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We present a model for thixotropic gravity currents flowing down an inclined plane that
combines lubrication theory for shallow flow with a rheological constitutive law describing
the degree of microscopic structure. The model is solved numerically for a finite volume
of fluid in both two and three dimensions. The results illustrate the importance of the
degree of initial ageing and the spatio-temporal variations of the microstructure during
flow. The fluid does not flow unless the plane is inclined beyond a critical angle that
depends on the ageing time. Above that critical angle and for relatively long ageing times,
the fluid dramatically avalanches downslope, with the current becoming characterised by
a structured horseshoe-shaped remnant of fluid at the back and a raised nose at the
advancing front. The flow is prone to a weak interfacial instability that occurs along the
border between structured and de-structured fluid. Experiments with bentonite clay show
broadly similar phenomenological behaviour to that predicted by the model. Differences
between the experiments and the model are discussed.
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1. Introduction

Thixotropic fluids have a time-dependent microstructure that gradually builds up when
the fluid is at rest, leading to a slow increase in the effective viscosity, but is reversibly
broken down by flow, thereby lowering the fluid’s resistance (Mewis & Wagner 2009).
A wide range of fluids exhibit thixotropic behaviour, including natural clay suspensions,
industrial drilling fluids and cements, printing inks and paints, oils and grease, and food
products such as mayonnaise and ketchup (Barnes 1997; Mewis & Wagner 2009). A
key feature of these thixotropic fluids is that they may experience so-called “viscosity
bifurcations” (Coussot et al. 2002a; Bonn et al. 2004; Moller et al. 2009; Alexandrou et al.
2009): if the fluid is jammed in a structured or solid state with high viscosity, an increase
in the stress on the material beyond a critical threshold can cause the microstructure
to abruptly disintegrate, substantially lowering the viscosity and initiating sudden fluid
flow. Moreover, if the stress is reduced below another (typically lower) critical value,
the microstructure can swiftly recover and jam, abruptly increasing the viscosity and
blocking flow.

Gravity currents form a particularly important class of flows in which viscosity bi-
furcations can play a significant role. Many geophysical muds and clays appear to be
thixotropic, and the relatively sudden and long runouts of mudslides and “quick-clay”
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avalanches has been suggested to originate from this rheology (Khaldoun et al. 2009). In
industrial settings, currents of mine tailings and waste mineral slurries have been observed
to flow much further than predicted (Henriquez & Simms 2009; Simms et al. 2011), with
potentially serious environmental consequences. On a different scale, household food-
stuffs such as ketchup are often tested in the “Bostwick consistometer” (a variant of the
classical dambreak problem in which material is suddenly released and slumps down a
channel; Balmforth et al. 2006a), yet the confounding role that thixotropy can play in
such a device is usually ignored.

Key features of thixotropic gravity currents were documented in the experiments of
Coussot et al. (2002a). These authors observed that a suspension of bentonite clay em-
placed as a mound on an inclined plane did not flow provided the slope was below
a certain critical angle. Above that angle, however, the mound collapsed dramatically,
with a fraction of the clay flowing rapidly down the incline, and a horseshoe-shaped
remnant of immobile material being left behind. The critical angle corresponds to the
stress at which a viscosity bifurcation occurs; the avalanching fluid having de-structured
and separated from the structured horseshoe-shaped remnant. For uniform layers on an
inclined plane, Huynh et al. (2005) showed that the critical angle increased if the fluid
was left to rest and “age” for longer. Similar “avalanche” behaviour was recorded for clay
suspensions by Khaldoun et al. (2009); these authors also reported that the collapse was
mediated by a thin de-structured basal layer, upon which the overlying rigid bulk of the
material was conveyed.

Although previous work has proposed constitutive laws describing the viscosity bi-
furcations of thixotropic fluid (see §2), there have been few attempts to couple such
rheological models with the detailed flow dynamics. In particular, there has been no
attempt to model the spatio-temporal evolution of a thixotropic gravity current on an
inclined plane. Our aim in the current paper is to provide such a model. In particular,
we present a detailed shallow-layer theory that describes the release of a finite volume of
thixotropic fluid on a slope. Such theories are well documented for Newtonian (Huppert
1982; Lister 1992) and viscoplastic (Liu & Mei 1989; Balmforth et al. 2002, 2006b) fluids.

Our rheological model, a simple thixotropic constitutive law incorporating viscosity
bifurcations, is described in §2. In §3, we couple this rheology with lubrication theory
for shallow flow. We solve the equations of the model numerically in section §4, in both
two and three dimensions, and discuss the main features of the flow. In §5, we present
experimental results for gravity current of an aqueous suspension of bentonite clay. There
is broad agreement between the theory and experiments, but there are also some notable
differences, which are discussed here. Finally, in §6 we summarize our main results.
In exploring the theoretical model, we encounter a novel type of interfacial instability;
additional details of this feature of the model are presented in the Appendix.

2. Rheological model

2.1. Background

Viscosity bifurcations can be rationalized using simple constitutive models that exploit
a parameter, λ(t), which describes the degree of internal structure (Barnes 1997; Mewis
& Wagner 2009). Here, we take this parameter to lie in the range [0, λ0 ]: the fluid has no
effective microstructure if λ = 0, but is fully structured and solid-like when λ = λ

0
6 1.

The structure parameter controls the viscosity µ(λ) in the generalized Newtonian fluid
model,

τij = µ(λ) γ̇ij , (2.1)
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which relates the deviatoric stress tensor τij to the rate of strain tensor γ̇ij . The structure
parameter is often taken to satisfy an evolution equation of the form,

dλ

dt
= g(λ, γ̇) = G(λ, τ), (2.2)

where γ̇ =
√
γ̇ij γ̇ij/2 and τ =

√
τijτij/2 denote tensor invariants, and G(λ, τ) follows

from g(λ, γ̇) on using (2.1). Various forms for µ(λ) and g(λ, γ̇) have been proposed
in the literature (Coussot et al. 2002a,b; Moller et al. 2006; Dullaert & Mewis 2006;
Putz & Burghelea 2009; Alexandrou et al. 2009). In general, g(λ, γ̇) contains a positive
term corresponding to restructuring or “healing”, and a negative term proportional to γ̇
describing the de-structuring effects of flow. The viscosity µ(λ) increases with structure,
and becomes large or even diverges as the fluid becomes fully structured.

The viscosity bifurcations occurring as stress is varied are conveniently illustrated using
the quasi-steady version of (2.2), G(λ, τ) = 0. The overall idea is that, for low or vanishing
stress, G(λ, τ) is a positive, decreasing function of λ that vanishes only for λ = λ0 ;
see figure 1(a). As is clear from (2.2), G(λ0 , τ) = 0 corresponds to a fully structured
equilibrium state that is stable when ∂G(λ

0
, τ)/∂λ < 0. As the stress is increased, the

curve representing G(λ, τ) is pushed down somewhere over the range of λ, eventually
touching the G(λ, τ) = 0 axis and creating two new equilibrium states, λ = λ±, at a
critical stress, τ = τ

C
. The newly created state with less structure, λ = λ− < λ+, is

stable, whilst that with an intermediate degree of structure, λ = λ+, is unstable. The
fully structured state λ = λ0 persists during the bifurcation, however, and remains stable,
implying that the fluid would remain in this state if it was prepared so before the stress
was increased.

A second viscosity bifurcation arises if the stress is increased still further: the curve
of G(λ, τ) continues to be driven downwards, and the unstable equilibrium moves to
higher λ. Eventually, this state collides with the fully structured solution at λ = λ

0
,

rendering that equilibrium unstable (∂G(λ
0
, τ)/∂λ becomes positive). This bifurcation

occurs at stress τ = τ
A

; for higher stresses τ > τ
A

, the only stable equilibrium in the
range [0, λ0 ] is λ = λ−. Therefore, all structure disintegrates and evolves towards the de-
structured equilibrium, even if the fluid were initially fully structured. The set of curves
with increasing stress in figure 1(a) illustrate a sequence of such situations.

The behaviour of the structure function in figure 1(a) implies a hysteretic relation
between stress τ and strain rate γ̇ if the stress on a sample of fluid is first ramped up
until flow occurs, and then decreased back down until the flow subsides. More specifically,
as sketched in figure 1(b), the fluid is initially static and fully structured (λ = λ

0
and

γ̇ = 0), and remains so until that state loses its stability at τ = τ
A

. The fluid structure
then disintegrates and evolves towards the less structured state λ = λ− with finite shear
rate. If the stress is then lowered, the flowing, less structured state of the fluid is preserved
until τ falls below τ

C
, at which juncture that state disappears. Thereafter, the flow can

no longer destroy the microstructure at the same pace as it heals, and the fluid evolves
back towards the structured state, with the viscosity abruptly increasing and the flow
coming to a halt.

2.2. The rheological model

Our aim is to present a simple model of thixotropic gravity currents. For the task, we
incorporate the thixotropic rheology, and specifically the viscosity bifurcations, in as
simple a manner as possible. More precisely, we use the structure function shown in
figure 1(a) to relate the local stress to the microstructural state. That is, given the
stress, we solve G(λ, τ) = 0 to determine λ, and thence the viscosity, µ(λ).
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Figure 1: (a) The structure function G(λ, τ) for four values of the stress τ . The curves
are based on the model (2.4). The dashed and dot-dashed curves show the critical cases
τ = τ

C
and τ = τ

A
. Stars indicate the stable, less structured equilibrium states, and

circles indicate the unstable, intermediate structured states. Panel (b) shows a sketch of
the hysteretic stress-strain-rate relation, with the arrows indicating the pathway expected
for an experiment in which stress is first increased past the critical value τ

A
, and then

decreased back below τ
C

. The dashed line shows the unstable, intermediate structured
equilibrium. The light dotted lines show the stress-strain-rate relations for λ

0
= 1/2

(idealized yield-stress-like behaviour) and λ
0

= 1 (τ
A
→∞). The inset shows rheometric

data for a bentonite clay suspension (7.5wt% ≈ 10% by volume) in a cone and plate
rheometer. The stress was increased from 10 Pa to 50 Pa in 20 steps, and then decreased
again, waiting for 5 seconds at each stress level. The fluid was pre-sheared for 2 minutes
at 100 Pa, and left to rest for 5 minutes before starting the test.

A convenient form for the structure function is furnished by the models,

g(λ, γ̇) =
(λ0 − λ)

λ
0
T
− αλγ̇ and µ(λ) =

µ0λ0

(1− λ) (λ
0
− λ)

, (2.3a, b)

which imply

G(λ, τ) =
(λ

0
− λ)

λ0T
[1− Γλ (1− λ) τ ] = 0, (2.4)

where T and α are positive empirical constants, µ0 is a constant reference viscosity and
Γ = αT/µ0. The two terms on the right-hand side of (2.3a) can be interpreted as the
healing of the microstructure and flow-induced de-structuring, respectively.

The forms in (2.3) are similar, but not identical, to those suggested by Barnes (1997),
and many authors since. The main differences are the factor (λ

0
− λ)(1 − λ) in µ(λ)

(2.3b) rather than a power of (1− λ), and our identification of the fully structured state
as λ = λ0 , not λ = 1 or λ = ∞. These differences are key to ensuring that there is a
second viscosity bifurcation at τ = τ

A
as discussed above, and to accommodate differing

degrees of initial ageing (see §2.3 below). In any event, (2.4) is an especially convenient
from of the structure function, because it can be solved analytically to give the three



Thixotropic gravity currents 5

branches of the stress-strain-rate relation:

λ = λ
0
, λ = λ±(τ) =

1

2

[
1±

(
1− 4

Γτ

)1/2
]
. (2.5a, b)

The points of bifurcation can also be determined analytically: the stable-unstable pair of
equilibria, λ = λ±, appear for τ > τ

C
= 4/Γ; and the fully structured state is unstable

for τ > τ
A

= [Γλ
0
(1− λ

0
)]−1.

Over the range τ
C
< τ < τ

A
, the stress-strain-rate relation has three possible solutions,

raising the question of how to select the appropriate structural state given the stress. We
dismiss the choice λ = λ+, as this state corresponds to an unstable equilibrium. The
selection between the other two options, λ = λ− and λ = λ

0
is dictated by the stress

history of the fluid: if the material has never been subjected to a stress exceeding τ
A

,
then the fluid structure has never disintegrated, and λ = λ

0
. On the other hand, if the

structure did disintegrate at some moment in the past (with τ > τ
A

), then the fluid is in
its less structured state, and λ = λ−.

Note that our use of G(λ, τ) in this fashion corresponds to assuming that the disinte-
gration of the microstructure for τ > τ

A
, or restructuring for τ 6 τ

C
, is instantaneous

(as in a kind of rapid phase transition). The differential constitutive law in (2.2) allows
for a more general version of the scenario, and in particular for delays in disintegration
or restructuring. Hence, our model can be thought of as the quasi-steady version of (2.2).
However, retaining the time rate of change of λ in the rheological model complicates
the theory significantly. On the other hand, constitutive laws are often little more than
mathematical formulations of flow-curve cartoons based on a combination of physical in-
tuition and rheometric data. Hence, it is not clear that (2.2) conveys much more physical
realism that the statement G(λ, τ) = 0. Indeed, when supplemented with the rules for
selecting amongst the multiple branches of the stress-strain-rate relation, (2.4) can be
viewed as a constitutive law in its own right.

2.3. Ageing

Rheological measurements (see e.g. Moller et al. 2009) suggest that the critical threshold
for flow to begin, τ

A
, depends on the ageing time of the fluid Tage. This timescale can be

of the order of several minutes or even hours, and is typically longer than the duration
of a gravity current flowing down an incline in a laboratory experiment. We therefore
make the assumption that, although ageing controls the threshold for initiation of flow,
it takes place too slowly to influence the dynamics of the gravity current.

We incorporate the effect of ageing into our model via the parameter λ0 . More precisely,
as shown in figure 1(b), when λ0 → 1

2 , the hysteresis loop of the stress-strain-rate rela-
tion disappears, leaving a single-valued curve representing the stable equilibrium. This
state is fully structured for τ < τ

C
= τ

A
= 4/Γ, but de-structures and flows at higher

stresses. That is, structure formation and disintegration take place at a common critical
or yield value; the behaviour is equivalent to that of an idealized yield-stress fluid (with
a nonlinear viscosity). If the fluid were not left to age at all, this would correspond to
the observed situation. As λ0 → 1, on the other hand, the threshold τ

A
diverges, which

indicates (somewhat unphysically) that the fluid never de-structures. This situation is
suggestive of an arbitrarily long period of ageing. Thus, taking different values for λ

0

between these two limits allows for differing degree of initial ageing: the bigger the value
of λ

0
, the longer the ageing time Tage.
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Figure 2: A sketch of the flow geometry, showing the coordinate system, the characteristic
length and depth, L and H, the local fluid depth h(x, y, t), and the curves of the constant
critical shear stresses, z

A
= z(τ

A
) and z

C
= z(τ

C
). The border between structured and

destructured fluid, z = Z(x, y, t), is pieced together from z = z
A

, z
C

and a material
section, z = Y (x, y, t); destructured fluid is shown shaded. The left-hand plot shows the
profile in z of u through a slice of the flow.

3. Shallow flow model

3.1. Dimensional formulation

As sketched in figure 2, we consider flow over an inclined plane with velocity u = (u, v, w)
described by a Cartesian coordinate system (x, y, z), orientated such that the x-axis
points downslope and the y-axis points across the slope. The plane is inclined at an
angle θ. The fluid is shallow, with a characteristic depth H that is much smaller than
the characteristic lengthscale for variations over the plane, L, so that the aspect ratio is
ε = H/L� 1. The local fluid depth is z = h(x, y, t).

The flow is incompressible,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.1)

and satisfies the momentum equations,

ρ

(
∂u

∂t
+ u · ∇u

)
= ρg̃ −∇p+∇ · τ , (3.2)

where p is the pressure, and g̃ = (g sin θ, 0,−g cos θ), with constant gravitational ac-
celeration g. The deviatoric stresses are related to the rate of strains by (2.1), and the
viscosity is set according to (2.3) and (2.4). Just prior to the moment that the fluid is
released, the material is fully and uniformly structured, so that λ = λ

0
.

The boundary conditions are given by no slip at the base and the stress-free condition
at the upper boundary:

u = 0 at z = 0, (τij − pδij)nj = 0 at z = h(x, y, t), (3.3a, b)

where n is the normal to the surface z = h. The kinematic condition at the upper
boundary is

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
− w = 0 at z = h(x, y, t). (3.4)
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3.2. Dimensionless leading-order formulation

To remove the dimensions from the equations and pave the way for the shallow-layer
theory, we introduce the rescalings,

t =
L

U
t∗, (x, y) = L(x∗, y∗), (z, h) = H(z∗, h∗), (3.5)

(u, v) = U(u∗, v∗), w = εUw∗, p = ρgHp∗ cos θ, τij =
µ0U

H
τ∗ij , (3.6)

µ = µ0µ
∗, G = TG∗, Γ =

αTU

H
Γ∗, (3.7)

where the speed scale

U =
H3ρg

Lµ0
cos θ.

On discarding the star decoration, and to leading order in ε, (3.2) reduces to the lubri-
cation equations

0 = S − ∂p

∂x
+
∂τxz
∂z

= −∂p
∂y

+
∂τyz
∂z

= −1− ∂p

∂z
, (3.8)

where the slope parameter S = ε−1 tan θ is assumed to be O(1). The neglect of inertial
terms is valid provided that the Reynolds number Re = ρUL/µ0 is no larger than O(ε−1).
The dimensionless viscosity and structure function can be written as

µ =
λ

0

(λ
0
− λ)(1− λ)

, G =
(λ

0
− λ)

λ
0

[1− Γτλ(1− λ)] = 0. (3.9a, b)

The dominant components of the rate of strain tensor are γ̇xz = ∂u/∂z + O(ε2) and
γ̇yz = ∂v/∂z+O(ε2). Therefore, to leading order, the stress conditions in (3.3b) become

p = γ̇xz = γ̇yz = 0 at z = h(x, y, t). (3.10)

The kinematic condition (3.4) is unchanged after scaling.
Equations (3.8) and (3.10) imply that the pressure is hydrostatic,

p = h− z, (3.11)

and the shear stresses are given by (τxz, τyz) = (h − z)(S − ∂h/∂x,−∂h/∂y), so τ =√
τ2xz + τ2yz = (h− z)T , with T =

√
(S − ∂h/∂x)2 + (∂h/∂y)2.

3.3. Anatomy of the flow

The rheological model in (3.9) implies that changes in fluid structure occur when the
local stress invariant τ ≡ (h−z)T becomes equal to one of the critical values, τ

C
and τ

A
.

The stress contours τ = τ
C

and τ = τ
A

therefore define two surfaces, z = z
C

= h− τ
C
/T

and z = z
A

= h − τ
A
/T . Above z = z

C
, the stress is less than τ

C
, indicating that

the fluid is structured with λ = λ0 and γ̇ = 0. That is, the flow is plug-like with
∂u/∂z = ∂v/∂z = 0. On the other hand, below z = zA, the stress is greater than τ

A
, and

the fluid is de-structured with λ = λ−, indicating that there is vertical shear, γ̇ > 0.
Between the two stress surfaces, z

C
< z < z

A
, the structural state of the fluid depends

on the stress history of each fluid element. Initially, the fluid is prepared in the fully
structured state with λ = λ

0
everywhere. Therefore, when the fluid is released, the de-

structured fluid will be exactly bounded above by z = z
A

. During the ensuing flow, if
the stress increases locally this surface may migrate upwards into structured fluid and
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de-structure that material. However, the runout of the fluid can also reduce the local
stress, demanding that the surface z = z

A
descend through the fluid, leaving behind

de-structured fluid. Those fluid elements move with the flow and only de-structure when
the local stress falls below τ

C
along the level z = z

C
.

Thus, the interface, or yield surface, z = Z(x, y, t) which separates de-structured fluid
from fully structured fluid, must consist of three different segments. First, there is a
de-structuring front Z ≡ zA wherever the surface z = z

A
is ascending into currently

structured fluid. Second, there is a re-structuring front Z ≡ z
C

whenever the surface
z = z

C
is descending into currently de-structured fluid. Third, in between these fronts

there is a yield surface corresponding to the border of material that was initially de-
structured by an increase in local stress, but was then left behind as stresses declined;
this piece of the yield surface is necessarily a material curve, Z ≡ Y (x, y, t), which satisfies
the kinematic condition,

∂Y

∂t
+ u

∂Y

∂x
+ v

∂Y

∂y
− w = 0 on z = Y (x, y, t). (3.12)

The yield surface and its constituent pieces are illustrated in figure 2.

3.4. Synopsis of the model

In summary, the spreading velocity of our thixotropic current is determined by integrat-
ing

µ
∂u

∂z
=

(
S − ∂h

∂x

)
(h− z) ≡ τxz and µ

∂v

∂z
= −∂h

∂y
(h− z) ≡ τyz, (3.13a, b)

where

µ(λ) =
λ

0

(1− λ) (λ
0
− λ)

, (λ
0
− λ) [1− Γτλ (1− λ)] = 0, (3.14a, b)

and

τ =
√
τ2xz + τ2yz = T (h− z) , T =

√(
S − ∂h

∂x

)2

+

(
∂h

∂y

)2

. (3.15a, b)

The relevant root 0 6 λ 6 λ0 of (3.14b) is given by the local stress history, as discussed
in §2.2 and §3.3. The local fluid depth evolves according to (3.4), or, using the integral
of (3.1),

∂h

∂t
+

∂

∂x

∫ Y

0

(h− z) ∂u
∂z

dz +
∂

∂y

∫ Y

0

(h− z) ∂v
∂z

dz = 0. (3.16)

The yield surface z = Z(x, y, t) follows z = z
A

= h − τ
A
/T if that curve is moving up

into structured fluid, or matches z = z
C

= h− τ
C
/T if this surface is moving down into

de-structured fluid. Otherwise, the yield surface evolves as a material curve as in (3.12);
equivalently,

∂Y

∂t
+

∂

∂x

∫ Y

0

(Y − z) ∂u
∂z

dz +
∂

∂y

∫ Y

0

(Y − z) ∂v
∂z

dz = 0. (3.17)

We solve equations (3.16)-(3.17) numerically, in both two and three dimensions, using
second-order centred finite differences in space, and a second-order midpoint method in
time. We place a thin pre-wetting fluid film (of thickness h = 10−3) on the substrate
to avoid any difficulties with a moving contact line. The flux terms in (3.16) and (3.17)
can be evaluated analytically to expedite the computations (the expressions for these
integrals are rather convoluted and not very informative, so we avoid quoting them).
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Figure 3: Planar slumps on a horizontal plane (S = 0) for (a-b) λ
0

= 0.8 and (c-d)
λ0 = 0.95, with Γ = 40 (τ

C
= 0.1). Panels (a) and (c) show snapshots of the free surface

z = h at times t = 0, 1, 2, 4, 8, 16, 32, and 64, together with the final rest state (dashed)
from (4.2). Panels (b) and (d) show z = h (solid blue), z = z

C
(dashed), and z = z

A

(dotted) in x > 0 at t = 20; de-structured fluid is shown shaded. In (b), the material
part of the yield surface z = Y is very short, and Z = z

C
over most of the fluid. In (d),

z = z
A

is positive only very close to the moving front.

The characteristic length scales of the flow L and H can be used to scale out two of
the free parameters of the problem. For all the results presented here, we fix the total
volume of fluid V = 2 and the initial height of the fluid h(t = 0) = 1. We are then left
with three free parameters: the slope S, the structure parameter λ

0
, and Γ, which sets

the critical stresses τ
C

and τ
A

.

4. Numerical results

4.1. Two-dimensional slumps on a horizontal plane

We begin by considering the planar slumping on a horizontal plane (S = 0) of a rectan-
gular block of fluid with initial profile, h(x, 0) = 1 for −1 ≤ x ≤ 1 and h(x, 0) = 0 for
|x| > 1. Figure 3 shows snapshots of numerical solutions for two values of λ0 , and Γ = 40.
For the case with less initial structure (λ0 = 0.8; panels a-b), the fluid slumps much like
an idealized yield-stress fluid (e.g. Balmforth et al. 2006b), and the yield surface z = Z
lies mostly along the stress contour z = z

C
. For greater initial stucture (λ

0
= 0.95; pan-

els c-d), the nose of the current advances in a similar fashion to the lower value of λ
0
.

However, raised interior the flow collapses much more slowly because the fluid there only
de-structures over a relatively thin basal region, the stress never having exceeded τ

A
over

most of the fluid.
We define x

N
(t) as the position of the right-hand nose of the current, and x

B
(t) as

the location of the rear of the moving section of fluid in x > 0 (i.e. the least positive
value of x at which h = 1; the “back” of the current). In view of the initial condition,
x

N
(0) = x

B
(0) = 1, and all the fluid is in motion once x

B
decreases to 0. Figure 4 plots

time series of x
N

(t) and x
B

(t) for the two solutions shown earlier in figure 3, along with
other solutions for different values of Γ and ageing times. For small Γ, τ

A
and τ

C
are

large and the fluid does not slump very far, coming to rest before x
B

reaches the origin.
With higher Γ, more fluid de-structures and the slump flows further. The degree of ageing
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Figure 4: Time series of x
N

(t) (solid) and x
B

(t) (dashed) for planar slumps on a horizontal
plane (S = 0). Panel (a) shows results for the values of Γ indicated, at fixed initial
structure λ0 = 0.8; the inset shows the final states given by (4.2) and (4.3). Panel (b)
shows results for the values of λ0 indicated, at fixed Γ = 40.

(λ0) exerts little influence on the advance of the nose of the current because the stress is
always increased sufficiently to exceed τ

A
by steepening the slope there. However, x

B
(t)

retreats increasingly slowly as λ
0

increases, in agreement with the results in figure 3.
In all cases, the slump finally comes to rest when all the material re-structures com-

pletely. This arises when the stress falls below τ
C

everywhere, which, from (3.13) with
z = S = τyz = 0, demands that ∣∣∣∣h∂h∂x

∣∣∣∣ ≤ τC =
4

Γ
. (4.1)

If Γ < 12, the yield stress τ
C

is large enough that x
B

never reaches x = 0, and a central
section of fluid remains immobile with h = 1; elsewhere, the equality in (4.1) is attained.
Hence,

h(x) =

{
1 if |x| < X1,[

1− 8Γ−1 (|x| −X)
]1/2

if |x| > X1;
X1 = 1− 1

12
Γ. (4.2)

If, instead, Γ > 12, then the fluid fully slumps, the equality in (4.1) applies throughout
and

h(x) =

[
8

Γ
(X2 − |x|)

]1/2
; X2 =

(
9Γ

32

)1/3

. (4.3)

The final states predicted by (4.2)-(4.3) are included in figures 3 and 4, and are identical
to those obtained for an idealized yield-stress fluid with yield stress τ

C
(see e.g. Balmforth

et al. 2006a). Although the final slumped states do not depend on the initial structure λ
0
,

the numerical results in figure 4 emphasize how the approach to the final state becomes
increasingly long as λ

0
increases towards 1.
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Figure 5: Inclined planar slumps for S = 1 and Γ = 40 (τ
C

= 0.1). Shown are the
height z = h (solid blue), and the stress contours z = z

C
(dashed) and z = z

A
(dotted);

de-structured fluid is shown shaded. Panels (a)–(d) show profiles at t = 0 (left) and
t = 300, for: (a) a Bingham fluid with yield stress τ

C
= 0.1; (b) thixotropic fluid with

λ
0

= 0.8; (c) λ
0

= 0.9; (d) λ
0

= 0.95. Initially, z(τ
A

) = Z, and at t = 300 in (c) and
(d), z(τ

A
) is mostly negative. Panels (e)–(f ) show snapshots of the height z = h at

t = 0, 10, 20, 40, 80, 160, 320 and 640, for (e) λ0 = 0.8, and (f ) λ0 = 0.95; the final states,
given by (4.7), are shown by the dashed line.

The numerical solutions in figure 3 expose a crucial hidden detail of the theoretical
model. It is evident from the snapshots of h(x, t) that fluid spreads out from the midline
of the slumping current at x = 0. This spreading is mediated by the de-structured lower
layer of the fluid, which conveys along the overlying structured fluid. Importantly, even
though the structured fluid flow is plug-like in the vertical (∂u/∂z = 0), this material still
undergoes a much weaker horizontal extension. In other words, the structured fluid is not
rigid, despite the infinite viscosity suggested by (3.9). This inconsistency is equivalent
to the lubrication paradox of a yield-stress fluid (see Balmforth & Craster 1999) and is
resolved as follows: the shallow-flow approximation of §3 amounts to the leading-order
of an asymptotic expansion. Implicitly, it assumes that the viscosity of the structured
fluid is sufficiently large that it suppresses the vertical shear. However, the viscosity is
not taken to be so large that the extensional stresses, τxx ≡ −τzz, become promoted
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Figure 6: Position of the nose x
N

(t) with Γ = 40, for the values of the initial structure
λ0 indicated: (a) two-dimensional slump with S = 0.8; (b) two-dimensional slump with
S = 1; (c) three-dimensional slump with S = 1. The dotted lines show the results for a
Bingham fluid with yield stress τ

C
= 0.1. For the largest value of λ

0
in each subfigure,

the slope is below the critical angle, and the current remains stationary.

into the leading-order balance of forces in (3.8). In other words, our structured fluid does
not have an infinite viscosity, merely one that is large; in our asymptotic scheme, the
underlying assumption is that 1 � µ(λ0) � ε−1. Consequently, the enhanced viscosity
of the structured fluid only suppresses the vertical shear, not the horizontal extension.
We return to this important point later in §5.2.1.

4.2. Two-dimensional slumps on an inclined plane

4.2.1. Results

Motivated by our experiments in §5, we initiate planar, inclined slumps (S > 0) by
taking the initial height profile to be given by the final rest state of a slumped dome
on a horizontal plane. That is, h(x, 0) is set by either (4.2) or (4.3), depending on the
value of Γ. In order to avoid discontinuities in the stress, the initial profile is smoothed at
points where the free surface has a discontinuous derivative (i.e. for Γ > 12, the height
is smoothed at x = 0). Figure 5 shows numerical results for three different ageing times,
with Γ = 40 (τ

C
= 4/Γ = 0.1) and S = 1. For comparison, panel (a) shows a solution for

a Bingham fluid (an idealized yield-stress fluid with a linear constitutive law) with the
same yield stress τ

C
. The height profile of the Bingham current increases from the back,

where the fluid remains stationary, to a maximum just behind the front. The thixotropic
case with smaller ageing time (λ

0
= 0.8; panels b, e) shows broadly similar features. For

longer ageing (λ
0

= 0.9 and 0.95; panels c, d, f ), however, the current leaves behind a
striking raised remnant of structured fluid, and develops a pronounced raised nose at the
front. These features result because the stress on the fluid is greatest below the highest
point of the initial profile; the most significant de-structuring then occurs at the centre
of the current.

Time series of the position of the nose of the current x
N

(t) for a suite of computations
at fixed Γ = 40 are shown in figure 6. For small values of λ

0
, the current travels faster

than the corresponding Bingham fluid because the de-structured thixotropic material
has a smaller, rate-dependent viscosity. The currents of older fluid (larger λ0) are slower,
however, and are characterized by an increasingly long delay at the beginning of the
computation before the nose of the current starts to move. Moreover, if λ

0
is too large,

the fluid never moves at all; this points to an age-dependent critical slope that must be
exceeded in order for the fluid to collapse (compare the solutions for S = 0.8 and S = 1
in figure 6a and b). The critical slope is discussed further in §4.2.2.
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Figure 7: Four snapshots of the current in figure 5f (Γ = 40, S = 1, λ0 = 0.95), at the
times indicated. Shown are the height z = h (solid blue) and the two stress contours
z = z

C
(dashed), z = z

A
(dotted); de-structured fluid is shaded.

The initial delay in the advance of the nose arises because, at angles just above the
critical value, the fluid only de-structures in the centre of the current. The dynamics is
shown in more detail in figure 7, which displays the early-time evolution of the current
of figure 5f with λ

0
= 0.95. At t = 0, the stress contour z = z

A
is confined to the core of

the initial dome. Once the material is released, this contour propagates down the incline
(and slightly upslope) due to the steepening of the local free surface, de-structuring fluid
closer to the dome’s edge. Simultaneously, the stress falls over the collapsing centre of
the dome, and the stress contour z = z

A
descends through the fluid leaving behind de-

structured fluid and a material yield surface. The nose of the current remains stationary
until it is reached by the advancing contour z = z

A
, which, for this example, occurs at

t ≈ 7 (panel d).
Results for stronger critical stresses (Γ = 4; τ

C
= 1) are shown in figure 8. The initial

condition now has a flat central section, as given by (4.2). Nevertheless, the evolution
of the current for different values of λ

0
is similar to the previous results with Γ = 40

(figure 5). One notable difference in figure 8 is the development of spatial structure on
the surfaces z = h and z = Y , which is most prominent for larger λ

0
(figure 8b). We

have also observed similar structure in computations with other parameter settings. The
structure typically takes the form of short-wavelength travelling waves on the material
yield surface z = Y . The waves often appear when sharp horizontal gradients arise in the
stress and can pose a problem with spatial resolution when the wavelength becomes too
short. Both the height of the free surface and the global features of the flow remain largely
unaffected by these waves, which move along the material yield surface and are damped
at intersections with the critical stress contours z = z

C
or z = z

A
. In the Appendix, we

rationalize these waves in terms of an interfacial instability.

4.2.2. The critical slope

If the stress on the fluid layer does not exceed τ
A

anywhere, the fluid remains fully
structured and cannot flow. The situation corresponds to a critical slope Sc, which can be
calculated analytically. When the initial dome, whose profile satisfies |h∂h/∂x| = τ

C
=

4/Γ (4.1), is placed on a slope S, the stress along the base of the current becomes

τ =

∣∣∣∣S − ∂h

∂x

∣∣∣∣h =

∣∣∣∣Sh− τC sgn

(
∂h

∂x

)∣∣∣∣ . (4.4)
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Figure 8: Inclined planar slumps for S = 5 and Γ = 4 (τ
C

= 1), at times t = 0 and
t = 20, showing z = h (solid blue), the two stress contours z = z

C
(dashed), z = z

A

(dotted), and de-structured fluid (shaded), for (a) λ
0

= 0.8 and (b) λ
0

= 0.94. The inset
to panel (b) shows a magnification of the waves on the material yield surface. Panel (c)
shows snapshots of h for λ

0
= 0.94, at times t = 0, 1, 2, 4, 8, 16, 32, 64, 128, together with

the final rest state given by (4.7) (dashed).

The fluid will not de-structure if τ < τ
A

= 1/Γλ0(1− λ0). It follows, on using (4.2) and
(4.3), that the critical slope Sc is

Sc ≡
τ
A
− τ

C

max (h)
=

(1− 2λ
0
)
2

Φλ
0

(1− λ
0
)
, where Φ =

{ (
12Γ2

)1/3
, Γ > 12,

Γ, Γ 6 12.
(4.5)

When the fluid is not aged, Tage = 0 and λ0 = 1/2, which inplies Sc = 0. The fluid
therefore flows at any non-zero angle, reflecting how the slumped dome used as the initial
condition is already held at its yield stress with τ = τ

A
everywhere. The addition of any

degree of slope unavoidably raises τ on the downward face of the dome, thereby initiating
collapse (an imitation of the behaviour of a yield-stress fluid). As the ageing time, and
thus λ0 , increases, there is an increased separation between the two stresses τ

C
and τ

A
,

and the critical slope Sc increases. As λ
0
→ 1, Sc →∞, in which limit the shallow-layer

framework of the model breaks down.

4.2.3. Final rest state

As for the slump on a horizontal plate (§4.1), the final state for an inclined current
is again given by the height profile for which the stress on the base has fallen below τ

C

everywhere, implying that the fluid fully re-structures. Such states are identical to those
for a Bingham fluid with a yield stress τ

C
= 4/Γ (see e.g. Balmforth et al. 2006b), and

are given by ∣∣∣∣S − ∂h

∂x

∣∣∣∣h ≤ τC . (4.6)
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At the back of the current, the fluid never slumps because the basal stress on the left
of (4.6) never exceeds τ

C
. The slumped forward section, on the other hand, has a basal

stress that approaches τ
C

; equation (4.6) then provides the implicit solution

log

(
1− S

τ
C

h

)
+

S

τ
C

h =
S2

τ
C

(x− x
F

) , (4.7)

where x
F

is a constant of integration corresponding to the final position of the nose of
the current; this constant is determined by matching (4.7) with the unslumped initial
condition at the back of the current in such a way as to obtain the correct fluid volume.

Final profiles from (4.7) are shown in figures 5(e,f ) and 8(c). The profiles are almost
flat, with a steep drop at the nose, and are independent of ageing time Tage (i.e. λ

0
),

provided the inclination angle is greater than the critical slope Sc. The raised structured
remnant at the back of the current for higher λ

0
must therefore eventually disappear;

the numerical results indicate that this late stage of the evolution is much slower than
the initial spreading of the current.

4.3. Three-dimensional slumps on an inclined plane

As for the planar slumps, our initial condition for three-dimensional currents on an
incline is given by the profile of a slumped dome on a horizontal surface. That profile is
axisymmetric and, for V = 2, is given by

h(x, y, t = 0) =

[
8

Γ

(
R−

√
x2 + y2

)]1/2
; R =

(
15

8π

)2/5(
Γ

2

)1/5

, (4.8)

provided that Γ >
√

240/π ≈ 8.7, which corresponds to the parameter setting used

below. If Γ <
√

240/π, the fluid does not fully slump on a horizontal plane and the
initial condition has a flat top analogous to the two-dimensional profile in (4.2).

Figure 9(a–e) shows a numerical solution for Γ = 40, S = 1, and λ
0

= 0.92. As for the
planar slumps, a remnant of structured fluid is left behind at the back of the current. The
remnant corresponds to the least stressed part of the initial dome, where τ < τ

A
, and is

similar to the “horseshoe” observed experimentally by Coussot et al. (2002a). As shown
in figure 9(f ), the extent of the structured horseshoe increases with λ

0
, or equivalently

with the ageing time.
The height profile and stress curves over the midsection (y = 0) of the three-dimensional

slump in figure 9(a–d) are qualitatively similar to those of planar currents with large λ
0

(cf. figure 5c–d). In particular, once again fluid yields only at the core of the initial
dome and it takes a finite length of time for the yield surface to advance through the
fluid to the nose of the current (see also panel e). The delayed progress of the nose of
three-dimensional currents with different degree of initial structure λ

0
is compared with

the results for planar slumps in figure 6.
As in two dimensions, there is an age-dependent critical angle below which the initial

profile does not collapse. Similarly the final rest state of the current can be calculated by
matching the unslumped part of the deposit (with a profile set by the initial condition)
to the solution of (

S +
∂h

∂x

)2

+

(
∂h

∂y

)2

=
τ2
C

h2
, (4.9)

corresponding to equating the basal shear stress with τ
C

(cf. Balmforth et al. 2002). As
in the planer case discussed in §4.2.3, this final state has no raised remnant at its back.
The horseshoe must therefore be slowly eroded away over a much longer timescale than
the initial rate of spreading.
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Figure 9: Three-dimensional slump on an incline with slope S = 1, λ
0

= 0.92 and
Γ = 40. Panels (a–d) show z = h(x, y, t) as a surface above the (x, y)−plane at the times
indicated (left), together with the midsection (y = 0) profiles of h (solid), z

C
(dashed),

and z
A

(dotted). De-structured fluid is shown shaded. Panel (e) shows the edge of the
current (stars) and the border of unslumped structured fluid (dots) at t = 0 and 300.
Panel (f ) shows a comparison of the edge of the current at t = 300 for λ

0
= 0.9, 0.92,

and 0.94 (Γ = 40, S = 1).

5. Experiments

5.1. The set-up

We carried out a series of experiments on an inclined plane to compare with the pre-
dictions of our model. The experimental setup consisted of a 1 m2 glass plate, which
was hinged at one end, and could be tilted and held at a desired angle using a pulley
system. As a model thixotropic fluid, we used a suspension of bentonite clay in filtered
water (10% by volume, Quik-Gel sodium bentonite, Baroid drilling fluids). We also car-
ried out experiments with tomato ketchup (Heinz), which are discussed very briefly in
§5.3. In preparation for each experiment, the bentonite solution was vigorously stirred
for twenty minutes to homogenize the fluid and destroy its internal structure. A fixed
volume (150 ml) of the material was then poured into a hollow cylindrical (5 cm radius)
mould set upon a horizontal plexiglass sheet whose surface had been roughened by sand-
paper. Quickly raising the mould allowed the sample to slump to rest, creating a dome
equivalent to the initial conditions used for the theoretical computations. The slumped
dome was then left to age for a time Tage under an airtight cover to limit evaporation.
Finally, the roughened plexiglass and its dome were fixed onto the glass plate, which
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(a) (b)

Figure 10: Snapshots of an experiment with 10% by volume bentonite solution, Tage = 240
minutes, and an angle of 20◦: (a) after t = 5 seconds; (b) after t = 50 seconds. The initial
diameter of the fluid is about 13 cm.

was then tilted to a desired angle. The surface of the current along its midsection was
recorded using a laser line projected onto the fluid surface from directly above (figure
10). The roughening of the plexiglass sheet was essential to eliminate any macroscopic
slip at the base of the current, which is known to affect bentonite solutions (e.g. Coussot
et al. 2002b).

5.2. Results for bentonite

Measurements of the surface profiles of flowing currents of bentonite clay are shown in
figures 11 and 12. Figure 11 shows profiles of samples with different ageing times Tage on
inclines of 20◦; figure 12 shows profiles on slightly steeper inclines of 24◦. As a comparison,
we carried out some experiments with a ‘joint compound’ solution (Sheetrock all-purpose
joint compound), which, over the timescale of an experiment, appeared very like an ideal
yield-stress fluid. Measurements of the height of the joint compound are shown in figure
11(a).

The measurements confirm that the behaviour of bentonite is strongly dependent upon
the ageing time. Consider, for example, the results on a 20◦ slope (figures 11b-d). For
very small ageing times, the behaviour is similar to that of the joint compound (panel
a): the fluid evolves rapidly after the experiment starts and primarily slumps forwards,
piling material up towards the front. However, as the ageing time Tage increases, the
samples behave quite differently: the current thins most dramatically in the middle, a
horseshoe-shaped remnant is left behind at the back of the current, and a raised nose
detaches at the front. These features are even more striking on a slope of 24◦ (figure
12). Note that, even in the most extreme examples, there was always a thin lubricating
layer of de-structured fluid left coating the plane, and the nose did not appear to be
suffering macroscopic slip over the plexiglass (which did occur when that surface was not
roughened, and left almost no fluid trailing behind).

Figure 13(a-b) shows time series of the position of the nose of the current x
N

(t) for two
different angles and a variety of ageing times Tage. These plots illustrate how, for small
Tage, the current accelerates quickly at small times. However, as Tage increases, there is
an increasingly long delay before motion begins, and then, once underway, accelerations
are more gradual. Figure 13(a-b) also highlights how the current comes to an abrupt halt
after flowing down the plane.

Figure 13(c) shows the final position of the nose of the current, x
F

, as a function of the
inclination angle, for six different ageing times Tage. A first conclusion that can be drawn
from these results is that, if the inclination is below a critical angle that depends on the
ageing time, the fluid does not move at all. Second, for small values of Tage, the final
runout of the current x

F
increases steadily with inclination angle. For larger values of

Tage, however, the runout increases suddenly over an increasingly narrow band of angles.
The oldest sample, with Tage = 1080 minutes, exhibits extremely abrupt “avalanching”:
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Figure 11: Experimental height profiles along the midsection of currents of joint com-
pound and bentonite. The joint compound, shown in panel (a), flows down a 34◦ slope.
The bentonite, shown in panel (b)–(d), is on a 20◦ slope and the ageing times Tage are
indicated. The profiles are plotted every 2 seconds, except those in panel (b), which are
0.5 seconds apart. Red and blue lines signify the initial and final profiles, respectively.

at 20◦ the fluid remains stationary on the slope, but at 24◦ the fluid dramatically de-
structures (after the delay illustrated in panel b) and flows off the bottom of the plate.

5.2.1. Comparison of bentonite experiments and theory

The experimental results exhibit many of the qualitative features predicted by the
theoretical model. In particular, the effect of the ageing time is broadly similar. For small
Tage (λ

0
near 1/2), both theory and experiments show that the current behaves like a

yield-stress fluid. Similarly, as Tage or λ
0

increases, the currents develop a pronounced
horseshoe of structured fluid at the back, a thinned interior, and a raised nose at the
front. The experiments confirm the theoretical prediction of a critical angle below which
there is little or no flow, which increases with Tage (figure 13c). The flow of the current
just above the critical angle becomes increasingly rapid and dramatic as Tage increases, in
agreement with the theoretical predictions of increasingly abrupt “avalanche” behaviour.

The experiments suggest rough estimates for some of the parameters of the theory:
the radius of the initial slump on a horizontal plate in the experiments can be matched
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Figure 12: Experimental height profiles along the midsection of bentonite currents on a
24◦ slope, for the ageing times Tage indicated. Profiles are plotted every 2 seconds, except
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final profiles, respectively. In panels (b) and (c), the current flows off the end of the plate.

with the model prediction (4.8) to give an estimate of the critical yield stress of τ
C
≈ 16

Pa (the density of the bentonite was 1.07 g/cm3). This is comfortingly close to the stress
at which the lower viscosity bifurcation is seen in the cone-and-plate rheometry data in
figure 1b. (The bentonite sample used in the rheometer was not exactly the same as the
solution used for the slumps because the rheometry was performed in a different location
to the experiments, and our efforts to prepare an identical solution were not completely
successful.)

We can also determine the critical angle as a function of the ageing time from the
measurements shown in figure 13c. By using the two-dimensional analysis of §4.2.2, we
can then estimate the absolute yield stress τ

A
(Tage). We find that τ

A
increases from

approximately 20 Pa at Tage = 5 mins to about 50 Pa at Tage = 1080 mins. In comparison,
the higher viscosity bifurcation in the rheometry data of figure 1, occurs at a stress
just above 30 Pa, the material ageing for about 6 minutes before yielding. Given that
τ
A

= [Γλ0(1 − λ0)]−1 = τ
C
/[4λ0(1 − λ0)], the estimates for these critical stresses imply

the relation λ0(Tage) plotted in figure 13d.
There are several notable differences between the experimental results and the theo-

retical predictions. The final theoretical state is a thin and almost flat current, which is
approached extremely slowly. In the experiments, however, the flow stops abruptly and
the horseshoe remnant and raised nose still decorate the deposit. One possible explana-
tion for this disagreement is that the theoretical final state is entirely controlled by τ

C
,

whereas the re-structuring rheology of the bentonite is more complicated. In particular,
our model ignores any material ageing during the late stages of the slump, which may
be responsible for switching off the flow and leaving intact the structured remnant.
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Figure 13: The position of the nose x
N

(t) of bentonite currents with the ageing times Tage
indicated, on slopes of (a) 20◦ and (b) 24◦. Panel (c) shows the final distance travelled
by the nose of the current x

F
, for the ageing times Tage indicated. Panel (d) shows the

initial structure parameter λ
0

of the rheological model, as a function of the ageing time
Tage, estimated from the data in (c), as discussed in the text.

Another difference is that, in the theory, the total distance that the current flows is a
function of the slope S but is independent of λ

0
and thus of ageing, provided the slope

is above the critical value. In the experiments, however, the total run-off distance is a
function of both the slope and ageing time Tage (figure 13c). On a 24◦ slope (figure 13b),
the older samples even travel further than the younger ones. It is possible that the rapid
acceleration of these samples introduces inertial effects which are not included in the
theoretical model.

In both experiments and theory there is a delay before the nose of the current starts
to flow when the angle is just above its critical value. This feature was noted previously
by Huynh et al. (2005). In the theory, the delay is the lag experienced as the yielded
sections of the fluid, which first appear at the centre of the initial dome, migrate to the
front. In the experiments, however, it is not so clear whether this is the underlying cause
of the delay. Indeed, the delay time can be long compared (see e.g. figure 13b), and it
is conceivable that time-dependent internal de-structuring is important, whereas it is
instantaneous in the model.

Lastly, the experiments demonstrate that the fluid can de-structure even more dra-
matically than the model predicts, particularly if the ageing time is large. Figure 12c,
for example, shows an extreme degree of thinning in the interior of the current, which
we have not been able to capture with our model. This difference is perhaps due to the
detailed rheology; the viscosity, for example, may depend more sensitively on the strain
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N
(t) on a 14◦ slope for the ageing times indicated. (b) a photograph from above

of a ketchup current (downslope is to the right), showing a structured horseshoe at the
back (left), and significant surface texture on the rest of the current.

rate. It could also be due to the neglect of extensional stresses in the structured fluid
layer. As remarked earlier in §4.1, we do not account for such extensional stresses, and
the enhanced viscosity of the structured fluid only suppresses vertical shear. However,
if the upper layer is sufficiently viscous, the extensional stresses can contribute to force
balance along with the shear stress (as in models of free viscous films or sliding ice sheets
and shelves). The inclusion of extensional stresses may lead to an increased thinning of
the interior of the current and the fusion of the front and back into a rigid nose and
horseshoe much like in the experiments, offering an intriguing avenue for further study.

5.3. Ketchup

We also carried out experiments using Heinz tomato ketchup. Ketchup is an interesting
and complex multicomponent fluid, and is difficult to use experimentally due to its ten-
dency to separate over time. In particular, ketchup readily expels vinegar, which gathers
around the base of the sample if it is left at rest for more than a few minutes. Due to
this separation problem, we only very briefly discuss the results. We observed thixotropic
behaviour which, in some respects, resembled the behaviour of bentonite. In particular,
for ageing times Tage & 1 hour there was a clear horseshoe of structured ketchup left
at the back of the ketchup current. As with bentonite (figure 13b), the evolution of the
current changed qualitatively with ageing time: for long ageing times, the flow gradually
accelerated from rest, in contrast to the behaviour for small Tage (figure 14a).

However, the ketchup current differed in both appearance and behaviour. It proved
difficult to observe dramatic avalanche behaviour with ketchup. The current also had
no pronounced nose, nor did it thin over its interior. Interestingly, the current always
continued to flow throughout the duration of the experiments, rather than coming to
an abrupt halt like the bentonite. The photograph of a ketchup experiment in figure
14b shows the structured horseshoe remnant, and the gravity current extending down
the slope. This picture also illustrates the complex wavy structure of the surface of the
current, which is perhaps the result of an interfacial instability like that which occurs in
the theoretical model.
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6. Conclusions

In this paper, we have presented a model for thixotropic gravity currents and compared
its predictions with experiments using a solution of bentonite. There is broad qualitative
agreement between theory and experiment, but there are also some interesting differences.

In our model, the degree of microstructure in the fluid is dictated by the local stress
τ through a relation that allows for viscosity bifurcations at two critical yield stresses
τ
A

and τ
C

. Solid-like structured fluid can only de-structure and flow once the stress
upon it exceeds the first critical stress τ

A
. Conversely, de-structured fluid abruptly re-

structures back to the solid-like state if the stress falls below the second critical stress
τ
C

. By allowing τ
A

to depend on the length of time the fluid has been left standing, we
accommodate a dependence on the initial ageing time Tage. Our thixotropic law describes
scenarios in which the evolution of the structure at the two critical stresses is rapid and
all other material ageing is slow, in comparison to the timescales of the flow.

For a mound of fluid placed on an inclined plane, if the local stress is nowhere above
τ
A

, the fluid cannot yield. Hence there is an critical angle below which the fluid will
not flow, which increases with ageing time. Above the critical angle, fluid de-structures
and begins to move. The de-structured fluid remains yielded and continues to flow until
the local stress falls below τ

C
< τ

A
. Consequently, the current flows much further than

might be expected. With longer ageing times, the critical stresses τ
A

and τ
C

become more
separated, increasing the critical angle and the degree of thinning once this threshold is
exceeded. As a result, the fluid avalanches more dramatically. The flow also becomes
increasingly characterised by a raised nose at the fluid front and a remnant of structured
fluid at the back, which, in three dimensions, takes the shape of a horseshoe. Experiments
with bentonite clay show qualitatively similarities with all these features of the dynamics.

The theory and experiments differ most notably in their final states: in the theory the
flow slowly evolves to an almost flat profile, with the raised nose remnant at the back
slowly eroding away over a very long timescale. In the experiments, however, the bentonite
came to an abrupt halt with a persistent raised nose and horseshoe. The experimental
flows also thin more dramatically than those of the model. These discrepancies could be
due to the neglect of extensional stresses of the structured fluid in the model, or a more
complicated time-dependent thixotropic rheology.

The majority of this work took place during the 2012 Geophysical Fluid Dynamics
summer program at Woods Hole Oceanographic Institution, which is supported by the
National Science Foundation and the Office of Naval Research. We thank the directors,
staff and fellows of the program, and particularly Anders Jensen for his assistance with
the experiments.

Appendix A. Interfacial instability

Superposed, inclined shallow layers of Newtonian (Chen 1993) or power-law (Balmforth
et al. 2003) fluid with differing viscosities can be unstable to an interfacial instability, even
in the absence of inertia. An analogous instability arises in our model for a thixotropic
gravity current when the yield surface is a material curve separating structured fluid
above from de-structured fluid below. In this Appendix, we explore the instability for
the simpler problem of a uniform shallow sheet in two dimensions, assuming that the yield
surface remains separated from z = z

A
and z = z

C
. The governing equations (3.16)-(3.17)
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Figure 15: Interfacial instability of a uniform sheet for Γ = 40, λ
0

= 0.9, h0 = 1 and
Y0 = 0.5. Panel (a) shows the unstable (solid) and stable (dashed) roots of the dispersion
relationship (A 5). Panels (b-c) show numerical solutions for h and Y , respectively, from
an initial-value problem beginning with the uniform flow plus a small perturbation with
wavenumber 8π and the spatial form of the unstable normal mode. The solutions are
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the modal phase speed. Note the different vertical scales in panels (b) and (c). The inset
of (a) shows the root-mean-squared values of h−h0 and Y −Y0 against time, along with
the trend of the unstable mode.

are then

∂h

∂t
+

∂

∂x
F (h, hx, Y ) = 0,

∂Y

∂t
+

∂

∂x
G(h, hx, Y ) = 0, (A 1a, b)

where

F (h, hx, Y ) =

∫ h

0

u dz = (S − hx)

∫ Y

0

(h− z)2 (1− λ) (1− λ/λ
0
) dz, (A 2)

G(h, hx, Y ) =

∫ Y

0

u dz = (S − hx)

∫ Y

0

(h− z) (Y − z) (1− λ) (1− λ/λ0) dz, (A 3)

and the subscript on hx refers to a partial derivative. The fluxes F and G can be evaluated
analytically using

λ = λ− =
1

2

[
1−

(
1− 4

Γ (h− z) (S − hx)

)1/2
]
, (A 4)

which comes from (2.5b).
Equations (A 1) have the uniform equilibrium solution h = h0 and Y = Y0. Normal-

mode perturbations to this base state of the form eσt+ikx, with wavenumber k and growth
rate σ, satisfy a dispersion relationship

σ2 + σ
(
Ak2 + iBk

)
+ iCk3 +Dk2 = 0, (A 5)

where

A =
∂F

∂hx
, B =

∂F

∂h
+
∂G

∂Y
, C = − ∂G

∂hx

∂F

∂Y
, D =

∂G

∂h

∂F

∂Y
− ∂G

∂Y

∂F

∂h
, (A 6a, b, c, d)

all evaluated at h = h0, Y = Y0, and hx = 0. It follows from (A 5) that Re{σ} = 0 only
if k = 0; that is, the uniform flow is either unstable or stable for all wavenumbers. For
k � 1, we find the two solutions,

Re{σ1} = −Ak2 +O(1), Re{σ2} =
C2 −ABC −A2D

A3
+O(k−1). (A 7a, b)
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On examining the partial derivatives of F and G in more detail, one can establish that the
first solution is stable (A > 0) whereas the second can be unstable (if C2−ABC−A2D >
0). With a little more effort, one can show that the growth rate of the unstable solution
increases monotonically from zero at k = 0 up to the constant maximum given by (A 7b),
and has finite phase speed c = −Im{σ}/k. With parameter settings guided by the full
slump problem considered in the main text, it turns out that the growth rate of instability
is typically relatively small in magnitude, rather less than the corresponding phase speed.
Hence, the perturbations propagate much faster than they grow. Typical solutions of
(A 5) are shown in figure 15(a).

The system (A 1) can also be solved numerically with periodic boundary conditions
to explore the nonlinear dynamics of the interfacial instability, starting from a small
perturbation to the uniform base flow. Figures 15(b-c) shows the results of such an initial-
value computation, starting with a perturbation with wavenumber k = 8π, corresponding
to 4 waves. The instability develops as predicted by linear theory and is more prominent
on the yield surface than on the free surface. In the non-linear regime, the instability leads
to the formation of shocks on the material yield surface, with the same wavenumber as
the original perturbation. These shocks generate high wavenumber oscillations on the
scale of the grid, which is likely an artefact of the numerical scheme used to solve the
equations.
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