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Summary

Microorganisms such as sperm routinely swim close to solid boundaries and within non-
Newtonian fluids. In this paper, we exploit the lubrication approximation to model the motion
of a flexible sheet near a rigid wall and immersed in a complex fluid. This allows us to specify an
internally generated force density on the sheet and allow its shape and velocity to be determined
by the interplay between the forcing and the fluid motion. We obtain results for Newtonian
and complex fluids, focusing specifically on the influence of shear thinning/thickening and
of yield stress. In the latter case, we characterise the threshold forcing that is required for
successful swimming to occur. Our results highlight the usefulness of the lubrication approach
in modelling micro-scale fluid–structure interactions.

1. Introduction

In a seminal 1951 paper, Taylor (1) proposed a simple fluid mechanical model for the swimming
of a microorganism. He modelled the organism as an infinite flexible sheet suspended in a viscous
fluid. The organism was assumed to be able to send transverse waves along its length to propel
itself forward. By considering the zero Reynolds number limit and taking the propulsive waves to
be sinusoidal and of low amplitude, he was able to solve the problem analytically and establish
formulae for the swimming speed in terms of the wave amplitude. Taylor’s article prompted a great
many studies that followed on and generalised his model in various ways (2 to 4). Taylor’s paper
presents the simplest possible two-dimensional (2D) model of sperm locomotion although it ignores
many important aspects of actual sperm.

Mammalian sperm are made up of three main parts: the head (which holds the DNA cargo), the
midpiece (which provides energy in the form of adenosine-triphosphate) and the tail or flagellum
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(5). The human sperm flagellum is a long, slim structure (typically 50–60μm long and around
200 nm in diameter). The core of the flagellum consists of an array of parallel microtubules along
with energy-consuming dyneins (molecular motors) that push the microtubules past each other. By
periodically activating dyneins on opposite sides of the flagellum, the sperm generates local bending
moments. These forces work against the external fluid to produce the shape of the flagellum. Indeed,
the wave-form of a swimming sperm has been observed to vary according to the medium in which
it is swimming (6, 7). In the case of mammalian sperm, this has biological importance since they
swim in a variety of media during their journey to the egg. The viscoelastic properties of cervical
mucus have been studied in some detail, and the rheological parameters are found to vary with the
menstrual cycle (8, 9). It is therefore of interest to revisit Taylor’s calculations but in the context of
actively working organisms within a complex fluid.

In the current article, we follow along the lines of Taylor’s original article in exploring aspects
of swimming microorganisms from an analytical perspective. Our interest focuses on the variant
of the problem in which the swimmer moves beside a wall and inside a fluid that is not necessar-
ily Newtonian, both of which have a number of important applications to biological locomotion
(2, 10 to 14). For example, the motion of sperm close to solid boundaries is of biological interest
since mammalian sperm commonly travel through tube-like organs (such as the oviducts). Further-
more, the dynamics of a non-Newtonian fluid layer sandwiched between flexible walls is also rele-
vant to some other biological problems, such as cartilage and cell mechanics (for example (15,16))
and the adhesion of insects and other organisms to walls (for example (17, 18)), in addition to the
more traditional applications in engineering lubrication (19).

To make analytical inroads into the problem, our analysis exploits Reynolds lubrication theory,
which applies when the fluid layer under consideration is relatively thin and the swimmer moves
sufficiently slowly to use the Stokes approximation. This route was previously taken by Katz (2),
Chanet al.(20) and Wilkening and Hosoi (21) to generalise Taylor’s work. Chanet al.also allowed
the fluid to be viscoplastic in order to expand on Denny’s work on snail locomotion (10,11). Other
earlier works that treat non-Newtonian (and specifically viscoelastic) fluids mostly follow Taylor’s
original direction in exploiting the low-amplitude limit for a swimmer immersed in an infinite ex-
panse of fluid (14, 22 to 26). In our work, the lubrication approximation simplifies many of the
details of the governing equations and facilitates a discussion of much larger amplitude motions.
Moreover, we are also able to incorporate additional dynamics of the swimmer itself: much like
existing models of the dynamics of animals swimming at much higher Reynolds numbers (3), we
explicitly include the force balance on the swimmer, assuming that it behaves as a flexible elastic
sheet (rather than fixing the shape of the swimming motion, the route taken in many of the earlier
articles on swimming microorganisms). We are thereby able to offer a variety of analytical results
to complement recent, fully computational efforts (12,27,28).

The key physical questions that we address are as follows. For a flexible swimmer in a viscous
fluid, we explore how the wave shape and speed are determined by a combination of the fluid dy-
namics in the gap separating the swimmer from the wall and the solid mechanics of the swimmer
itself, assuming the latter to be driven by an imposed, prescribed force (cf. (23,29,30)). With a com-
plex fluid, we investigate how the swimmer profile is affected by non-Newtonian effects, focusing
specifically on two hallmarks of viscoplastic fluids: shear-rate-dependent viscosity (shear thinning
or thickening) and a yield stress, both of which are commonly encountered properties of poly-
meric gels and suspensions (31). A variable viscosity impacts swimmers as the rate of locomotion
changes the effective fluid resistance. Though not previously considered in the swimming context,
yield stresses endow the swimmer’s environment with an intrinsic strength that must be exceeded
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in order for the swimmer to propel itself forward. Part of our goal is to characterise that threshold
for motion. However, a yield stress also enriches the fluid dynamics even once the swimmer is mov-
ing, with rigid plugs and nearly rigid zones (‘pseudo-plugs’) disfiguring flow patterns (for example,
(28)), and we expose how this modifies Katz’s swimming problem. Yield stresses have not often
been measured for biological fluids like mucus (except for snail slime (11, 32)), with such media
more usually characterised as viscoelastic. Mud and sediment, though, are typically viscoplastic,
suggesting applications to the locomotion of marine organisms.

In section2, we outline the mathematical formulation of the problem. Section3 deals with vis-
cous fluids, exploring the effects of swimmer stiffness. Section4 considers the corresponding non-
Newtonian problem. Section5 offers some consideration of the effect of the head and tail of the
swimmer by abandoning the periodic boundary conditions used earlier and imposing conditions
suitable for a finite swimmer.

2. Mathematical formulation

2.1 Dimensional equations

Consider a 2D layer of an incompressible fluid of densityρ sandwiched between a plane wall and a
flexible surface that ‘swims’ slowly forward by exerting a transverse force to create travelling, un-
dular motions along its length (Fig.1). The fluid is described by its pressurep̂(x̂, ŷ, t̂) and velocity
field (û(x̂, ŷ, t̂), v̂(x̂, ŷ, t̂)), referring to the Cartesian coordinate system shown in Fig.1. The swim-
mer has a speedU and our coordinate system is located in the translating frame of the swimmer,
so that the wall translates to the left and the flexible upper surface moves purely vertically in the
figure. For most of our study, the configuration is taken to be periodic inx, so we avoid discussion
of the swimmer’s head and tail. However, in section5, we will discuss finite-length swimmers and
impose boundary conditions inx.

We assume that the layer is thin, and the fluid’s material properties are such that the resistance
to sheared flow is dominated by the shear stressτ̂ (x̂, ŷ, t̂) (as it would be for a large class of non-
Newtonian fluid models, see also Appendix A). In this situation, we may exploit Reynolds’ lubrica-
tion approximation to simplify the governing equations for the fluid to

ûx̂ + v̂ŷ = 0, p̂x̂ = τ̂ŷ, p̂ŷ = 0, (2.1)

representing conservation of mass and momentum (in the absence of fluid inertia). Subscripts rep-
resent partial derivatives. As indicated by Fig.1, the velocity boundary conditions are

Fig. 1 A sketch showing the geometry of the problem in the (horizontally) translating frame of the swimmer
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û(x̂, 0, t̂) = −Û , v̂(x̂, 0, t̂) = 0 and û(x̂, Ŷ, t̂) = 0, v̂(x̂, Ŷ, t̂) = Ŷt̂ , (2.2)

whereŷ = Ŷ(x̂, t̂) denotesthe position of the swimming surface.
We complement the system in (2.1)–(2.2) with a constitutive law for the potentially non-

Newtonian fluid, which we assume to take the functional form

τ̂ = T(γ̇ ) or γ̇ = 0(τ̂ ), (2.3)

where the deformation ratėγ is given predominantly by the shear rateûŷ in the slender geometry
of the fluid. By way of examples, we consider two prototypical functions forT(γ̇ ). The first is a
simple kind of generalised Newtonian fluid that incorporates a rate-dependent viscosity:

T(ûŷ) =

(
1 + α̂û2

ŷ

1 + β̂û2
ŷ

)

ηûŷ, (2.4)

whereη representsa reference viscosity and̂α and β̂ denote dimensional rheological constants
controlling the degree of shear thinning or thickening. As shown in Appendix A, this model also
corresponds to a wide class of viscoelastic fluid models for our slender fluid geometry (which be-
come quasi-steady under certain assumptions concerning fluid relaxation times; see Appendix A).
The second example is the Bingham fluid (31), for which

T(ûŷ) =

(

η +
τY

|ûŷ|

)

ûŷ if |τ̂ | > τY, (2.5)

which corresponds to the yielded state, andûŷ = 0 otherwise (when the fluid is rigid); here,τY is
theyield stress.

Finally, we assume that the swimmer is also thin and can be modelled as an elastic beam, a mem-
brane or a (Winkler) foundation. We consider these three models because they offer the simplest
mathematical description of slender elastic sheets in which the dominant restoring force is from
bending stiffness, membrane tension or spring-like attachment to a rigid backing, respectively. All
three models may have biological application, with the foundation providing a possible model for a
muscular layer attached to a more rigid support structure as in a mollusc’s foot.

As a first approximation, we will ignore fluid resistance from above as may be true if the fluid
layer above the swimmer is much thicker than the underlying lubrication layer. Force balance in the
direction normal to the wall then demands that

p̂(x̂, Ŷ, t̂) = D̂

(

−
∂2

∂ x̂2

)n

Ŷ + f̂ (x̂, t̂), (2.6)

wherethe constantD̂ measures the stiffness of the swimmer and the powern allows us to switch
from the beam (n = 2) to the membrane (n = 1) or foundation (n = 0). The function f̂ (x̂, t̂)
represents a transverse force exerted on the swimmer that generates its undular motions. We take

f̂ (x̂, t̂) = ÂsinK (x̂ + ct̂), (2.7)

where the wave speedc, amplitudeÂ and wavelength 2π/K are prescribed.
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The force balance parallel to the wall provides an equation of motion for the swimmer that deter-
mines its speed:

M̂
dÛ

dt̂
= −W

∫ 2π/k

0
[τ̂ (x̂, Ŷ, t̂) + Ŷx̂(x̂, t̂) p̂(x̂, Ŷ, t̂)]dx̂, (2.8)

whereM̂ denotesthe (reduced) mass of the swimmer over the period of the imposed force andW
is its effect width. Note that the inclusion of the swimmer’s longitudinal inertia is justified when
that object is massive in comparison to the fluid layer (allowing the Stokes approximation for the
fluid) yet still relatively thin (justifying the neglect of the transverse inertia in (2.6)).1 For most of
the biological examples that motivate this study, inertia could be neglected but for our main focus,
steady swimming, the inertial term vanishes in any case.

2.2 Dimensionless system

We remove the dimensions from the equations by defining dimensionless variables that are free of
the hat decoration:

x = K x̂, y =
ŷ

H
, Y =

Ŷ

H
, t = kct̂, U =

Û

c
, p =

H p̂

ηc
and τ =

τ̂

kηc
, (2.9)

whereH is the mean thickness of the fluid layer. With this change of variables, the fluid equations
(2.1) and boundary conditions (2.2) are unchanged but for the omission of the hats. The constitutive
law becomes a dimensionless functional relationτ = T(uy). For the two illustrative models,

T(uy) =
1 + αu2

y

1 + βu2
y
uy (2.10)

or

T(uy) = uy + Bsgn(uy) if |τ | > B (anduy = 0 otherwise), (2.11)

which uncovers the dimensionless parametersα andβ, gauging the degree of shear thinning or
thickening, and the Bingham numberB that measures the importance of the yield stress. These
parameters are defined in Table1.

With these relations in hand, we observe thatp = p(x, t). Integrals of the other two fluid equa-
tions together with the constitutive law then imply that the surface shear ratesγ̇0 = uy(x, 0, t) and
γ̇1 = uy(x, Y, t) andshear stressesτ0 ≡ τ(x, 0, t) = T(γ̇0) andτ1 ≡ τ1(x, t) = T(γ̇1) mustsatisfy
the differential-algebraic system

Yt + qx = 0, τ0 = τ1 − Ypx, U =
∫ Y

0
uydy =

I0

px
, (2.12)

q(x, t) =
∫ Y

0
udy =

∫ Y

0
(Y − y)uydy − UY =

Uτ1

px
−

I1

p2
x

− UY (2.13)

1 More specifically, scaling analysis indicates that fluid inertia can be discarded providedρcH/η � 1, whereH is the
mean gap thickness. On the other hand, the ratio of the inertial term on the left of (2.8) to the forces on the right is of order
M̂cK/ηW and is therefore bigger thanρcH/η by a factor ofM̂ K/ρHW.
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Table 1 Table of key dimensionlessgroupings

Symbol Definition

A H Â
ηc Dimensionlessforcing amplitude

M kcM̂
2πηW Dimensionlesssheet mass

D H2k2nD̂
ηc Dimensionlesssheet stiffness

α, β c2α̂
H2 , c2β̂

H2 Rescaledrheological parameters
B HτY

ηc Binghamnumber

and

I0 =
∫ γ̇1

γ̇0

T ′(γ̇ )γ̇ dγ̇ , I1 =
∫ γ̇1

γ̇0

T(γ̇ )T ′(γ̇ )γ̇ dγ̇ . (2.14)

The dynamics of the swimmer are governed by

p(x, Y, t) = D

(

−
∂2

∂x2

)n

Y + Asin(x + t) (2.15)

and

MU̇ = −
∫ 2π

0
[τ1(x, t) − Y(x, t)px(x, t)]

dx

2π
= −

∫ 2π

0
τ0(x, t)

dx

2π
, (2.16)

wherethe dimensionless amplitude, mass and stiffness parameters (A, M andD, respectively) are
defined in Table1.

Equations (2.12)–(2.16) constitute the key equations of the problem. The main dependent vari-
ables areY(x, t) and U (t), satisfying the integral conservation of mass equationYt + qx = 0
and the longitudinal equation of motion (2.16). From these variables, using (2.15) and the al-
gebraic equations in (2.12), we computepx and then τ0 and τ1 or γ̇0 and γ̇1. The flux q and
integrated basal shear stress

∫
τ0dx can then be computed via (2.13) to complete the evolution

equations.

3. Periodic viscous swimming

3.1 The initial-value problem

For Newtonian fluids, (2.12)–(2.16) simplify to

Yt =

(
1

2
UY +

1

12
Y3px

)

x
, MU̇ = −

∫ 2π

0

(
U

Y
−

1

2
Ypx

)
dx

2π
(3.1)

and

p = Asin(x + t) + D(−∂2
x)nY. (3.2)
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We solve this (periodic inx) system numerically as an initial-value problem, starting from a flat
motionless swimmerY(x, 0) = 1 andU (0) = 0. We compute spatial derivatives on a uniform
grid of 103 points using either centred finite differences or the fast Fourier transform and advance
in time using a standard adaptive integrator. An illustrative example is shown in Fig.2. After a
transient initial adjustment, the swimmer settles into a steady state with constant speed.

In the limit of low amplitude, the system (3.1)–(3.2) can be solved analytically by a regular
perturbation expansion. For a beam (n= 2), we find the profile converges to

Y ∼ 1 +
A

144+ D2 [12 cos(x + t) − D sin(x + t)]. (3.3)

Inserting this profile into the second relation in (3.1) implies

U ∼
3A2(1 − e−t/M )

(144+ D2)
(3.4)

(the complete solution to the initial-value problem adds an additional decaying oscillation inU ).
These predictions are also included in Fig.2, where they adequately match the numerical results,
despite the relatively large value ofA = 1 used in the computation.

Note that the evolution equation in (3.1) becomes hyperbolic in the limit thatD → 0 sincep
is then prescribed:p → Asin(x + t). Such a swimmer is infinitely flexible and the imposed force
must be balanced purely by the resistive fluid pressure. Although the characteristic equations for
this system cannot be solved analytically (one learns that the quantity [6UY + AY3 cos(x + t)]/12
is conserved along the characteristic curves, but the unknown time dependence ofU prevents one
integrating analytically for those curves), the mathematical structure suggests that it may be possible
for the swimmer to generate shock-like profiles at higher forcing amplitudes. Indeed, we see shortly
that this is inescapable onceA exceeds a critical threshold.

Fig. 2 Solution of the viscous initial-value problem withA = D = M = 1 andn = 2. Panel (a) shows
initial evolution of the swimmer surface position,Y(x, t), as a density on the(x, t)-plane. Panel (b) shows the
swimmer speed together with the low-amplitude approximation (3.4). Panel (c) shows the final profile and the
prediction (3.3)
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3.2 Steady swimming

The steady swimming state can be computed directly from the nonlinear eigenvalue problem

Q =

(

1 −
1

2
U

)

Y −
1

12
Y3 pξ , D(−∂2

ξ )nYξ = pξ − Acosξ, (3.5)

whereξ = x + t , and the eigenvaluesU andQ must be chosen to satisfy the integral constraints
∫ 2π

0
Y

dξ

2π
= 1,

∫ 2π

0

(
U

Y
−

1

2
Y pξ

)
dξ

2π
= 0, (3.6)

the first of which corresponds to conservation of total fluid underneath the swimmer (the spatial
integral ofYt + qx = 0, given the periodic boundary conditions and the choice of the mean gap
thicknessH to scale lengths).

We first consider the case of an infinitely flexible surface (that is,D = 0). In this limit, the
differential character of the problem is avoided and the swimmer profile follows from the implicit
algebraic relation

cosξ =
12

A

[
(2 − U )

2Y2 −
Q

Y3

]

. (3.7)

Unfortunately,U andQ remain unknown until one imposes the integral constraints in (3.6), and nu-
merical resolution of the eigenvalue problem is still needed. Examples of computed steady swimmer
shapes are shown in Fig.3. The swimmer speed increases with forcing amplitude slightly faster than
expected from (3.4). More importantly, the solution branch also appears to terminate at a particular
value of A ≈ 1∙904 (see Fig.4). As we approach that termination point, the solution develops a
sharp corner at its maximum and, beyond, the solution no longer remains continuous. We interpret
this breakdown as the appearance of a shock in the hyperbolic,D = 0, problem.

To regularise the system and smooth the discontinuous solutions at higher amplitude, we include
a finite stiffness. Regularised solutions atA = 2∙5 for a beam with varying stiffness are shown in
Fig. 5 and for different elastic swimmers (that is,n) in Fig. 6. These solutions contain ‘stiffened
boundary layers’ over which the solution remains smooth if sharply varying. (In Fig.6, the values
of D for the different cases ofn are chosen to give similar shock thicknesses.)

Fig. 3 (a) Infinitely flexible (D = 0), steady swimmer profiles,Y(ξ), for varying forcing amplitude (A =
10−3, 0∙2, 0∙4, . . ., 1∙8). (b) Swimming speeds versus forcing amplitude; the low-amplitude prediction (3.4) is
shown by the dashed line
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MICROELASTOHYDRODYNAMICS OF SWIMMING ORGANISMS 9 of 28

Fig. 4 Infinitely flexible (D = 0), steady swimmer profiles,Y(ξ), for varying forcing amplitude (A = 1∙8,
1∙85, 1∙88, 1∙89, 1∙895, 1∙9, 1∙901, 1∙902, 1∙903, 1∙9035, 1∙9037, 1∙9038 and 1∙9039). The insets show a
magnification near the peak inY(ξ) and the swimming speed

Fig. 5 Steady swimmer profiles forA = 2∙5, n = 2 and varying values of stiffnessD

Another perspective on the emergence of discontinuous profiles forD = 0 is shown in Fig.7,
which shows the multi-valued solutions of the implicit equation forY in (3.7), for four different
values ofA. To compute these solutions, we use the speed and flux calculated for the regularised
problem, assuming a beam with a finite stiffness ofD = 10−7; that numerical solution is also
included in the figure. At low amplitude, it is possible to construct a smooth profile withD = 0
using the lowest solution branch shown in the figure (panels (a) and (b)). At higher amplitude,
however, the topology changes and that branch connects to the upper solution; smooth profiles
cannot then be built without adding a stiffened boundary layer (panels (c) and (d)). Importantly, a
passage through the maximum of the right-hand side of (3.7) (given by 2(2−U )3/9Q2A and arising
for Y = 3Q/(2 − U )) is necessary atξ = 0, implying Q2 = 2(2 − U )3/9A. From the figure, it
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Fig. 6 Steady swimmer profiles forA = 2∙5 and the three pairs of values of(n, D) indicated

Fig. 7 The multi-valued solutions of (3.7) forA = 1∙5, 1∙9, 2 and 2∙5. These are computed using the values of
U andQ determined for regularised solutions with(n, D) = (2,10−7), which are shown by the dotted lines

is apparent how one can compute discontinuous solutions withD = 0 by inserting a shock into
profiles extracted from (3.7) and choosing its location andU to ensure that the integral constraints
(3.6) are satisfied.

To continue the solutions to still higherA, we consider a swimming beam (n = 2); sample
high-amplitude solutions are shown in Fig.8. As the amplitude is raised, an increasingly wide
section of the swimmer flattens out close to the wall. Simultaneously, the swimming speed reaches
a maximum and then declines because of the heightened viscous resistance. Consequently, there is
an optimal swimming speed, which is aboutA ≈ 5∙1 in the figure. In other words, beyond some
limit, increasing the amount of force does not speed up the swimmer but merely allows it to press
closer to the wall.

3.3 Very high-amplitude swimmers

The largest amplitude solutions shown in Fig.8 develop a pulse-like structure that emerges from a
low-Y plateau; two further examples at yet higher amplitude are displayed in Fig.9. Note that the
narrow fluid gaps trap a constant-pressure bubble beneath the localised pulse (see Fig.9).
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MICROELASTOHYDRODYNAMICS OF SWIMMING ORGANISMS 11 of 28

Fig. 8 Steady swimmer profiles forA = 2∙5, 5, 10, 15,. . ., 40 and(n, D) = (2,0∙1). The second panel shows
the swimming speedU and effective fluxQ againstA

Fig. 9 (a) Steady swimmer profiles forA = 100 and 800, with(n, D) = (2,0∙1). The dotted line shows the
asymptotic approximation in (3.10), and the dashed line is the levelY = Q/(1−U/2). (TheA = 800 solution
is the highest.) (b) The pressure field of the profile withA = 800 together withAsinξ

We rationalise the pulse-like structure of the solutions as follows. First, the effective fluxQ and
swimming speedU both become small in the large-amplitude limit (see Fig.10). Consequently,
from (3.5), the roughly constant, low-Y level to which the solutions converge is given by

Y ∼ Y∗ =
2Q

2 − U
≈ Q and pξ ∼ Acosξ, (3.8)

in agreement with the solutions of Fig.9.
Second,Y(ξ) is of order one within the main peak of the pulse-like solution, which is again

consistent with (3.5) only if

pξ ∼
12

Y2 � A| cosξ | −→ DYξξξξξ ∼ −Acosξ. (3.9)

Bearing in mind the symmetry of the peak aboutξ = −1
2π and the requirement that the solu-

tion match to the constant level in (3.8) at the edges of the peakξ ∼ −π/2 ± ζ (demanding
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12 of 28 N. J. BALMFORTHet al.

Fig. 10 Swimming speedU and flux Q versus forcing amplitudeA for three values ofD (0∙1, 1 and 10),
n = 2. The expected large-amplitude scalingsQ ∼ A−5/7 andU ∼ A−3/7 are also indicated

(Y, Yξ , Yξξ ) → (Y∗, 0,0) asξ → ±ζ ), the peak profile must therefore be given by

Y ∼ Y∗+
1

24
p0

[(

ξ +
1

2
π

)2

− ζ 2

]2

−
A

D
(sinξ +cosζ )+

Asinζ

2Dζ

[(

ξ +
1

2
π

)2

− ζ 2

]

, (3.10)

where

p0 =
3A

Dζ 3 (ζ cosζ − sinζ ) (3.11)

is the pressure level in the trapped bubble. The edges of the peak are then determined by the leading-
order part of the first constraint in (3.6):

2π ∼
∫ ζ

−ζ
Y dξ ∼

2A

D

[(

1 −
2ζ2

5

)

sinζ − ζ

(

1 −
ζ 2

15

)

cosζ

]

(3.12)

(ignoring the background levelY∗ ≡ Q/(1 − U/2), which makes a negligible contribution in com-
parison to the 2π). These relations indicate thatζ ∼ (1575πD/A)1/7 for A/D � 1, which in turn
implies that the peak height is(155π)6/7(A/D)1/7/720. The relatively small powers ofA in these
expressions illustrate the slow rate of convergence to the asymptotic, large-amplitude limit.

Note that the solution in (3.10) corresponds to a curious kind of indentation problem: it describes
the deflection of a beam that is clamped atξ = −π/2 ± ζ and subject to a transverse forcep0 −
Asinξ . Both the edge positionζ and the pressure levelp0 are unknown, however, and chosen to
select the correct area of the bubble and to ensure that no forces act at the edges (Yξξ = 0 at
ξ = −π/2 ± ζ ). The swimmer’s fluid mechanics supplement this ‘punch’ problem by determining
the flux Q: the jumps in pressure that effectively arise at the edges of the peak (see Fig.9) reflect
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MICROELASTOHYDRODYNAMICS OF SWIMMING ORGANISMS 13 of 28

bottlenecks in the flow that control the flux into and out of the peak region (as in some other elasto-
hydrodynamics lubrication problems, see (33)).

Unfortunately, the analysis to determineQ is significantly complicated by the structure of the
finely scaled boundary layers surrounding the edges of the peak over which the pressure jump oc-
curs. These layers are visible in Fig.9 and are characterised by a combination of all three terms in
the governing equationDYξξξξ = p − Asinξ (cf. the structure evident in Fig.9). The difficulty is
that although we may extract the characteristic scales for the boundary layers’ thicknessA−3/7 and
the fluxQ ∼ A−5/7, the solutions themselves follow from integrating a nonlinear, fifth-order differ-
ential equation (v′′′′′ = (v−1)/v3, with v = Y/Y∗, but expressed in terms of a boundary-layer coor-
dinate) and then matching to the exterior solutions. We avoid those details here and satisfy ourselves
that the predicted scaling ofQ matches numerical computations (see Fig.10). Moreover, the second
constraint in (3.6) can be used to verify thatU ∼ A−3/7 again in agreement with the computations.

4. Swimming in slime

4.1 Effects of shear thickening or thinning

We next display the results of allowing the fluid to be shear thinning or thickening according to
the model (2.10). When the stress functionτ = T(γ̇ ) is not linear, (2.12)–(2.14) must be formally
inverted forγ̇0 and γ̇1, givenY and pξ , which we accomplish numerically with Newton iteration.
The results are then fed into the time-independent versions of (2.16) and the first part of (2.12)
to complete the equations to be integrated for the steady states. To streamline the discussion, we
ignore the effect of varying the stiffness of the swimmer and setD to a relatively small value or
zero although this does restrict the exploration to lower forcing amplitude.

Typical results are shown in Fig.11. Increasingα at fixedβ (the first panel of the figure) cor-
responds to a shear thickening fluid; increasingβ at fixedα (second panel) makes the fluid shear

Fig. 11 Swimmer shapes forA = 1∙5, D = 0∙01, n = 2 and various values ofα andβ in the model (2.10).
Panel (a) showsβ = 1 and varyingα (from 1 to 3, in steps of 0∙2); panel (b) showsα = 1 and varyingβ
(from 1 to 2, in steps of 0∙1). The insets show the swimming speed, and the dots show the results forD = 0.
Note that the shear thinning solutions forD = 0 cease to exist just beyondβ = 1∙5 (and the solutions with
D = 0∙01 become increasingly asymmetric under reflection aboutξ = 0)
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14of 28 N. J. BALMFORTHet al.

thinning.Perhaps unsurprisingly, the figure illustrates how shear thickening lowers the swimmer’s
deflection and speed, whereas shear thinning amplifies and accelerates the swimming motion as
found previously by Lauga and Hosoi (34) in a model of gastropod locomotion. The main conse-
quence on the swimmer’s profile is that shear thickening promotes a more sinusoidal shape (the
pattern of the imposed forcing), whereas shear thinning makes the swimmer take on a more sharply
peaked profile. Nevertheless, the viscosity variations incurred for the two examples shown in Fig.11
are not particularly large (being a factor of 3 or 1/2, respectively). However, it is also possible to
argue that the viscosity variations modelled by (2.10) have limited effect on the large-amplitude
solutions considered in section3.3(using a generalisation of the same analysis).

Note that the generalised Newtonian fluid model (2.4) corresponds to the limit of a viscoelastic
fluid in which shear thinning or thickening is the only appreciable effect (see Appendix A). Had we
chosen fluids with relatively long relaxation times, the asymptotic ordering that leads to the current
model would have been violated and a different theory is called for that incorporates the effects of
time-dependent elasticity but is much less analytically tractable.

4.2 Overcoming a yield stress

4.2.1 Flow patterns. When the fluid has a yield stress, the problem becomes complicated by the
possibility that certain regions are not stressed sufficiently to flow. Indeed, at forcing amplitudes that
are too low, one expects that the swimmer is unable to break the rigid fluid layer underneath it and
cannot therefore swim. In this section, we consider the Bingham fluid model (3.4) and determine
the forcing required for the swimmer to move together with the form of the motion once swimming
is underway. For brevity, we again focus on low-amplitude, infinitely flexible (D = 0) swimmers.

For this specific model, the formulation in (2.12)–(2.16) is unnecessarily general, and the analysis
is assisted by some key simplifications resulting from a deeper exploration of the flow field. In
part, the insights follow from considering the Newtonian flow field, an example of which is shown
in Fig. 12. In the thin-gap geometry,u(x, y, t) is parabolic iny, with the extrema reflecting the
vanishing of the leading-order stress. Thus, one anticipates that rigid plugs might form around those
extrema when a yield stress is present. Denoting the borders of those regions, the ‘yield surfaces’,
by y = Y±, with Y+ > Y−, and given that any sheared flow must still be parabolic, the possible
flow profiles foru are sketched in the lower row of panels of Fig.12.

To compute steady swimmer solutions, we discretise inx and adopt trial values for the pressure
gradientpξ andswimmer position and speedY andU . Given those, one can compute the fluxQ,
surface shear stressτ1 andyield surfacesY± explicitly for each of the different types of flow profile.
A summary of the main details of this construction is presented in Appendix B. The computed
positions ofY± canthen be used to self-consistently identify which type of flow field arises at a
given location underneath the swimmer, and a complete flow field can then be pieced together. The
dynamical relations in (2.12), (2.15) and (2.16) now furnish constraints that one can satisfy after
implementing a standard Newton iteration scheme to correct the trial values ofpξ , Y andU .

Samplenumerical solutions for four values ofB are shown in Fig.13. Displayed are plots of
Y±(ξ) (the ‘plug’ regions) along with a number of other useful characteristics. The yield surfaces
illustrate how the various flow profiles become pieced together to provide the full flow field (pro-
ceeding from left,ξ = −π , to right,ξ = π , the pattern is C→ D → E → A → B → C → B → A
→ E → D → C, using the classification scheme of Fig.12and Appendix B).

The specific choices of Bingham number shown in Fig.13 begin from a case close to the
Newtonian limit, where the plugs are very thin. The plugs widen as the Bingham number increases.
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MICROELASTOHYDRODYNAMICS OF SWIMMING ORGANISMS 15 of 28

Fig. 12 Panel (a): Newtonian flow profiles for a low-amplitude swimmer. Panels (b)–(f) show the various
possible flow profiles for the Bingham case, with the various positions for the two ‘yield surfaces’ (with two
options in Panel (d)). These are, respectively, labelled casesA, B, C, D andE in Appendix B

In the final example, the swimmer is close to being brought to rest by the fluid yield stress, which
is evidenced in the figure by the plugs nearly spanning the fluid layer close toξ = ±π/2 and also
by the plot ofU againstB. Note that where the plug regions adjoin either the swimmer or the un-
derlying wall, the swimmer profile becomes relatively flat; simultaneously, one of the surface shear
stresses remains close to the yield value. Also, the speed of the plug regions varies withξ (see
the final panel of the figure). Thus, those regions are not truly rigid and are examples of ‘pseudo-
plugs’—regions held just above, but not below, the yield stress, which are commonly encountered
in slender viscoplastic flows (35). Likewise, theY± do not represent true yield surfaces, merely the
borders of the plug-like flow.

4.2.2 The stopping condition. To locate onset of motion more precisely, we make the following
arguments. As illustrated by Fig.13, complete vertical sections of the fluid become truly rigid and
the swimmer is halted when the two yield surfaces touch the swimmer and wall simultaneously;
that is, whenY+ → Y andY− → 0 at the same position. By examining the explicit form of the flow
patterns to which this limiting behaviour corresponds (see Appendix B), we find

Y+ = Y =
2B

|pξ |
= Y∗ (4.1)

for the gap thickness where the plugs first fill the fluid layer. Once this occurs, a rigid static layer
forms surroundingξ = ±π/2 (see Fig.13), within which the flux

∫
udy is zero in the frame of the

swimmer. The flux in the frame of the waves is thereforeQ = Y∗.
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16 of 28 N. J. BALMFORTHet al.

Fig. 13 Numerical solutions for the Bingham fluid model and a swimmer without stiffness (D = 0) and
forcing amplitudeA = 1. Four values of Bingham number,B, are displayed (as indicated). In Panels (a), (c),
(e) and (f), the shaded regions show the swimmer (darker) and the ‘plug’ regions (lighter). Panels (b), (d), (f)
and (h) show the surface stresses,τ0 (dashed) andτ1 (solid), along with±B (dotted). The final row of panels
show (i) the swimmer speed as a function ofB (together with the fit,U = 0∙44(B − B∗)3/2 andB∗ = 0∙1315,
shown by the dashed line), (j) a comparison of the swimmer shapes (the dashed curve shows the Newtonian
swimmer profile) and (k) the plug speeds,up(ξ) (which can be discontinuous nearξ = ±π/2 when a plug
region adjacent to one of the surfaces disappears)
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MICROELASTOHYDRODYNAMICS OF SWIMMING ORGANISMS 17of 28

Although the swimmer is now not moving, a yielded zone still persists containing a central
pseudo-plug (the flow pattern of Fig.12(d)). Within that region, 0< Y− < Y+ < Y, and the
flow profile is (given thatpξ = τy ≡ uyy in the sheared parts of the flow)

u =






up + 1
2 pξ (Y− − y)2, 0 < y < Y0,

up, Y− < y < Y+,

up + 1
2 pξ (y − Y+)2, Y+ < y < Y,

(4.2)

wherethe plug speed is

up = −
1

2
pξ (Y − Y+)2 = −

1

2
pξ Y2

−, (4.3)

whichdemands thatY− +Y+ = Y. The two surface shear stresses areτ0 = −1
2Ypξ andτ1 = 1

2Ypξ

andwithin the layer

τ = τ0 + ypξ . (4.4)

But τ = ±Bsgn(pξ ) at y = Y±, which further demands that

Y+ − Y− =
2B

|pξ |
or Y± =

1

2
Y ±

B

|pξ |
. (4.5)

Given these results, we may compute the flux in the wave frame:

Q = Y − 1
3 pξ

(

Y +
B

|pξ |

)(
1

2
Y −

B

|pξ |

)2

. (4.6)

Equation(4.6) determinesY(ξ) implicitly becausepξ = Acosξ andQ = Y∗.
Finally, if ξ = π/2 ± ζ∗, whereY = Y∗, the length of the truly rigid plugs is 2ζ∗. Hence, the

total stress on those regions cannot exceed 2Bζ∗. In fact, the limiting stress distribution in Fig.13
suggests thatτ0 is equal to−B throughout the region [π/2− ζ∗, π/2] and then increases up to+B
over [π/2, π/2 + ζ∗] throughout whichτ1 = −B. This limiting behaviour is easily confirmed on
examining the explicit formulae for the surface stresses asU → 0 (see Appendix B). Thus,

τ0 =

{
−B, π/2 − ζ∗ < ξ < π/2,

−B − Y∗ pξ , π/2 < ξ < π/2 + ζ∗,
(4.7)

given (4.4). The constraints
∫

Y dξ = 2π and
∫

τ0dξ = 0 then demand that

∫ π/2−ζ∗

−π/2+ζ∗

Ydξ +
∫ 3π/2−ζ∗

π/2+ζ∗

Ydξ + 4ζ∗Y∗ = 2π (4.8)

and

4ζ∗B − 2AY∗(1 − cosζ∗) =
∫ π/2−ζ∗

−π/2+ζ∗

Ypξ dξ +
∫ 3π/2−ζ∗

π/2+ζ∗

Ypξ dξ (4.9)

at the critical yield stressB = B∗, for which the swimmer is first brought to rest. Equations (4.6)–
(4.9) determineY, B∗ andζ∗; numerical calculations showing these quantities as functions of forc-
ing amplitude are shown in Fig.14. The solutions extend well beyond the critical amplitude at
which the Newtonian solution ceases to be smooth, owing to the reduction in the deflection of the
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18 of 28 N. J. BALMFORTHet al.

Fig. 14 Numerical solutions of the stopping condition problem showing (a) the critical yield stress,B∗, and (b)
the half-width of the plug,ζ∗, as functions ofA. The stars indicate the values expected from the computations
shown in Fig.13. The dashed lines show the low-amplitude limitsB∗ ∼ A3/2√

π/96 andζ∗ ∼
√

π A/24
(which follow from the shear stress constraint on noting the reductionsY ∼ 1 + pξ /12 andY∗ = 2B/|pξ | →
1). Panel (c) shows a selection of corresponding swimmer (forA = 0∙5, 1, 1∙5, 2, 2∙5, 3 and 3∙34)

Fig. 15 Panels (a) and (b): Solutions forY(ξ) andY±(ξ) below the stopping condition forA = 1 and six
values ofB (from 0∙14 to 0∙46 in steps of 0∙8). Panel (c) shows the plug half-width,ζ∗, againstB

swimmer due to the yield stress. However, atA ≈ 3∙34, the profile once again develops a corner
(see Fig.14), and a finite bending stiffness is needed to advance to higher amplitude.

Note that (4.2)–(4.6) remain valid even whenB > B∗; that is, for yield stresses sufficient to
hold the swimmer in place. In this situation, although the swimmer cannot make forward progress,
sections surrounding the extrema of the imposed force are still able to move laterally according to
the rhythm of the propagating wave. To compute the corresponding wave profiles, we use (4.2)–
(4.6) and the mass conservation constraint in (4.8). However, the shear stress constraint (4.9) must
be abandoned, leaving the plug half-thicknessζ∗ as a function ofB (the shear stress exerted by the
stationary plugs need only exceed that from the yielded zones to ensure that the swimmer remain
stationary). The widths of the sheared regions decrease withB, until motion ceases altogether for
ζ∗ → π/2 andB → A/2, which is sufficient to ensure that the imposed forcing cannot break the
yield stress anywhere underneath the swimmer.2

2 When the swimmer is unable to deform,Y = 1 andτ1 = τ0 + pξ . But both|τ0| and|τ1| cannot exceedB if the fluid is to
remain unyielded, implying 2B > |τ1| + |τ0| > |τ1 − τ0| = A| cosξ |, which is guaranteed for allξ if 2B > A.
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5. A finite swimmer

5.1 Revisiting the initial-value problem

Thus far, we have explored the dynamics of infinite swimmers driven by spatially periodic distur-
bances travelling down their length. To offer some insight into the possible role of the head and
tail of a finite swimmer, we now depart from this stance and impose alternative conditions at the
ends. For simplicity and continuity, we take the ends to lie atx = 0 andx = 2π and consider a
propagating, sinusoidal-shaped forcing acting on a sheet with bending stiffness (n = 2). However,
to accommodate the fact that the forcing needs no longer have the same period as that domain, we
must now introduce another dimensionless parameter corresponding to the (not necessarily integral)
wave number of the forcingk (demanding that we reinterpret the dimensional scale 2π/K as the
swimmer’s length). Thus,f (x, t) = Asink(x + t).

The specific boundary conditions we impose are constant fluid pressurep(0, t) = p(2π, t) = 0
and a combination of either clamped or free conditions on the swimmer itself:

Y(0, t) = Yx(0, t) = Y(2π, t) = Yx(2π, t) = 0 clamped−clamped,

Y(0, t) = Yx(0, t) = Yxx(2π, t) = Yxxx(2π, t) = 0 clamped−free,

Yxx(0, t) = Yxxx(0, t) = Y(2π, t) = Yx(2π, t) = 0 free−clamped,

Yxx(0, t) = Yxxx(0, t) = Yxx(2π, t) = Yxxx(2π, t) = 0 free−free. (5.1)

Free–free is probably most relevant for a swimmer without a large head but we consider all four
options in order to offer some insight into the range of possibilities without considering detailed
physiology. Unfortunately, all such conditions prohibit us from shifting into the frame of the wave in
order to find steadily propagating solutions; instead, we must resort to a solution of the initial-value
problem to determine the swimming dynamics. That is, we return to (3.1)–(3.2) withY(x, 0) = 1
andU (0) = 0 together with the new form forf (x, t) and the boundary conditions.

A sample solution to the initial-value problem for a swimmer clamped at its head and tail is
shown in Fig.16. After a transient, the swimmer settles into a periodic state which is also displayed
in the figure. For low forcing amplitude, the swimmer oscillates symmetrically aboutY = 1; such
states can be predicted largely analytically by examining the limitA � 1 as described momentarily
(results forA = 1/4 are shown in Fig.16). For larger forcing amplitudes, the profile becomes
increasingly asymmetrical aboutY = 1. Indeed, with the boundary conditions used, the system no
longer satisfies the constraint

∫ 2π
0 Ydx = 1, and so the fluid volume underneath the swimmer is

not conserved, implying an outgoing flux. The physical significance of this result is obscured by the
fact that we do not consider the flow dynamics ahead or behind the ends of the swimmer; to avoid
such issues and to facilitate a faster exploration of some of the main features of the problem, we
now focus on the low-amplitude limit.

5.2 Low-amplitude results

WhenA � 1, the fluid evolution equation can be linearised:Y = 1 + η(x, t), |η| � 1, with

ηt =
1

12
pxx, p = Dηxxxx + Asink(x + t). (5.2)
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20 of 28 N. J. BALMFORTHet al.

Fig. 16 Initial-value problem for a swimmer clamped at its head and tail, forced withA = 1/4 andk = 1;
D = M = 1. Panel (a) shows the initial evolution of the swimmer profile,Y(x, t), as a surface above the(x, t)-
plane. Panel (b) shows the speed,U (t), with an inset indicating the long-time behaviour. Panel (c) shows 16
snapshots during the cycle of the periodic state to which the solution eventually converges; the dots illustrate the
envelope expecting from low-amplitude theory. Panel (d) shows the results of a suite of initial-value problems
in which the final, average swimming speed,〈U 〉, was computed as a function of the forcing amplitude,A; the
dotted line shows the prediction of low-amplitude theory. Panels (e) and (f) show snapshots of periodic states
with A = 1 and 4

The periodic solution of these equations can be formally written as

η =
12k Acosk(x + t)

(144+ D2k10)
−

Dk6Asink(x + t)

(144+ D2k10)
+ A

12∑

j =1

aj e
mj x

(

coskt +
Dm6

j

12k
sinkt

)

, (5.3)

where

mj =

(
12k

D

)1/6

ei π(2 j −1)/12, (5.4)

and the coefficients of the homogeneous partaj are determined by applying the specific boundary
conditions (and depend onk andD). This form illustrates how the solution is a mix of standing and
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propagating waves and can be fed into the right-hand side of

MU̇ = −
∫ 2π

0

(

U −
1

2
Y px

)
dx

2π
(5.5)

to furnish the swimming speed. Note that an average over the cycle of the final periodic state pro-
vides the mean speed

〈U 〉 =
k

8π2

∫ 2π

0

∫ 2π/k

0
ηpxdtdx, (5.6)

which is independent of the swimmer’s inertia. Given the linearity of (5.2), it follows that〈U 〉 ∼ A2.
Consequently, below, we quote only the scaled mean speeds〈U 〉/A2 and omit further discussion of
the effect of the forcing amplitude.

Figure17 shows scaled speeds against forcing wave number at fixed bending stiffness (D = 1).
For all four boundary conditions, the speeds are maximised for wave numbers near unity, a result
also expected for a periodic swimmer, with speedU/A2 = 3k2/(144+ D2k10). The maximum
arises because the effective strength of the forcing increases withk, but the stiffness of the swim-
mer penalises higher wave numbers. Finite swimmers also need not always swim forward: Fig.17

Fig. 17 Scaled swimming speeds,〈U 〉/A2, for D = 1 and varying forcing wave numberk. The left-hand
panel shows the speeds computed for all four boundary conditions in (5.1); the periodic result,U/A2 =
3k2/(144+ D2k10), is shown by the dotted line. The speed for free clamped boundary conditions becomes
negative for a certaink; where it is negative, the scaled speed is plotted as a dashed line. The pictures on the
right show snapshots of the swimmer profile at 12 instants during the swimming cycle fork = 1 and 5, with
each row corresponding to the four different boundary conditions (the form of the profile at the ends reflects
the relevant conditions). For each wave number, the profiles are shown with equivalent scales, except for the
clamped–clamped case withk = 5, which is scaled additionally by a factor of three
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illustrates how the swimmer that is free atx = 0 but clamped atx = 2π actually moves backward
whenk is sufficiently large (that is, it moves in the same direction as the waves propagate).

For large wave number and low bending stiffness (see Fig.18), the swimmer profile over the
bulk of the body begins to resemble a periodic swimmer. Boundary layers emerge at the ends of
the swimmer over which the solution adjusts to satisfy the relevant boundary conditions. However,
as is evident in Fig.18, the boundary layer and interior solutions are largely independent of one
another: the solutions over the bulk are similar for all four boundary condition combinations, and
each boundary layer solution is independent of the condition at the other end. The boundary layers
remain pronounced even asD → 0, to the degree that the mean swimming speed does not appear
to converge to the corresponding periodic value, which might otherwise be expected (see Fig.19).

At large bending stiffness, the swimmer is unable to significantly flex under the forcing, furnish-
ing profiles with relatively low-amplitude and mild spatial oscillations (see Fig.19). ForD � 1,
the homogeneous solutions in (5.3) reduce to a cubic polynomial inx and the mean speed can be
shown to scale withD−2 (see Fig.19). Different behaviour arises when both ends are free: in this
instance, a much stronger rigid oscillation of the entire swimmer emerges. For example, ifk is an
integer, the form is approximately

Y ∼ −
15

π4k2 (x − π) sinkt. (5.7)

As this leading-order motion is reversible, it does not generate any net swimming; forward motion
is controlled by the higher-order flexing of the swimmer, and the speed remains of orderD−2 (see
Fig. 19).

Fig. 18 Scaled speeds,〈U 〉/A2, for D = 10−3 and varyingk are shown in the left-hand panel for each of the
boundary conditions in (5.1). The dotted curve shows the periodic result. The snapshots on the right show 12
instants of the swimming cycle withk = 5 for each set of boundary conditions
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Fig. 19 Scaled speeds for varyingD andk = 1, 3 and 5. Panels (a)–(d) correspond to the four boundary
conditions in (5.1) (the speeds fork = 1 are lowest at smallD but highest at largeD for each case). Lines are
dashed where speeds are negative. The insets show 12 snapshots of the profile during the swimming cycles for
k = 1 andk = 5 at D = 103

6. Conclusions

In Taylor’s model of a swimming microorganism, sinusoidal waves of low amplitude are sent down
the length of a flexible sheet, propelling the object forward. Katz (2) took this model one step
further, bringing the swimmer into the vicinity of a plane wall and allowing wave motions of higher
amplitude, but still prescribed shape. Here, we have allowed the wave motions to be determined
self-consistently by modelling the swimmer as an elastic filament bending under the action of an
imposed force that propagates in a wave-like fashion along its length. Moreover, we have also
filled the gap between the swimmer and the wall with complex fluid and explored how certain
non-Newtonian effects influence the dynamics.

Had we fixed the profile of the wave that propagates down the swimmer, then we would have
found that the swimming speed increases monotonically with forcing amplitude until the swim-
mer actually touches the wall. Of course, this situation is physically unrealistic, as the lubrication
forces required to bring the surfaces into contact demand an unrealistically large forcing amplitude.
Instead, by allowing the wave profile to be set by the solid mechanics of an elastic swimmer, we
have seen that the swimming speed actually reaches a maximum and then decreases, as the forcing
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amplitudeis raised. The speed ultimately decreases in this situation because at the higher ampli-
tudes, the swimmer is forced to press closer to the wall, which heightens the viscous resistance.
Although there may be a biological need for the swimmer to gain a close proximity to the wall, if
optimising the speed is the only requirement, then this selects a specific forcing amplitude. However,
we have also prescribed the spatial pattern of the imposed forcing, and the existence of a preferred
swimming speed and forcing amplitude suggests an interesting problem in optimal control if one is
further allowed to shape the forcing pattern arbitrarily.

Our main results for swimmers in non-Newtonian fluid concern the case when the fluid has a
yield stress. We have found that the forcing on the swimmer must exceed two thresholds before
it begins its forward motion. Below the lower threshold, the forcing on the swimmer is unable to
create any transverse motion whatsoever. But even when this threshold is exceeded, and waves
are propagated down the swimmer, there is still no forward progress because yielding occurs only
locally underneath each wave and rigid plugs persist in between that hold the swimmer in place.
Only once we reach the second threshold, when the swimming action forces the fluid layer to yield
everywhere, can forward motion occur. Both the flow underneath the swimmer and its shape are also
strongly affected by the yield stress: a propagating pattern of plug-like velocity fields accompanies
the wave travelling along the swimmer, and whenever the plugs touch the swimmer, the profile
becomes flattened. Future studies of locomotive strategies adopted by real organisms may place
these results in context by highlighting how the fluid environment influences the swimmer.

Finally, we presented a brief study of the effect of the head and tail of the swimmer by considering
non-periodic, flexing sheets of finite length. For this situation, the swimming dynamics depends
sensitively on the detailed boundary conditions at the head and tail, and there is no obvious optimal
choice over the entire range of physical parameter values. More curiously, for certain swimming
configurations, waves propagating down the sheet actually propel the swimmer backward.
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APPENDIX A

Constitutivemodels

The Oldroyd-8 constitutive model is the most general constitutive model that respects the symmetries typical
of fluid flow and the principle of material invariance and contains terms of quadratic nonlinear order in the
deformation rates, yet remains linear in the stresses (31,36). If τ denotes the deviatoric stress tensor, the law
can be expressed in thedimensionalform

τ + λ1
5
τ +

1

2
μ0(Tr τ)γ̇ −

1

2
μ1(τ ∙ γ̇ + γ̇ ∙ τ) +

1

2
ν1(τ : γ̇ )I

= μ

[

γ̇ + λ2
5
γ̇ − μ2γ̇ ∙ γ̇ +

1

2
ν2(γ̇ : γ̇ )I

]

, (A.1)

whereμ is a polymeric viscosity,λ1 andλ2 arerelaxation times, the deformation rates follow from the tensor

γ̇ = ∇u + (∇u)T ≡

(
2ux uy + vx

uy + vx −2ux

)

(A.2)

andtheμ j sandν j sare Oldroyd’s other parameters. The upper convected derivative is

5
τ = τt + uτx + vτy − [(∇u)T ∙ τ + τ ∙ (∇u)]. (A.3)

For the slender flow geometry of our problem, and ifε denotes a typical aspect ratio,

γ̇ ∼
c

H

(
O(ε) O(1)
O(1) O(ε)

)

. (A.4)

Moreover,∂/∂ t andu ∙ ∇ are of orderεc/H . Re-examining the constitutive law in light of these scalings, and
assuming that all ofc−1H(λ j , μ j , ν j ) remainof order one, implies that to leading order the stress components
are given by the relations expected for steady-state, uni-directional shear flow in thex-direction:

τ11 + (ν1 − μ1 − 2λ1)uyτ12 = μ(ν2 − μ2 − 2λ2)u2
y, (A.5)

2τ12 + (μ0 − μ1 − 2λ1)uyτ11 + (μ0 − μ1)uyτ22 = 2μuy, (A.6)

τ22 + (ν1 − μ1)uyτ12 = μ(ν2 − μ2)u2
y, (A.7)

wherethe numeric subscripts indicate the stress component. These equations are solved to yield the shear stress

τ12 =
μuy(1 + αu2

y)

1 + βu2
y

, (A.8)

which is the only component that enters the leading-order force balance, and where

α = λ1(ν2 − μ2) + λ2(μ0 − μ1) − (μ0 − μ1)(ν2 − μ2), (A.9)

β = λ1(ν1 + μ0 − 2μ1) − (μ0 − μ1)(ν1 − μ1). (A.10)

 at U
niversity of B

ritish C
olum

bia on June 8, 2010 
http://qjm

am
.oxfordjournals.org

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org


MICROELASTOHYDRODYNAMICS OF SWIMMING ORGANISMS 27of 28

For the classical Oldroyd-B model, all the parametersν j andμ j vanish, leavingα = β = 0 and constant
viscosity. A more interesting special case is the Johnson–Segalman model (31) for whichα = −λ1λ2ξ(2+ ξ)
andβ = −λ2

1ξ(2 + ξ), whereξ is another rheological parameter.
Note that the quasi-steady version of the non-Newtonian model emerges here because of our assumption

that the Deborah numbersHλ j /c areof order one and in view of the lubrication scalings (unlike in papers
by Laugaet al.). The viscoelastic model can be made richer in the slender limit if the scaled parameters
c−1H(λ j , μ j , ν j ) arepromoted to higher order inε. The effects of time-dependent elasticity then appear in
the problem, which unfortunately leads to a far less tractable partial differential form. Moreover, this upsets
the leading-order force balance expressed in (2.1).

APPENDIXB

Flow profiles for the Bingham fluid

Given the pressure gradient and swimmer position, we compute various flow quantities as follows. Note that
the case withY+ > Y andY− < 0 can only arise forU = 0 and unyielded fluid. Also, givenY±, we may
compute the surface shear stresses from

τ0 = −
1

2
pξ (Y− + Y+), τ1 =

1

2
pξ (2Y − Y− − Y+). (B.1)

A: Y± < 0 (pξ > 0, τ0 > B, τ1 > B)

u = −U − yY− pξ + 1
2 pξ y2, (B.2)

Y− =
1

2
Y −

U

Ypξ
, Y+ = Y− +

2B

|pξ |
, Q = Y −

1

2
U (1 − Y) −

1

12
pξ Y3. (B.3)

B: Y− < 0 < Y+ < Y (pξ > 0, τ0 > B, τ1 > B)

u =






−U, 0 < y < Y+,

−U + 1
2 pξ (y − Y+)2, Y+ < y < Y,

(B.4)

Y+ = Y −

√
2U

pξ
, Y− = Y+ −

2B

|pξ |
, Q = Y − UY +

1

6
pξ (Y − Y+)3. (B.5)

C: 0 < Y± < Y (|τ0| > B, |τ1| > B)

u =






up + 1
2 pξ (Y− − y)2, 0 < y < Y0,

up, Y− < y < Y+,

up + 1
2 pξ (y − Y+)2, Y+ < y < Y,

(B.6)

up = −
1

2
pξ Y2

− − U = −
1

2
pξ (Y − Y+)2, (B.7)

Y+ =
4B2 + 2Upξ − Y2p2

ξ

2|pξ |(2B − Y|pξ |)
, Y− = Y+ −

2B

|pξ |
, (B.8)

Q = Y +
1

6
pξ [Y3

− + (Y − Y+)3 − 3Y(Y − Y+)2]. (B.9)

 at U
niversity of B

ritish C
olum

bia on June 8, 2010 
http://qjm

am
.oxfordjournals.org

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org


28of 28 N. J. BALMFORTHet al.

D: 0 < Y− < Y < Y+ (pξ < 0, τ0 > B, B > τ1 > −B)

u =

{
1
2 pξ (Y− − y)2, 0 < y < Y+,

0, Y− < y < Y,
(B.10)

Y− =

√
2U

|pξ |
, Y+ = Y− +

2B

|pξ |
, Q = Y +

1

6
pξ Y3

−. (B.11)

E: Y < Y± (pξ < 0, τ0 > B, τ1 > B)

u =

(

U −
1

2
pξ Y2

)
y

Y
+

1

2
pξ y2 − U, (B.12)

Y− =
1

2
Y −

U

Ypξ
, Y+ = Y− +

2B

|pξ |
, Q = Y −

1

2
UY −

1

12
pξ Y3. (B.13)

For U → 0, the following limits follow from the formulae above and coincide with the behaviour evident
in Fig. 13.

For CaseB, Y+ → Y except for a narrow region close toξ = π/2 over whichpξ ∼ O(U ). Consequently,
Y− → Y − 2B/pξ and Q → Y. Demanding that the flux be constant therefore implies thatY is almost
constant,Y ≈ Y∗. Moreover, the surface stresses becomeτ1 → +B andτ0 → B − Y∗ pξ .

For CaseD, Y− → 0, except, once again, in a narrow region nearξ = π/2 over whichpξ ∼ O(U ). This
then implies thatY+ → −2B/pξ andQ ∼ Y. Thus, the swimmer profile must again become nearly constant,
Y ≈ Y∗, and the surface stresses reduce toτ0 → +B andτ1 → Y∗ pξ + B.
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