface in each case, and with the
shading darkening with increasing Y∞).

ical solution for Y∞ = 0.8 and θ = 5◦ with the asymp-
totic theory in figure 5. This figure highlights the free sur-
face, the true plug of the numerical soution, and the fake
yield surface underneath the pseudo-plug (again defined
by τxz = B in the simulations). These are compared with
the predictions of the plugged flow solution (26) and the
leading-order lubrication theory (§3.3). The plug breaks in
the simulation when 1− h ≈ 0.12, in satisfying agreement
with the prediction 1− h = 2πB = 0.11 of §3.2.

4.2. Comparison with experiments

Chambon et al. [11, 12, 13] have presented a compre-
hensive experimental study on viscoplastic surges on a con-

Table 1: Experimental parameters from [13].

τY (Pa) κ (Pa sn) n θ (◦) ub (m/s)
C2 7.2 5.1 0.41 11.9 0.26
C5 7.2 5.0 0.43 15.3 0.148
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Figure 5: Numerical solution for Y∞ = 0.8 and θ = 5◦ (B = 0.0175),
showing a density plot of τI with z = h(x) and the fake yield surface
superposed; the true plug is shaded black. The dashed lines show the
prediction of the leading-order lubrication theory (with the flow front
aligned). The dotted lines show the predictions of the plugged-flow
solution in (26), with 1− h matched to the simulation at x = 5.

veyor belt. For comparison with their results, we perform
numerical simulations matching some of their experimen-
tal parameters. More specifically, we choose the two sets
of parameters denoted by C2 and C5 in [13]. The rheol-
ogy of the two samples and the inclination and speed of
the belt are given in table 1. The fluid in these experi-
ments is an aqueous suspension of Carbopol with density
ρ = 103 kg/m3. We employ a no-slip back wall to provide
the left-hand boundary conditions.

Figures 6–8 display the results of the computations. Fig-
ure 6 plots the velocity field for experiment C5, and cor-
responds to figure 6 in [13]. Figures 7 and 8 show the
strain-rate field, surface velocity and sample vertical pro-
files of the velocity components in the frame of the con-
veyor belt for both experiments (for comparison with their
figures 9 and 10). Distances are scaled by the thickness of
the expected uniform sheet-flow, H, and velocities by the
mean downslope velocity u (the scalings used by Cham-
bon et al.). Although the identification of the true plug
is more difficult (owing to the power-law viscosity of the
Herschel-Bulkley law), the computations still detect that
the stress invariant near the free surface falls below the
yield stress a scaled distance of about four units behind
the flow front for C2, and three units for C5. The figures
also contrast the numerical results with the predictions of
the leading-order lubrication theory, which performs well
in reproducing the simulations. Evidently, the fine details
of the plugged flow or the improved lubrication theory are
minor, and non-shallow flow effects are insignificant away
from the flow front. Importantly, the numerical solutions
converge towards the uniform-flow state at the back of the
surge (over a longitudinal distance of about 10H; see Ap-
pendix A.3), and there is no mismatch between H and the

Figure 6: Experiment C5 of [13], showing (a) u(x, z) and (b) w(x, z)
as densities over the (x, z)−plane, for a qualitative comparison with
their figure 6. A selection of streamlines is also shown (thinner blue
lines). The dashed lines shows the levels where u = 0 and z = Y
(τxz = B). In leading-order lubrication theory, u = 0 along z =
Y − Y [nY/h(2n + 1)]n/(n+1); this prediction is also drawn as the
lighter (pink) solid line.

depth at the back of the surge. This supports the inference
of Chambon et al. that some rheological effect is responsi-
ble for their observation that the experimental surges are
deeper than the expected sheet flow.

The broad match between simulations and leading-order
lubrication is somewhat better than Chambon et al.’s com-
parison of experiments and asymptotics, although there is
qualitative agreement between all three. For example, the
differences between the predictions of lubrication theory
and simulations for the surge profile and surface velocity
are very small in figures 7 and 8, unlike the correspond-
ing figures of [13], which reveal noticeable differences. The
front of the experimental surges are also rounded and over-
turn, as in the simulations but not the asymptotics, al-
though the nose occurs at dimensionless heights of about
0.25-0.3 whereas it lies well below 0.1 in the simulations.
We interpret all this to imply that the shallow approxima-
tion is not responsible for the main quantitative disagree-
ments between theory and experiment.

We quantify this further using two distance diagnostics
defined by Chambon et al. The first of these records the
distance from the flow front, xfc,u = |x− xf |, where[∫ h

0

(uexp − uasy)2
dz

h

]1/2
= 0.07u

where the subscripts refer to PIV measurements and the
leading-order asymptotic prediction, and u is again the
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Figure 7: Experiment C2 of [13]: shown are (a) log10(γ̇/0.26), (b)
the surface velocity, and (c)–(h) velocity profiles at the x−positions
indicated in (b), for a comparison with figure 10 in [13] (the scaling
factor of 0.26 being selected in that paper). The (red) dashed lines
indicate the predictions of the leading-order lubrication theory. In
(a) the solid white line shows the contour τxz = B, whereas the
dashed white line is the fake yield surface z = Y (x) of the leading-
order lubrication theory.

mean donwslope speed. Chambon et al. quote values for
xfc,u from 0.5H to H for all their experiments. The same
mean difference between the velocity profiles of our simu-
lations and the asymptotics indicates that xfc,u ≈ 0.34H
for C2 and 0.18H for C5. In other words, the asymptotic
prediction for the velocity profile remains close to that of
the simulation for distances much nearer the flow front.

The second diagnostic denotes the distance, xfc,h = |x−
xf |, from the flow front where |hsim−hasy| reaches 0.6 mm.
Again, Chambon et al. find that xfc,h is order of H; this
time, they quote values between 1.5H and 2H for their
tests. By contrast, in our C2 simulation, xfc,h = |hsim −
hasy| ≈ 0.3H, whereas the difference in flow depths never
reaches such a threshold for C5, always being less than
0.3 mm.

All the experimental or asymptotic results described
above relate to relatively shallow surges. As the belt speed
increases, however, the surge shortens and deepens, lead-
ing to profiles like those shown in figure 9(a). In these
cases, the aspect ratio of the flow profile is O(1), with the
fluid beginning to climb up the (no-slip) back wall. Rais-
ing the belt speed still further leads to a sudden catas-
trophic overturning event that interrupts the passage to
a steady equilibrium, as illustrated in figure 9(b). In this

Figure 8: A similar picture to figure 7, but for Experiment C5 of [13]
and for comparison with their figure 9 (with log10(γ̇/0.38) plotted
in (a), as in that paper).

case, the fluid climbs up the wall before collapsing down in
the manner of a breaking wave; bubbles of ambient fluid
become entrained into the surge and the reliability of the
simulation is quickly lost, leading us to terminate the com-
putation before any convergence to a steady state. At this
stage it is not clear whether the overturn heralds the loss
of the steady state and the onset of a continued cascading
flow. As far as we are aware, this type of dynamics has
not yet been observed experimentally.

5. Concluding remarks

We have conducted a theoretical study of viscoplastic
surges down an inclined surface, combining asymptotic
analysis with numerical simulations. We have focussed
on the steady states reached in frames moving at constant
speed down the slope, although we have also reported a
situation in which such steady surges do not appear to
be attainable and an unsteady cascading state is reached
instead. The numerical computations of shallow surges
mostly agree with the asymptotic predictions, more so
than the experiments by Chambon et al.[11, 12, 13], which
are less comparable with the asymptotics though still in
broad agreement. That discrepancy between the experi-
ments and asymptotics is not therefore the result of non-
shallow flow effects, but must originate elsewhere.

The computations confirm the phenomenology expected
for a surge, namely that there is an upstream sheet flow
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Figure 9: Flow profiles for a simulation with θ = 14.6◦, τY = 6 Pa,
κ = 6.65 Pa sn and n = 0.405 (the experiment C PIV of [12]), for
(a) ub = 0.2, 0.4, 0.8, 1.2 and 1.4 m/s, in the steady state, and (b)
ub = 1.6 m/s at a succession of times, starting from the initial profile
shown by the dashed line (t = 0, 0.06, 0.08, 0.11, 0.17 and 0.19s).
In (a), the profile for ub = 1.4 m/s is shown by the solid line and
several streamlines are also plotted (dotted lines).

with a rigid plug that breaks as one moves downstream due
to the build up of the extensional stress across the plug.
This leaves a weakly yield zone atop the fluid, the pseudo-
plug, as predicted by standard lubrication theory. The
surge eventually steepens and terminates at a relatively
abrupt flow front.

We have chiefly operated in the limit in which inertial
effects play little role in the surge, which is clearly a limita-
tion with regard to many applications in the geosciences.
In particular, we have not catalogued any secondary in-
stabilities of the steady surges (such as roll waves [27]) or
found any multiple equilibria, both of which might well
appear at higher Reynolds number. We leave such consid-
erations for future work.

Acknowledgements: S.H. acknowledges financial sup-
port by NSF (Grant No. CBET-1554044-CAREER).

Appendix A. Additional numerical details

In this appendix we provide further details of the numer-
ical computations. We use the dimensionless version of the
problem in which lengths are scaled by H and velocities
by U as in §4.1.

To find the steady surge states, we solve suites of initial-
value problems in the frame of reference of the surge, fol-
lowing the strategy outlined in [22, 23] . We begin from
initial conditions in which motionless viscoplastic fluid is
deposited on the inclined plane with a rectangular shape
whose depth is set by the sheet-flow solution. The front of
the rectangle is smoothed over a streamwise scale of order

of a fraction of the fluid depth using a arc tangent func-
tion. The simulations do not appear to be sensitive to the
initial condition, at least at the Reynolds numbers chosen
for most of our simulations (§Appendix A.2), with no in-
dication of multiple equilibria or unsteady states (but see
the discussion surrounding figure 9).

The initial-value problem is solved exploiting the PLIC
(Piecewise Linear Interface Calculation) algorithm to
evolve the interface within the volume-of-fluid scheme.
The essential details of the algorithm can be found in [28],
although we modify it slightly to surmount a numerical
difficulty arising from an unresolved layer of the ambient
fluid coating the inclined plane, as is described in [22, 23].
In brief, the modification amounts to monitoring the vol-
ume fraction adjacent to the inclined plane and adjust-
ing the value of c there if it exceeds a threshold (set to
0.99). This replacement of ambient fluid with yield-stress
material destroys mass conservation, which is restored by
rescaling the flow height uniformly over the length of the
surge, incurring a further error, of order a fraction of a
grid spacing.

The evolution observed in these initial-value problems
suggest that the final steady states possess no contact line
along the underlying plane. Rather, a continually thin-
ning finger of ambient fluid coats the plane as one pro-
gresses upstream. Therefore, although the adjustment to
the PLIC algorithm applies an approximation to allow the
contact line of the initial condition to migrate with the
plane to create this finger, once that feature is established,
the scheme simply amounts to neglecting the small amount
of ambient fluid within the finger once it becomes thinner
than the lowest grid cell. This prevents interpolation er-
rors in the velocity field and shear stress of the finger from
excessively lubricating the surge, and permits the compu-
tation to otherwise remain resolved, as we now document.

Appendix A.1. Resolution study

Figure A.10 shows the results of a resolution study
for the profile of a Bingham surge with θ = π/18 and
B = 0.0522 (Re = 1, ub = 0.041 and the total area of
fluid is 24). At the rear of the surge, a no-slip back wall is
imposed, and the grid spacing is uniform with ∆x = 4∆z.
Varying that grid spacing by a factor of 8 (as indicated)
furnishes barely any discernible difference in the free sur-
face profile. Indeed, the root-mean-square difference in the
velocity field, defined as√∫∫

|u− u∗|2c∗ dx dy∫∫
c∗ dx dy

,

between the coarsest and finest of these simulations is
about 0.088ub, and decreases to 0.025ub between the two
finest simulations. Here, c∗ and u∗ denote the reference so-
lution, which is that for the finest simulation, interpolated
onto the grid of the coarser solution. Also shown are se-
lected contours of constant shear stress τxz (which closely
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Figure A.10: Simulations of a Bingham surge profile with θ = 10◦

and B = 0.0522 (Y∞ = 0.7, fluid area of 24, ub = 0.041 and Re = 1)
with the grid sizes indicated. (a) shows h and Y ; (b) a magnification
near the flow front; (c) contours of constant τxz/B, as indicated
(with the surge profile of the finest resolution case shown by the
lighter grey line); (d) the shear stress along z = 0.025 (the lowest
grid cell of the coarsest computation). In (a), the inset shows the
flow front Xf , mean shear stress, τxz/B =

∫ ∫
(τxz/B) c dx dz, and

τxz at the point (x, z) = (18, 0.4), all plotted against the vertical grid
spacing ∆z (∆x = 4∆z). The convergence of τxz is impeded by the
need to resolve the sharply localized region of high stress underneath
the flow front (cf. figure 3 and panels (c) and (d)).

match those of τI below the plug), illustrating the conver-
gence with resolution, at least for stress levels sufficiently
in excess of B. Contours closer to B show significantly less
degree of convergence, as highlighted by the roughness of
the yield surfaces plotted in figure 4, and the stress so-
lution remains sensitive to resolution for τI < B. These
latter deficiencies are not problematic as the solution is
independent of the stress state over the plug as long as
the fluid there is not yielded. Note that the computations
reported in §4 and the remainder of this appendix all use
the finest grid of the resolution study.

Appendix A.2. Inertial effects

Figure A.11 shows numerical simulations of Bingham
surges with varying Reynolds number Re= HU/κ from
0.1 to 10 (which span the range of all the simulations re-
ported in this study), with a back wall providing the left-
hand boundary conditions. With the scalings of the prob-
lem outlined in §4.1, the dimensionless problem retains the

Figure A.11: Simulations of Bingham surges for θ = 10◦, ub = 0.041
and B = 0.0522 (Y∞ = 0.7) for the Reynolds numbers indicated (the
total area of fluid is 24). Plotted are h, Y (τxz = B) and the stress
levels τI/B = 1, 2 and 3.

Reynolds number only as a factor in front of the inertial
terms. Consequently, the flow profile becomes indepen-
dent of Re in the inertialess limit. Indeed, the flow profiles
and stress levels shown in figure A.11 closely collapse (save
for the relatively rough yield surface) and the root-mean-
square differences in the velocity field and stress invariant
are less than 4× 10−3ub and 0.01B, respectively. Thus we
conclude that inertial effects are not significant. The com-
putations reported in §4.1 are conducted with Re = 1.

Appendix A.3. The effect of the back wall

To gauge the effect of the back wall on the computa-
tions, figure A.12 compares two simulations with different
boundary conditions imposed along x = 0. In the first,
the velocity field corresponding to the uniform sheet flow
is imposed (so (u,w) = (usheet, 0)); for the second, we im-
pose a no-slip condition, u = w = 0 The figure displays
the stress invariant τI and plug regions; the solutions are
much the same except within a region near the back wall
in which flow adjustments arise due to the boundary con-
dition there (and which changes the flow length slightly).
In all our simulations, the extent of these flow adjustments
was restricted to along-slope lengths of about 4H.

Appendix B. Improved lubrication solution

For Herschel Bulkley fluid, the dimensionless system is

px = εσx + τz + S, pz = −εσz + ε2τx − 1,

0 = τ(x, h, t) + [p(x, h, t)− εσ(x, h, t)]hx,

0 = p(x, h, t) + εσ(x, h, t) +O(ε2),(
σ
τ

)
=

(
γ̇n−1 +

B

γ̇

)(
2εux

uz + ε2wx

)
for 0 < z < Y,

B2 = σ2 + τ2 for Y < z < h,

γ̇ =
√

4ε2u2x + (uz + ε2wx)2,

ht = −

(∫ h

0

udz

)
x

.
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Figure A.12: Simulations for θ = 10◦ and B = 0.0354 (Y∞ = 0.8)
with different left-hand boundary conditions: (a) (u,w) = (usheet, 0)
and (b) (u,w) = (0, 0). Shown is the second invariant τI as a density
on the (x, z)−plane. The (true) yield surfaces are indicated by the
solid (green) lines. The simulation in (a) corresponds to the trun-
cated solution shown in figure 3. The profiles and the true and fake
yield surfaces are compared in (c).

In the fully yielded region, uz ∼ O(1), σ ∼ O(ε) and
γ̇ ∼ O(1), and dropping the O(ε2) terms then gives

pz = −1 and px = τz + S (B.1)

Hence
p = h− z + P

τ = (S − hx − Px)(Y − z) +B

Y = h+
T −B

S − hx − Px

(B.2)

where P = P (x) and T = T (x), which further imply that

τ = B + unz ,

uz = (S − hx − Px)
1
n (Y − z) 1

n ,

u =
n

n+ 1
(S − hx − Px)

1
n

[
Y

n+1
n − (Y − z)

n+1
n

]
− ub,

(B.3)
all to O(ε2).

In the pseudo-plug, u = up(x)− ub + εu1(x, z), and so

γ̇ = ε
√

4u2px + u21z +O(ε) = εΓ.

Hence, (
σ
τ

)
=
B

Γ

(
2upx
u1z

)
+O(εn), (B.4)

if n < 1. Thus

σ =
√
B2 − τ2 +O(εn) (B.5)

Force balance over this region demands

px = S+τz +εσx & pz +εσz = −1+O(ε2), (B.6)

which, given the surface stress conditions, now provide

p = h− z − εσ +O(ε2),

τ = (S − hx)(h− z) + 2ε

(∫ h

z

σdz

)
x

+O(ε2),
(B.7)

or, given (B.5),

τ = (S − hx)(h− z) + 1
2εB

2

(
2θ + sin 2θ

S − hx

)
x

+O(εn+1),

where

θ = sin−1
(S − hx)(h− z)

B
. (B.8)

Next we observe that P ∼ O(ε2), because p = h− z+P
and σ = O(ε) in the fully sheared region, but p = h −
z − εσ + O(ε2) in the pseudo-plug. The match of τ =
(S − hx)(h− z) + T in z < Y with

(S − hx)(h− z) + 2ε

(∫ h

z

√
B2 − τ2dz

)
x

+O(εn+1)

for z > Y , then demands that

T = 2εB

(∫ h

Y

√
1− (S − hx)2(h− z)2

B2
dz

)
x

= 1
2επB

2

(
1

S − hx

)
x

.

(B.9)

Now we match the velocity profile of the fully yielded re-
gion in (B.3) with that of the pseudo-plug u = up−ub+εu1,
to find u1(x, Y, t) = 0 and

up =
n

n+ 1
(S − hx)

1
nY

n+1
n .

Finally we compute u1 and the downslope flux: in the
pseudo-plug,

u1z
2upx

=
τ

σ
=

(S − hx)(h− z)√
B2 − (S − hx)2(h− z)2

+O(ε), (B.10)

and so, given that (S − hx)(h− Y ) = B +O(ε),

u1 = 2upx

√
B2 − (S − hx)2(h− z)2

S − hx
+O(ε).

The flux can then be computed as∫ h

0

udz =

∫ Y

0

udz +

∫ h

Y

(up − ub + εu1)dz

= up

(
h− n

2n+ 1
Y

)
− ubh+ 1

2επB
2 upx

(S − hx)2
.

The equations of the improved model quoted in the main
text now follow, on taking n = 1.
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Figure B.13: Slump profiles for (a)-(b) S = 0 and (b)-(c) S 6= 0.
For (a)-(b), scaled variables are plotted, which eliminates any free
parameters; in (c)-(d) the profiles are shown for 1

2
επB = 0.2. The

dark solid lines show the solutions to (38), whereas the dotted lines
show the solutions to the iterated version in(40); the dashed lines
show the leading-order approximation. In (a)–(b) the lighter (red
and blue) lines show the results of a series of simulations from [22]
with ε = 1, B = 0.02, 0.03, ..., 0.1 and the flow fronts aligned. In (c)–
(d) the lighter (red) lines show additional simulations of the slump
of a rectangular block on an incline with B = (0.1, 0.2, 0.3, 0.4)/π
and θ = 5◦; the inset shows the aligned, but unscaled profiles.

Appendix C. Improved slump profiles

Curiously, the improved model for slumped shapes on
slopes given by (38) implies that

hhx ∼ − 1
2επB

2(h−1x )x or h ∼ [3επB2(xf − x)]1/3,

for x → xf . This contrasts sharply with the solution of
the iterated version of the model in (41) which has a fi-
nite depth at the edge. Evidently, the freedom afforded
by the extra derivative allows us to reach the flow front
with h → 0 and hx → −∞. This feature of the improved
asymptotic theory was not appreciated in our earlier pa-
pers [22, 23], where the simpler iterated version of the
model was implemented.

Figure B.13 compares the various asymptotic solutions,
with or without a background slope. The two versions of
the improved model differ by O(ε2) away from the flow
front; within a distance of O(ε2) of x = xf , however, the
flow depths become O(ε) different, permitting the iterated
version to terminate at finite depth. For comparison, fig-
ure B.13(a)-(b) also includes simulation data from figure
14 of [22] for dambreaks on a horizontal surface with ei-
ther square or triangular initial conditions. The (red) cor-
ners visible in panel (b) are relics of square initial condi-
tions, whereas the (blue) sharp spikes at the back evident

in panel (a) are remnants from triangular initial condi-
tions (in the scaled coordinates the slumps have different
lengths). Further computations for the slump of a rect-
angular block on an incline (with unit height and an up-
stream back wall) are included in figure B.13(c)-(d). Both
comparisons indicate that the two versions of the improved
model outperform the leading-order theory away from the
flow front. Near that steep feature, the smooth decline to
zero thickness of the non-iterated model provides a slightly
more satisfying comparison with simulations. However,
the asymptotic theory is not valid at the flow front where
the slope of the free surface diverges. Moreover, the sur-
face in the numerical simulations eventually overturns to
create multi-valued profiles with a finite elevation at the
leading edge. Consequently, it is not clear which version of
the improved model is superior; the iterated model (which
we have employed previously, and continue to use in the
main text) has the advantage of being the simpler.
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