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In the limit of a large yield stress, or equivalently at the initiation of motion,
viscoplastic flows can develop narrow boundary layers that provide either surfaces
of failure between rigid plugs, the lubrication between a plugged flow and a wall
or buffers for regions of predominantly plastic deformation. Oldroyd (Proc. Camb.
Phil. Soc., vol. 43, 1947, pp. 383–395) presented the first theoretical discussion of
these viscoplastic boundary layers, offering an asymptotic reduction of the governing
equations and a discussion of some model flow problems. However, the complicated
nonlinear form of Oldroyd’s boundary-layer equations has evidently precluded
further discussion of them. In the current paper, we revisit Oldroyd’s viscoplastic
boundary-layer analysis and his canonical examples of a jet-like intrusion and flow
past a thin plate. We also consider flow down channels with either sudden expansions
or wavy walls. In all these examples, we verify that viscoplastic boundary layers
form as envisioned by Oldroyd. For each example, we extract the dependence of the
boundary-layer thickness and flow profiles on the dimensionless yield-stress parameter
(Bingham number). We find that, while Oldroyd’s boundary-layer theory applies to
free viscoplastic shear layers, it does not apply when the boundary layer is adjacent
to a wall, as has been observed previously for two-dimensional flow around circular
obstructions. Instead, the boundary-layer thickness scales in a different fashion with
the Bingham number, as suggested by classical solutions for plane-parallel flows,
lubrication theory and, for flow around a plate, by Piau (J. Non-Newtonian Fluid
Mech., vol. 102, 2002, pp. 193–218); we rationalize this second scaling and provide
an alternative boundary-layer theory.

Key words: low-Reynolds-number flows, non-Newtonian flows, plastic materials

1. Introduction
Viscoplastic, or, equivalently, yield-stress fluids form an important class of

non-Newtonian materials in engineering and geophysics (Ancey 2007; Mitsoulis 2007;
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Balmforth, Frigaard & Ovarlez 2014). When the yield stress is relatively strong, it
has been suggested that flow can become ‘frustrated’ if the boundary conditions lock
certain parts of the fluid into place whilst driving others into motion. This frustration
is broken by the development of narrow viscoplastic boundary layers in the flow that
provide lubrication and allow the rigid blocks to slide over one another (Chevalier
et al. 2013). Indeed, this dynamical behaviour was anticipated, nearly 70 years ago,
by Oldroyd (1947), who developed a theory for the boundary layers in a Bingham
fluid.

Oldroyd’s key insight was to observe that inertia was not important in the thin
boundary layers and, with a certain choice for their thickness, one could engineer
a suitable balance of forces between viscous and plastic stresses. Unfortunately,
continuing Oldroyd’s arguments to their conclusion leads to a complicated nonlinear
boundary-layer equation that appears to be almost as challenging to solve as the
original model equations. Consequently, there have been no subsequent attempts to
derive general solutions to Oldroyd’s theory.

Despite the complexity of the boundary-layer equations, Oldroyd did derive two
families of self-similar solutions that satisfied certain boundary conditions and applied
them to two model problems: a jet-like intrusion and flow around a thin plate (see
figure 1a,b). For the former model problem, Oldroyd argued that two thin shear layers
buffered the intrusion from the stagnant ambient medium, while for the latter, he
suggested that the plate became coated by slender boundary layers. To our knowledge,
the asymptotic reduction underlying Oldroyd’s boundary-layer theory has never been
verified in these two problems, nor have his similarity solutions been shown to be
relevant solutions of the boundary-layer equations. In fact, Oldroyd himself noted an
inconsistency in the theory for the plate: his analysis was unable to impose all the
boundary conditions at the edge of the boundary layer, leading Oldroyd to suggest
that elastic deformations had to be included outside the boundary layer.

Aside from Oldroyd, the only other theoretical study of viscoplastic boundary
layers was produced by Piau (2002), over half a century later, who reconsidered
Oldroyd’s plate problem. Piau criticized the characteristic scalings that underlie
Oldroyd’s analysis and proposed an alternative that suggests the boundary layer is
actually thinner than that predicted by Oldroyd. In terms of a local Bingham number
B = τYL/µ1U, Oldroyd predicted a boundary-layer scaling of B−1/3L, whereas Piau
proposed the scaling B−1/2L. Here L is the characteristic length of the boundary
layer, 1U is the typical velocity jump across it, τY is the yield stress and µ the
plastic viscosity. Oldroyd’s scaling is based on balancing the viscous shear stress
with pressure gradients and extensional plastic stresses. By contrast, Piau’s main
force balance omits the extensional plastic stresses and can be achieved with any
boundary-layer scaling in which the thickness is strictly less than Oldroyd’s; the
precise reasoning behind his choice of the scaling B−1/2 is not exposed. Moreover,
after introducing the new scaling, Piau does not then provide a true asymptotic
analysis of the boundary-layer equations, but retains some of the first-order corrections
along with the leading-order terms in this system, and is then forced to propose
some specific self-similar solutions rather than any general solution. This exercise is
mysterious since a general solution can in fact be obtained by performing a strict
asymptotic analysis and treating the two sets of terms at different orders in the
expansion.

Despite these issues, Piau’s scaling is equivalent, at high Bingham number, to those
that characterize exact solutions for plane-parallel flow of viscoplastic fluid (Bird, Dai
& Yarusso 1983), and to the viscoplastic version of Reynolds lubrication theory
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FIGURE 1. (Colour online) Sketches of the four model problems: (a) a jet-like intrusion
from an inlet in a wall into a stagnant half-space, (b) flow past a thin plate moving in
the direction of its length (with a finite plate shown in the main panel and a sketch of
the semi-infinite knife overlaid), (c) channel flow through a sudden rectangular expansion
and (d) flow down a wavy-walled conduit. Except for the semi-infinite knife, the sketches
actually show the yield surfaces of solutions computed at high Bingham number (relatively
large yield stress).

(e.g. Balmforth 2017). Piau’s scaling was also observed in numerical simulations by
Tokpavi, Magnin & Jay (2008) for the tangential boundary layer in two-dimensional
flow around a disk. In all these examples, the boundary layer is bounded by a wall,
which is the origin of the inconsistency in Oldroyd’s theory for flow around a plate.

Viscoplastic boundary layers have also been observed in a number of laboratory
experiments, including the penetration of a plate into a stationary viscoplastic fluid
(Boujlel et al. 2012) and pipe flow through a sudden expansion (Chevalier et al.
2013). The former was motivated by the possibility of exploiting this scenario as
a practical rheometer, and to provide an experimental viscoplastic analogue of both
classical viscous boundary-layer theory and Oldroyd’s moving plate; the latter set the
scene for Chevalier et al.’s appealing image of frustrated viscoplastic flow.

In the current paper, we revisit Oldroyd’s viscoplastic boundary-layer theory, and
present a generalization of the theory that allows for the boundary layer to be curved
and of finite length. We also begin from the Herschel–Bulkley constitutive model,
rather than the Bingham law, to allow for the effects of shear thinning or thickening
(although in all the examples we present, we retire to the Bingham case). We then
apply this theory, and compare with the results of direct numerical simulations, to
three model problems.

We first consider the jet-like intrusion (figure 1a), and demonstrate that Oldroyd’s
self-similar solutions apply. In the process, we uncover some additional features of the
flow, including how the intrusion selects a new width for itself if the inlet through
which it is pushed is too narrow. The means by which this width adjustment is
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achieved is by developing a finite region of perfectly plastic flow (Hill 1950; Prager
& Hodge 1951) near the inlet. We analyse the plastic region using the theory of
sliplines, and the solution shows a number of common features with some classical
plasticity problems related to the extrusion of metals from dies (Green 1955; Johnson
1956; Johnson, Sowerby & Venter 1982).

Second, we consider the flow of viscoplastic fluid past a slowly moving plate of
finite length (figure 1b) and, as in Piau’s critique, find that Oldroyd’s scalings do
not apply to the boundary layer that sheathes the plate. Instead, we observe Piau’s
scaling of B−1/2. However, the flow around the plate does not take the simple form
anticipated by either Oldroyd or Piau, but instead takes a rather more complicated
form that comprises both moving plugs and regions of perfectly plastic flow outside
the boundary layer against the plate. Indeed, flow is induced over a roughly circular
region with a diameter given by the length of the plate, rather than remaining localized
near the plate. Importantly, this implies that one does not necessarily need to call on
elastic deformation below the yield stress to account for motion further from the plate
(cf. Boujlel et al. 2012). Armed with the numerical solutions we provide an alternative
boundary-layer theory that describes the leading-order features of the solutions.

Third, we explore flows down a channel with either a sudden expansion or
wavy walls (figure 1c,d). For these flows and at high yield stress, one expects
viscoplastic boundary layers to detach from the walls to isolate a moving central
plug from clogged topographic hollows, much as in Chevalier et al.’s frustrated pipe.
We again provide numerical solutions to these problems and show the free shear
layers are described by Oldroyd’s theory, but the presence of a wall adjacent to the
boundary-layer effects a switch of scaling to Piau’s B−1/2 scaling and the second type
of boundary-layer theory.

2. Governing equations

For use in mapping out a general boundary-layer theory, we present the governing
equations for a Herschel–Bulkley fluid in a curvilinear form. We then note the
Cartesian version of these equations which are used in all our numerical computations
(and for which we consider a Bingham fluid).

2.1. Curvilinear coordinates
Consider a curvilinear, arc-length-based coordinate system (s, n) based on a curve
threaded down an incompressible viscoplastic boundary layer; s is the arc-length and
n is the normal coordinate. We define u= (u, v) as the velocity in these coordinates
(i.e. with respect to the (s, n) axes) and refer the deviatoric stress, τij, and deformation
rate, γ̇ij, tensors to this system. With the neglect of inertia, conservation of mass and
force balance can be expressed in the dimensionless form (e.g. Balmforth & Hewitt
(2013), or derivable from relations given by Batchelor (1967)),

∂u
∂s
+ (1− κn)

∂v

∂n
− κv = 0, (2.1)

∂τss

∂s
+ (1− κn)

∂τsn

∂n
− 2κτsn = ∂p

∂s
, (2.2)

∂τsn

∂s
+ (1− κn)

∂τnn

∂n
+ κ(τss − τnn)= ∂p

∂n
, (2.3)
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where p is the pressure and κ denotes the curvature. The strain-rate tensor has
components,

γ̇ss = 2
1− κn

(
∂u
∂s
− κv

)
, γ̇nn = 2

∂v

∂n
, γ̇sn = 1

1− κn

(
∂v

∂s
+ κu

)
+ ∂u
∂n
, (2.4a−c)

which can be fed into the constitutive law:(
τss
τsn

)
=
(
γ̇ N−1 + Bi

γ̇

)(
γ̇ss
γ̇sn

)
for τ ≡

√
τ 2

ss + τ 2
sn > Bi, (2.5)

and γ̇ij= 0 otherwise, where γ̇ ≡√γ̇ 2
ss + γ̇ 2

sn. To arrive at this scaled system, we have
used a length scale L and characteristic speed U to remove the dimensions of length
and velocity; the stresses and pressure are scaled by µU/L, resulting in the global
Bingham number,

Bi= τYL
µU

, (2.6)

where µ = K(U/L)N−1 is a characteristic viscosity, K is the consistency, N is the
power-law index and τY is the yield stress. We choose L to be related to the overall
size of the flow domain (which is finite in all computations); practically it provides
a convenient measure of the length of the boundary layer. The speed scale U is
imposed in all the problems we consider. (Note that Bi is defined differently to the
local Bingham number B mentioned in the introduction, which involves the length
and the velocity jump 1U across the boundary layer.)

2.2. Cartesian form
For the simpler Cartesian coordinate system (x, y), the corresponding governing
equations are

ux + vy = 0, (2.7)

∂p
∂x
= ∂τxx

∂x
+ ∂τxy

∂y
,

∂p
∂y
= ∂τxy

∂x
− ∂τxx

∂y
, (2.8a,b)(

τxx
τxy

)
=
(
γ̇ N−1 + Bi

γ̇

)(
2ux

vx + uy

)
for τ ≡

√
τ 2

xx + τ 2
xy > Bi, (2.9)

and ux = uy + vx = 0 otherwise, where γ̇ =√(uy + vx)2 + 4u2
x . Here, we have used

subscripts of x and y to denote partial derivatives of the velocity components.

3. Boundary-layer theory
3.1. Oldroyd’s equation for a viscoplastic shear layer

Consider a shear layer of thickness ε = Bi−1/(N+2) � 1. We rescale coordinates to
resolve the narrow region:

n= εη,
[

u
v

]
=
[

U(s, η)
εV(s, η)

]
, p= P(s, η)

εN+1
, (3.1a−c)

τsn = σ

εN+2
+ τ̌sn(s, η)

εN
,

[
τss
τnn

]
= 1
εN+1

[
τ̌ss(s, η)
τ̌nn(s, η)

]
, (3.2a,b)

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.878
Downloaded from https:/www.cambridge.org/core. The University of British Columbia Library, on 24 Feb 2017 at 23:17:49, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.878
https:/www.cambridge.org/core


934 N. J. Balmforth, R. V. Craster, D. R. Hewitt, S. Hormozi and A. Maleki

where σ = sgn(un). The rescaled conservation equations are, to leading order and
assuming the curvature κ is O(1),

Us + Vη = 0, (3.3)

Ps = ∂τ̌sn

∂η
+ ∂τ̌ss

∂s
, Pη = ∂τ̌nn

∂η
(3.4a,b)

(and again denoting partial derivatives by the subscripts s and η). The expansion of
the constitutive law for yielded fluid gives

τ̌sn = |Uη|N−1Uη − 2σU2
s

U2
η

, τ̌ss =−τ̌nn = 2σUs

Uη

. (3.5a,b)

Eliminating the pressure furnishes Oldroyd’s boundary-layer equation,(
|Uη|N−1Uη − 2σU2

s

U2
η

)
η

+ 4σ
(

Us

Uη

)
s

=G(s), (3.6)

where G(s) is an arbitrary function of s generated by the η-integral of the second
relation in (3.4). Note that the scaling ε=Bi−1/(N+2) for the boundary layer is designed
to achieve the balance of terms in (3.6) and preceding equations.

For a shear layer sandwiched between two rigid plugs, the velocity outside the
boundary layer is either in linear translation or uniform rotation. For the former, it is
more convenient to use a Cartesian coordinate system for the geometry, with the x-axis
threaded down the boundary layer. For the latter, circular polar coordinates, (r, θ), are
appropriate with s ≡ Rθ and n ≡ r − R, where R denotes the radial location of the
midline of the shear layer. For either case, the shear layer ends at the finite position,
η = η±(s), corresponding to the yield surfaces. There, the boundary conditions are
U(s, η±)= constant and Uη(s, η±)= 0 (with Us/Uη finite).

Other kinds of shear layers are feasible, however, in which the shear layer matches
to a perfectly plastic flow rather than a rigid plug. In this situation one expects that
the shear layer follows a slipline (characteristic curve) of the stress field of the plastic
solution, which is not necessarily either straight or circular. The boundary conditions
now become the matches, U(s, η)→ uP(s) and Uη→ 0, where uP(s) is the plastic flow
speed along the slipline, because the plastic flow spans an order-one region in n with
a solution free of the fine boundary-layer scale.

Note that, so far, we have not considered the mass conservation equation (3.3). The
integral of this relation over the boundary layer implies that

∂

∂s

∫ η+

η−
U(s, η) dη=

[
∂η+
∂s

U(s, η+)− V(s, η+)
]
−
[
∂η−
∂s

U(s, η−)− V(s, η−)
]
; (3.7)

i.e. the divergence of the flux along the shear layer must balance the inflow or outflow
through its borders.

For the self-similar solution outlined presently, for which the shear layer meets
rigid plugs at η = η±, this relation is satisfied automatically by the symmetry of the
boundary-layer profile, and conveys no additional information; the sole use of (3.3)
is to determine the transverse velocity component V(s, η) once U(s, η) is known.
However, if one side of the boundary layer aligns with a wall and this symmetry is
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broken, as in the plate problem considered in § 5, (3.7) imposes a non-trivial constraint
that cannot be satisfied if V(s, η) is prescribed at a yield surface on the other side
of the boundary layer. This inconsistency was noted by Oldroyd, who suggested that
one could relax the boundary condition at the yield surface by including a modest
elastic deformation over the adjoining plug region; we find instead that Oldroyd’s
boundary-layer scaling is simply not relevant when the viscoplastic boundary layer is
adjacent to a wall.

3.2. Self-similar solutions
The boundary-layer equations have a more general self-similar solution than that given
by Oldroyd. We set

U =UM +1U f (ζ ), ζ =−σ η− ηM

Y(s)
, (3.8)

where U→U± for η→ η±, UM = (U+ +U−)/2, 1U = |U+ −U−|, ηM = (η+ + η−)/2
and Y(s) is the half-thickness of the shear layer (σ ≡ sgn(U+ −U−)). This rescaling
symmetrizes the solution about the centre of the shear layer and orientates ζ so that
Uζ 6 0. The boundary conditions then become

f (±1)=∓ 1
2 , fζ (±1)= 0. (3.9a,b)

When the shear layer is buffered by rigid plugs, U± are constant, the symmetry
about the centreline implies G= 0, and (3.6) demands that

(| fζ |N−1fζ )ζ = λζ , d2Y
ds2
=−λ(1U)N

4YN+1
, (3.10a,b)

where λ is a separation constant. Hence, in view of the boundary conditions at ζ =±1,

f =−1
2

sgn(ζ )
Bζ 2

(
1
2
, 1+ 1

N

)
B
(

1
2
, 1+ 1

N

) , λ= 2

NΓ
(

3
2
+ 1

N

)
√

πΓ

(
1
N

)


N

, (3.11a,b)

where Γ (a) and B(a, b) are the gamma and beta functions and Bx(a, b) is the
incomplete beta function. One then has to solve the problem in (3.10b) for Y . There
are solutions with Y = YE and Ys = 0 at the right-hand end of the boundary layer
(giving Us = 0) with (

dY
ds

)2

= λ
2N
(1U)N(Y−N − Y−N

E ). (3.12)

For the Bingham problem with N = 1, the boundary-layer solution reduces to

f = 1
4ζ (ζ

2 − 3), λ= 3
2 , (3.13a,b)

and

Y3/2
E

[
tan−1

√
υ

1− υ −
√
υ(1− υ)

]Y/YE

υ=Y0/YE

=
√

31U
2

(s− s0), (3.14)
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FIGURE 2. (Colour online) (a) Profile of the self-similar boundary-layer solution for
N = 1 (Bingham fluid) plotted against ς = (s − s0)[λ(1U)N/(2NYN+2

E )]1/2, with Y = 0
for s = s0 and (Y, Y ′) = (YE, 0) at the right (solid); the solution can be continued to
form a closed boundary layer as indicated by the dashed line. The dotted line shows
Y against

√
31U(s − s0)/2, which is Oldroyd’s power-law solution (N = 1; YE � 1).

(b) Boundary-layer profiles for N = 0.1, 0.5, 1, 2 and 4, plotted against ς/ςmax.

where (s,Y)= (s0,Y0) denotes the start of the boundary layer. For YE→∞, we recover
Oldroyd’s power-law solution, Y∝ s2/3. Alternatively, if the boundary layer has a given
length, `, one obtains a relation between the thicknesses at inflow and exit:

Y3/2
E

[
1
2
π− tan−1

√
Y0

YE − Y0

]
−
√

YEY0(YE − Y0)=
√

31U
2

`. (3.15)

In particular, if the boundary layer is closed at its initiation (Y0→ 0), then we find a
maximum boundary-layer width, in terms of the original variable n, of

2Bi−1/3YE = 2Bi−1/3

(√
31U

`

π

)2/3

≈ 1.345(`21U/Bi)1/3. (3.16)

The boundary-layer profile predicted by (3.14) is plotted in figure 2(a). Note that the
profile can be extended by its mirror image to furnish a solution that is closed at both
its ends. Figure 2(b) compares boundary-layer profiles with different power-law indices
N, which all adopt a broadly similar shape. As mentioned above, for the remainder
of this paper we restrict attention to the case of a Bingham fluid (N = 1).

4. Oldroyd’s jet-like intrusion

The first of Oldroyd’s model problems that we consider consists of a finger, or
jet, of Bingham fluid pushed out of a vent in a wall to intrude into a half-space
of stagnant fluid (figure 1a). Oldroyd proposed that the borders between the finger
and ambient would yield to form two thin viscoplastic shear layers with self-similar
structure. We explore a slightly different version of the problem set in a finite
domain, with symmetry conditions imposed to the right and on the top and bottom.
We computed numerical solutions using an augmented Lagrangian scheme and a
mixed finite-difference and spectral discretization, details of which are outlined in the
Appendix.
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FIGURE 3. (Colour online) (a) Numerical solutions for a one-sided intrusion at Bi= 1024,
with a symmetry line at x= 1, showing (from left to right) log10(γ̇ ), u and v. The yield
surface is shown as a green line. (b) The thickness of the shear layer at x = 1 (dots),
together with the asymptotic prediction (3.16) (dashed). (c) The yield surface (black)
together with the prediction Y/Bi1/3 (red, dashed) from the boundary-layer asymptotics.
(d) Horizontal velocity profiles at x = 1 (black) and x = 0.25 (blue), together with the
predicted profiles from the boundary-layer theory (circles).

4.1. A one-sided intrusion
When the inlet spans half of the y-axis, a one-sided intrusion is thrust into the domain
to form a single shear layer, furnishing the simplest possible setting for Oldroyd’s
boundary-layer theory. More specifically, in the computations, we impose u(0, y)= 0
for y> 0 and u(0, y)= 1 for y< 0, both with v(0, y)= 0.

A numerical solution is shown in figure 3 for Bi= 1024. As expected, a gradually
widening shear layer develops at the edge of the intrusion with a distinctive shape
characterized by its yield surfaces. Computations with different Bingham numbers
establish that the thickness of the shear layer scales like Bi−1/3, as predicted by
Oldroyd (figure 3b). In (c,d), the yield surfaces and the profiles of horizontal velocity
at two vertical sections are compared with the self-similar boundary-layer solution
derived in § 3.2. In this case, the shear layer must shrink to the point x = y = 0 at
the edge of the inlet, implying that Y(0)= Y0 = 0, whilst the symmetry condition at
x= xe = 1 demands that Yx = 0.

4.2. Two-sided intrusions
For two-sided intrusions, we impose a unit influx over an inlet of finite width on
the y-axis, such that u(0, y) = 1/(2yI) for −yI < y < yI and u(0, y) = 0 otherwise.
Results from numerical simulations are shown in figure 4. For sufficiently large inlet
widths yI (figure 4a), the inflow takes the form of a plugged intrusion bordered by
two viscoplastic boundary layers, exactly as suggested by Oldroyd. Each shear layer
is essentially the same as that bordering the one-sided extrusion and again scales
with Bi−1/3 (see figure 5e). Once more, the similarity solution for an initially closed
boundary layer matches the numerical solution (see the shear layer shape and velocity
profile in figure 5a,b).
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FIGURE 4. (Colour online) Intrusions for (a) yI = 2−1, (b) yI = 2−2 and (c) yI = 2−4, all
with Bi = 2048 and showing only the upper half of the domain owing to symmetry at
y= 0. Each row shows density plots of log10(γ̇ ) (left), u(x, y) (centre) and v(x, y) (right);
the dotted (white) lines show a selection of streamlines and the solid (green) line shows
the yield surfaces. (d) The same set of plots for yI = 2−4 and Bi= 8; the flow is similar
to the larger-Bi solutions, but without distinct shear layers. (e–h) Yield surfaces for the
same inlet widths as (a–c), together with the borderline case at yI=0.4, for Bi=32 (solid),
Bi= 128 (dashed), Bi= 512 (@) and Bi= 2048 (E).

However, when yI is decreased (figure 4b,c), there is an abrupt change in the flow
pattern: for sufficiently narrow inlets, the intrusion yields all the way down to the axis
as it enters the domain and remains unplugged for some distance downstream. For
Bi→∞, this creates a finite region of perfectly plastic flow (cf. figures 4g–h and 5f ),
as illustrated in figure 6, which shows how the stress invariant is held very slightly
above Bi throughout. The plastic zones begin at the edges of the inlet, then widen and
merge together to leave a small triangular tip to the incoming rigid jet. The plastic
region splits apart further downstream at a yield surface that eventually closes off the
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FIGURE 5. (Colour online) The (a,c) yield surfaces and (b,d) vertical profiles of horizontal
velocity at x= 1, for intrusion with Bi= 2048 and inlet half-widths of (a,b) yI = 0.5 and
(c,d) yI = 2−4. Solid lines show the numerical solutions; dashed lines give the predicted
boundary-layer shape Y(y), based on the measured velocity jump and centre line of the
shear layers, and blue circles give the predicted velocity profiles from (3.13). (e) The
thickness of the boundary layer at x=1 for yI=0.5 (E) and yI=2−4 (∗), together with the
predictions from (3.16) using the measured velocity jumps (red solid line and blue dashed
line, respectively), which asymptotically scale with Bi−1/3. ( f ) The axial length (E) and
half-thickness (∗) of the plugged intrusion and the position of the tip of the triangular
plug at the inlet (+), for yI = 2−4.

plastic region. This closure leaves two horizontal viscoplastic boundary layers dividing
a moving plug from the surrounding rigid ambient. Thus, if the inlet is too narrow,
the extrusion plastically adjusts to reset its thickness close to some minimal value
and recover Oldroyd’s flow pattern downstream. Note that the minimal half-thickness
and the length of the horizontal section of the viscoplastic shear layer are both ∼0.4
for all the solutions with plastic zones at the inlet (when the horizontal length of the
computational domain, and therefore the intrusion is unity).

The change in flow pattern occurs for yI less than 0.5. However, this threshold also
depends slightly on Bingham number. Indeed, the solution with y0 = 0.4 shown in
figure 4 begins with a wide plastic region for lower Bi, but then switches to two
isolated shear layers for Bi> 512. For Bi� 1, the mode change occurs for yI between
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FIGURE 6. (Colour online) Further details of the stress field for the intrusion with yI=2−4

and Bi= 2048, which was shown in figure 4(c): density plots of (a) τxx/Bi, (b) τxy/Bi and
(c) τ/Bi. In view of the indeterminacy of the stress field over the rigid parts of the flow,
the plugs are shaded grey.

0.35 and 0.4, and seemingly closer to the latter than the former. We return to and
clarify this point in § 4.3 below.

The shear layers at the edge of the plastic region that develop into the horizontal
border of the plugged intrusion again follow Oldroyd’s Bi−1/3 scaling throughout their
length; see figure 5(e). Surprisingly, the self-similar solution nicely approximates the
boundary-layer shape and velocity profile once the shear layer becomes horizontal
(figure 5c,d). This is not expected as, over the curved section where the shear layer
borders the plastic region, the velocity jump is not constant and so the structure cannot
be self-similar.

4.3. Plastic slipline theory
The perfectly plastic flow that arises in the overly narrow intrusions can be described
using the slipline analysis of plasticity theory and is similar to some classical problems
of the indentation and extrusion of metals (Hill 1950; Green 1955; Johnson 1956;
Johnson et al. 1982). The governing equations are those of stress equilibrium (2.8)
with the deviatoric stresses satisfying the yield condition,

τ 2 = τ 2
xx + τ 2

xy = Bi2. (4.1)

One can then deduce that the problem for the stress field is hyperbolic and the
characteristics are the sliplines. With the definition,

(τxx, τxy)= Bi(−sin 2ϑ, cos 2ϑ), (4.2)

the α and β sliplines are given by

α-lines : dy
dx
= tan ϑ, p+ 2Biϑ = const., (4.3)

β-lines : dy
dx
=− cot ϑ, p− 2Biϑ = const., (4.4)

and so ϑ is the anti-clockwise angular rotation of the α-line from the x axis.
We describe the construction of the slipline field in the upper half-plane and with

reference to figure 7. The construction begins using the circular arc A of radius yI

√
2

that is centred at the edge of the vent and intersects the tip of the rigid jet. Within
this arc, the sliplines form a centred fan; we take the α-line to be the straight radial
spokes and the β-characteristics to be the concentric circular arcs. Along the outermost
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FIGURE 7. (Colour online) Sliplines for the jet (α-lines shown darker (blue), β-lines
lighter (red)). The stars show where β-lines become vertical. The upper inset shows the
sliplines over a larger region of the first quadrant, including more of the sliplines leaving
the y-axis above the fan. The lower insets show particular choices for the slipline and
boundary layer that permit moving plugs bounded by BCD.

β-characteristic running along A, we have p = p0 + 2Biϑ , where p0 is an arbitrary
background pressure level. The α-lines passing through A therefore have p+ 2Biϑ =
p0 + 4BiΘ , where Θ is the angle of these characteristics within the fan. Beyond A,
the α-lines must curve down so that they intersect the x-axis with ϑ =−π/4. Thence
p= p0 + 4BiΘ + (πBi)/2 at y= 0.

To build the slipline field beyond A, we start with the lowest α-line in the fan
lying above the triangular face of the rigid jet. Using (4.3) and ϑ(x, 0)=−π/4, this
characteristic can be extended the short distance beyond A down to its intersection
with the x-axis. The upgoing β-line leaving that point can then be initiated and
continued around the border of the fan using (4.3)–(4.4). Simultaneously, this
extends all the α-lines through A out to the new β-characteristic. The β-characteristic
terminates on the y-axis above the fan with ϑ =π/2, where it launches a new α-line
that proceeds upwards and gradually bends away from the vertical. This procedure
can then be repeated, extending the next lowest α-line of the fan down to the x-axis
thereby beginning another β-characteristic, and so forth; see figure 7.

To furnish a plastic region for the jet, we select one of the β-characteristics with
a base point B on the x-axis. We then find the location C where this curve becomes
vertical (cf. the selection of stars in figure 7). The section BC of this characteristic
can be taken to be the left-hand border of the moving plug. At C, we begin the
horizontal section of the viscoplastic shear layer (now assumed infinitesimally thin),
and continue it to the right-hand border of the domain at D. Finally, the α-line
that passes through C forms the lower yield surface of the overlying stagnant fluid.
Depending on the choice of the β-line, the plastic region either extends up to an
α-line that leaves the fan, or incorporates the whole fan and is bounded by one of
the α-lines that departs tangentially from the y-axis. The lower insets to figure 7
provide sample illustrations of the two situations. Although any of the β-lines can be
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FIGURE 8. (Colour online) Slipline fields, with the plastic region bounded by the thicker
sliplines and triangular face of the jet, superposed on density maps of log10(γ̇ ) with
Bi = 2048 from the numerical solutions, for inlet widths (a) yI = 2−2, (b) yI = 2−4 and
(c) yI = 2−6.

used for this construction, only one will satisfy the correct horizontal force balance
condition on the moving plug, which depends on the domain length; i.e. xD.

Instead of determining the correct β-line for a given domain length, we turn the
problem around and calculate the implied domain length for a given β-line. In view
of the symmetry condition imposed on the right border of the domain, there is no
normal force along x= xD. The plug is therefore pushed forwards purely by the force
from the plastic region along BC. This forward force is resisted by the drag from the
viscoplastic shear layer CD, where the shear stress is −Bi (cf. figure 6). Thence,

−
∫ yC

0
(p+ Bi tan ϑ) dy= Bi(xD − xC). (4.5)

An embarrassment with (4.5) is that the left-hand side contains the contribution
−p0yC of the arbitrary background pressure. However, in the viscoplastic shear layer,
the pressure field should be constant to leading order (the spatially varying part of p
is O(Bi−1/3)), and so the symmetry condition at x = xD demands that p(xC, yC)→ 0,
which fixes p0. With this choice, in figure 9(a) we plot yC/yI and (xD− xC)/yI against
xC/yI . Evidently, the jet half-width is approximately three-quarters of the length of the
plastic region, whereas the length of the horizontal shear layer is comparable to the jet
half-width. Both are consistent with the numerical results shown earlier. Given these
quantities we may further formulate yI/xD, yC/xD and xB/xD, which corresponds to the
scaling of the problem used in our numerical computations, and which are plotted in
figure 9(b,c). For these scalings, the jet half-width is approximately 0.4 for a wide
range of inlet sizes, and the slipline solutions dovetail satisfyingly with the limits
suggested by the numerical solutions.

The computations in figure 9 contain a corner at yI/xD≈0.032 which corresponds to
choosing the β-line that becomes vertical where it intersects the α-line that leaves the
top of the fan with ϑ =π/2. That is, for yI/xD > 0.032 the plastic region is bounded
from above by an α-line from the fan; for yI/xD < 0.032 the plastic region extends
above the fan and contains part of the y-axis. The transition value is consistent with
the numerical results, although there it is obscured by the viscous smoothing of the
border of plastic region due to the finite Bingham number used in the computations.

The data also end for yI/xD ≈ 0.39; this limit corresponds to choosing the β-line
lying along the arc A with (xC, yC) = yI(

√
2, 1). Slipline solutions terminating in

moving plugs cannot be found for wider inlets. This critical value is consistent with
the switch in flow pattern observed numerically.
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FIGURE 9. (Colour online) Plot of (a) yC/yI and (xD− xC)/yI against xC/yI , then (b) yC/xD
and (c) xB/xD, both against yI/xD. The lines show the slipline solutions and the symbols,
which correspond to different values of Bi as indicated, show the numerical solutions. See
figure 7 for the locations of A, B, C and D.

Finally, we note that we must take yI/xD → 0 in order to approach the limit of
an infinite domain, as in Oldroyd’s original vision of this problem. But figure 9 then
implies that the plastic readjustment spans an infinitely wide region (yC/xD and xC/xD

remain finite as yI/xD→ 0). Thus, the intrusion must expand gradually outwards as a
plastic readjustment and never lock into a bounded moving plug, implying Oldroyd’s
prediction of isolated boundary layers only applies to a finite domain. Indeed, there is
an intrinsic inconsistency with Oldroyd’s solution, because the boundary layers grow
like x2/3 and so will always collide in an infinite domain.

5. The finite plate

Oldroyd’s second model problem concerns a thin knife piercing a Bingham
fluid. We consider a finite-length version of this problem, more suited to numerical
computations, in which a plate of given length and zero thickness advances through
a viscoplastic fluid in the same direction as its length (figure 1b). For this problem,
at high values of Bi, one anticipates boundary layers to coat the plate and lubricate
the motion through the fluid. This configuration has recently been the focus of
an experimental study by Boujlel et al. (2012), who claimed that one needs to
supplement the viscoplastic boundary-layer solution with elastic-type deformation
further from the plate to match the observed flow field, motivated perhaps by the
contradiction arising in Oldroyd’s boundary-layer theory.

5.1. Numerical observations
Numerical solutions to the problem are shown in figure 10. The plate does indeed
advance through the fluid by creating slender viscoplastic boundary layers along its
length, as found experimentally and suggested by Oldroyd. However, the fluid motion
is not only confined to these boundary layers, as two other distinctive regions of flow
also occur. First, and most noticeably, there is a circular viscoplastic boundary layer
that lines the perimeter of the flowing region. This layer allows for the solid-body
rotation of large rigid plugs above and below the plate (see figure 10c,d). Second,
fluid also yields at the front and back of the plate, over small but finite regions with
perfectly plastic deformation. Both of these regions are identified by non-negligible
levels of strain rate that are orders of magnitude lower than those experienced in the
boundary layers against the plate (figure 10a,b).
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FIGURE 10. (Colour online) Flow around a plate of unit length for (a) Bi = 32 and
(b) Bi= 2048, showing density maps of log10(γ̇ ). The dashed line locates the plate, which
is moving from left to right with unit speed. (c,d) Density maps of the corresponding
horizontal velocity component (displaying one quarter of the plane due to symmetry)
for (c) Bi = 32 and (d) Bi = 2048. Dashed white lines show a selection of streamlines.
The inset in (d) shows a magnification of the boundary-layer flow against the plate, as
indicated by the box of the main panel. (e, f ) The normal and shear stress components,
respectively, scaled by Bi, for Bi= 2048.

Critically, unlike the shear layers surrounding the intrusions, which scaled with
Bi−1/3, the simulations show that the width of the boundary layer against the plate
scales with Bi−1/2 (figure 11a), and the circular shear layer at the perimeter of the
rotating plug also follows the same scaling. The latter observation can be explained
by the fact that the velocity jump across the layer is not order one. Instead, we
observe (and, in the following subsection, rationalize) that the rate of rigid rotation is
O(Bi−1/2), while the radius of the rotating plug remains comparable to the order-one
length of the plate. The velocity jump is thus O(Bi−1/2), and, given this scaling,
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FIGURE 11. (Colour online) Data as a function of Bi. (a) Boundary-layer width at
x = 0 for the layer against the plate (∗) and for the circular shear layer (red +).
(b) Characteristic lengths of the plastic region: horizontal length in front of the tip of the
plate xa − (1/2) (∗); maximum height yb of the stress discontinuity above the plate (blue
◦); and maximum height yp of the plastic region (red +). (c) Properties of the rotating
plugs as defined in (5.11a,b): yc (∗); R− yc − (1/2) (blue ◦); and Bi−1/2Ω (red +). The
dashed lines show Bi−1/2 and the (blue) circles in (a) plot the prediction in (5.10).

the boundary-layer theory of § 3.2 predicts a shear-layer thickness of O(Bi−1/2)

(see (3.16)). In other words, the observed scaling of the circular shear layer is
consistent with Oldroyd’s boundary-layer theory. We will deduce the basis for the
Bi−1/2 scaling of the boundary layers next to the plate in the next subsection.

Over the regions of nearly plastic flow at the leading and trailing edges of the
plate, we may diagnose the slipline field from the numerical solutions. As shown
in figure 12(a), the slipline field contains a network emanating from an expansion
fan that is located at the tip of the plate, together with a second network emerging
from the viscoplastic boundary layer along the plate. The two networks are evidently
incompatible and require a stress discontinuity to stitch them together (which is
permissible in ideal plasticity if the tangential stress is discontinuous but the normal
and shear stresses are continuous (Hill 1950; Prager & Hodge 1951)).

Further details of the solutions, given in figures 11 and 13, are discussed in the
following subsection. We note here that the centre of rotation of the rigid plugs
enclosed by the circular shear layer is not quite at the centre of the plate, but slightly
offset. The upper plug, for example, rotates about a point y=−yc on the y-axis that
is displaced a small distance below the plate (see figures 11c and 12b). In addition,
that plug meets the plastic regions at the front and back edges of the plate along
yield surfaces that correspond to particular sliplines.

5.2. Boundary-layer theory
For a plate moving to the right at unit speed, and in the laboratory frame, we rescale
to introduce the boundary-layer coordinate η = y/ε and pressure P(x, η) = ε2p(x, y),
where ε is currently undetermined. We then have

1
ε2

Px = 1
ε

∂τxy

∂η
+ ∂τxx

∂x
,

1
ε3

Pη = ∂τxy

∂x
− 1
ε

∂τxx

∂η
, (5.1a,b)

where

τxy ∼−Bi+ 1
ε

uη + · · ·, τxx ∼−2εBi
ux

uη
+ · · · (5.2a,b)
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FIGURE 12. (Colour online) Features of the flow near the front of the plate (black
dashed) for Bi = 2048. (a) Sliplines (contours of p ± 2Biϑ), as calculated from the
numerical solutions, overlain on a density map of log10 γ̇ . Grey regions indicate rigid
plugs. (b) The centre of rotation (stars) and one quarter of the arc of rotation (dashed),
for the counter-rotating plugs above and below the plate.
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FIGURE 13. (Colour online) (a) Horizontal velocity profiles at x= 0 for Bi= 32 (black),
Bi = 128 (blue dashed), Bi = 512 (red squares) and Bi = 2048 (green circles). The inset
shows the velocity across the rigid plug and outer circular boundary layer in more detail.
(b,c) Details of the numerical solution for Bi=2048: (b) the yield surface (black solid) and
a contour of γ̇ = 1 (red dashed), which approximately demarcates the edge the viscoplastic
boundary layer; and (c) the horizontal velocity profile at x=0. Circles show the asymptotic
predictions from (5.9), (5.4) and (5.10), using the measured values of Ω , R and yc.

(given uη < 0). As long as ε3Bi is small, we may neglect all but the leading-order
terms to arrive at

uηη = Px, Pη = 0. (5.3a,b)
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Demanding that u(x, 0)= 1 and (u, uη)→ 0 for η→ Y gives

u=
(

1− η
Y

)2
, Px = 2

Y2
. (5.4a,b)

Mass conservation across the boundary layer implies

v(x, y= εY)=−ε ∂
∂x

∫ Y

0
u dη=−1

3
εYx. (5.5)

Where the boundary layer meets the rigidly rotating cell above the plate, this
transverse velocity must match the corresponding (anti-clockwise) rotation speed.
The rotation rate must therefore be of the order of ε, so we set εΩ(−y− yc, x) for
the outer flow field, where the centre of rotation is at the point (0, −yc). Hence,
v(x, 0)= εΩx, and so

Y = Y0 − 3
2Ωx2, (5.6)

where Y(0)= Y0 is the central thickness. Evidently

Px = 8
(2Y0 − 3Ωx2)2

. (5.7)

Along any vertical cut through this part of the flowing region, we have the mass
balance (ignoring the contribution of the circular boundary layer),∫ Y

0
u dη∼Ω

∫ yR

0
(y+ yc) dy, (5.8)

where yR=
√

R2 − x2− yc and R is the radial extent of the rigid zone with respect to
the rotation centre. That is,

1
3 Y = 1

2Ω(R
2 − x2 − y2

c). (5.9)

Thus
Y0 = 3

2Ω(R
2 − y2

c). (5.10)

Finally, we consider the magnitude of ε, which sets both the width of the boundary
layer against the plate and the angular velocity of the rotating plug. The apparent
constraint is that ε3Bi� 1, which allows for any scaling smaller than Bi−1/3. In fact,
the size of ε must be set by matching with the plastic region at the front and back of
the knife. The relatively complicated slipline field over these regions demands that the
pressure varies across them by O(Bi) (because p± 2Biϑ , where ϑ is the angle of one
of the sliplines, are the Riemann invariants). To match the pressure within the main
viscoplastic boundary layer, we must therefore choose ε = Bi−1/2, from the scalings
introduced before (5.1). This matching of the pressure is the missing ingredient in
Piau’s boundary-layer scaling argument.

At this stage, to fix the remaining O(1) constants, Ω , R and yc, it seems necessary
to work out the details of the plastic flow at the front and back edges of the plate.
(The circular boundary layer must be matched to the plastic region, which requires its
centreline to become tangential to the leading and trailing sliplines; force and torque
balance must be imposed on the rotating plug.) We avoid this technical detail here,
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and settle for stating the fitted constants implied by the numerical solutions with
Bi� 1:

Ω ≈ 1, (yc, R)≈ (0.06, 0.56) (5.11a,b)

(figure 11c). The solutions also indicate that the plastic region has a spatial extent
characterized by

yp ≈ 0.14, xa − 1
2 ≈ yb ≈ 0.025, (5.12a,b)

(figure 11b), where yp is the maximum height of the plastic region, xa is the edge
of the yield surface ahead of the plate (at y= 0), and yb is the height of the top of
the stress discontinuity. Given these constants, the boundary-layer theory agrees well
with data from numerical simulations (figure 13). Note that we find R− yc ∼ (1/2)+
O(Bi−1/2) (figure 11c), indicating that the circular shear layer extends up to a height
of exactly half the plate length; we have yet to find an explanation for this interesting
numerical observation.

6. Channel flows of Bingham fluid
6.1. Flow through an expansion

For channel flow through a rectangular expansion, and in the limit of large yield
stress, one expects the boundary layers along the walls of the main channel to
become connected across the expansion by free shear layers. This type of flow
was considered experimentally by Chevalier et al. (2013), who argued this to be a
canonical viscoplastic analogue of the shear banding of plastic materials in ‘frustrated
flows’ (Chevalier et al. considered pipe flow; we continue with the two-dimensional
problem here).

We compute periodic solutions for flow with a unit flux along a channel with
square-wave boundaries. More specifically, the channel is periodic on −1 < x < 1,
with boundaries located at y = ±0.5 for −1 < x < 0 and y = ±1 for 0 < x < 1 (see
the Appendix for more details of the numerical scheme). Figure 14 shows a sample
solution for large Bi. As anticipated, free shear layers detach from the corners of
the expansion to isolate the clogged-up well. At the corners, the shear layers thin
sharply to merge with much narrower boundary layers against the channel walls.
Computations from a suite of Bingham numbers (figure 15c) indicate that the width
of the free shear layers scales with Bi−1/3, as predicted by Oldroyd’s theory, but the
width of the wall-bounded layers instead follows the Bi−1/2-scaling.

Because the wall layers are so much narrower that the shear layer, that layer
effectively closes at its ends. Thus, for the free shear layer, the maximum thickness
of the boundary layer (which occurs at x = 1/2) is predicted from (3.16) to be
0.847Bi−1/3 (using ` = 1/2). This prediction agrees satisfyingly with the numerical
results, as shown in figure 15(c). Furthermore, the boundary-layer shape and velocity
profile across the layer are also comfortably reproduced by (3.13) and (3.14) with
Y0→ 0 (figure 15b,d).

For the wall layers, the theory in § 5.2 instead applies, although the change in the
velocity conditions on the walls implies that

u= 1−
(

1− η
Y

)2
, Px = 2

Y2
, (6.1a,b)

rather than (5.4), where η ≡ ε−1((1/2) − y), and again ε � Bi−1/3 is currently
undetermined. As there is no flow into these boundary layers from the plug, the mass
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FIGURE 14. (Colour online) Periodic channel flow through a local expansion at 0< x< 1
with unit net flux down the channel and Bi= 2048. Density maps of (a) log10 γ̇ ; (b) the
horizontal velocity; and (c) the vertical velocity. The dashed (white) lines show a selection
of streamlines and the solid (green) line shows the yield surfaces.
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FIGURE 15. (Colour online) Data for channel flow through an expansion. (a) Yield
surfaces for Bi=128 (black), Bi=512 (blue dashed), Bi=2048 (red) and Bi=8192 (green
dashed). (b) The yield surface (black) and the asymptotic prediction (E) from (3.13) for
Bi= 2048. (c) The width of the free shear layer (blue pluses; measured at x= 0.5) and
the wall-bounded layer (black stars; measured at x = −0.5), together with dashed lines
showing asymptotic predictions from (3.16), with scaling Bi−1/3, and (6.3), with scaling
Bi−1/2, respectively. (d) Measured (lines) and predicted (symbols) profiles of the horizontal
velocity u(y) across the wall-bounded (black circles) and free (blue stars) shear layers.

flux over the boundary layer must be constant, implying Yx = 0. Thus, the boundary
layer has uniform thickness εY and over the constricted part of the channel there
must be a pressure drop of

1p= 1P
ε2
= 2d
(εY)2

, (6.2)

where d=1 is the length of the wall-bounded layer. Over the shear layer, however, the
equivalent pressure drop is much less (of order Bi2/3). In other words, the full pressure
drop across the entire channel is felt mostly over the constricted section. In view of
the periodic boundary conditions imposed at x = ±1, force balance on (half of) the
moving plug demands that the force due to the pressure drop on the vertical sides
matches the drag from combined boundary layers, where the shear stress is Bi. Thus,

1
21p= 2Bi or εY = (2Bi)−1/2, (6.3a,b)
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FIGURE 16. (Colour online) Solutions for periodic flow down a channel with boundaries
located at y = ±(1 + a sin (πx)), for different amplitudes a and Bi = 2048 (only a part
of the domain is shown). Density plots of log(γ̇ ) (left), u (centre) and v (right), for
amplitudes (a) a= 0.5, (b) a= 0.7, (c) a= 0.8 and (d) a= 0.9. Streamlines (white dashed)
and yield surfaces (green solid) are also shown in the plots of the velocity components.

and so the boundary-layer thickness is O(Bi−1/2). Note that this boundary layer is
thinner by a factor of

√
2 than the corresponding boundary layer for flow down a

uniform channel, entirely because the pressure drop is restricted to the constricted
section. The prediction in (6.3), together with the velocity profile (6.1), again match
nicely with the numerical computations (figure 15c,d).

We also note that the shear layer and the wall layer are connected together across
a relatively narrow matching region. Here the thickness of the shear layer decreases
towards zero, implying a diverging pressure gradient. Both features allow the shear
layer solution to be matched to that for the wall layer. The match also results in a
small shift in the vertical position of the shear layer from the corner of the expansion,
which we have measured and included in the asymptotic predictions in figure 15(b,d).

6.2. Flow down a wavy-walled conduit
For flow down a wavy-walled channel, we computed solutions imposing unit flux
along a conduit with sinusoidal width y = ±(1 + a sin πx) and periodic conditions
at x = ±1 (further details again given in the Appendix). Results from a suite of
computations are shown in figure 16. Provided the channel is not too constricted,
shear layers develop that detach from the wavy wall where the conduit is thinnest,
isolating plugged fluid in the wells of the topography (figure 16a). If, however, the
amplitude a of the wavy wall is large enough to sufficiently constrict the channel,
the flow pattern changes to include finite regions of plastic deformation. Sample flow
patterns are displayed in figure 16(b–d), and give a sense of the plug phenomenology
as the amplitude a is varied. We have not attempted to explore these features in any
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FIGURE 17. (Colour online) Data from computations with amplitude a = 0.5. (a) Yield
surfaces for Bi = 512 (black), Bi = 2048 (blue dashed) and Bi = 8192 (red). (b) The
yield surface (black) and the asymptotic prediction (E) from (3.13) for Bi= 2048. (c) The
width of the free shear layer (blue pluses; measured at x= 0.5) and of the wall-bounded
layer (black stars; measured at x = −0.5), together with the asymptotic prediction (blue
dashed line) from (3.16), with scaling Bi−1/3, and the predicted scaling for the wall layer
of Bi−7/12 (black dashed line). (d) Profiles of the horizontal velocity u(y) at x = −0.5
(black) and x= 0.5 (blue), together with the asymptotic prediction for the free shear layer
(blue stars).

detail, or to delve further into the wavy-wall solutions as a whole, in view of the
previous study by Roustaei, Gosselin & Frigaard (2014) and forthcoming work by
the same group.

Instead, we briefly discuss the solutions for unconstricted channels, such as in
figure 16(a), which can be directly compared with boundary-layer theory. Results
from a suite of computations, shown in figure 17, indicate that the width of the shear
layer again follows the Bi−1/3-scaling (figure 17c), and both its width and velocity
profile can be reproduced by the self-similar solution of § 3.2 (figure 17b–d). The
solutions are more complicated than for the rectangular expansions discussed in the
previous section because the boundary layer that forms where the shear layer meets
the wall (near x=−0.5) is localized in both spatial directions. The length of the wall
layer must be set by the topographic variation: we expect the layer to end where the
topography, which is locally quadratic, widens to a width of order Bi−1/3, to match
with the free shear layer. Thus the layer should have length d ∼ Bi−1/6, which can
be input directly into (6.2) to give an expected width (εY)∼ Bi−7/12. The numerical
results appear to support this scaling, as shown in figure 17(c).

7. Concluding remarks

Our goal in this article has been to shed light on the structure of the boundary layers
that appear when yield stresses dominate a viscoplastic flow. Almost 70 years ago,
Oldroyd argued for the existence of such narrow regions and presented an asymptotic
theory to describe them. That theory is relatively complicated and the only solutions to
date that we are aware of are some, again due to Oldroyd, that take a self-similar form.
However, the characteristic scalings of Oldroyd’s theory have failed to be observed in
some specific situations. Instead, scalings from a revision of the boundary-layer theory
by Piau have been observed, calling into question the validity of Oldroyd’s theory.

Using a combination of numerical computations and a generalization of Oldroyd’s
theory, we have demonstrated that certain viscoplastic boundary layers are indeed
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described by Oldroyd’s theory. In all these cases the boundary layers take the
form of free viscoplastic shear layers lying between either rigid plugs or regions of
perfectly plastic flow. The boundary layers, which are described by a balance between
the pressure gradients, viscous shear stresses and leading-order plastic stresses, have
a characteristic aspect ratio of the order of B−1/3 for a Bingham fluid (or B−1/(N+2)

for a Herschel–Bulkley fluid with power-law index N).
We have, however, also found that Oldroyd’s theory does not apply to boundary

layers that lie against a wall. The reason for this is related to the inability of the
formulation to satisfy the correct transverse velocity conditions at both the wall
and the other border of the layer: the boundary-layer solution is overconstrained
by the requirement of mass conservation in this case. Oldroyd himself noted this
problem with his theory and suggested that elastic stresses in the surrounding region
might cure the problem; here, we instead interpret the problem simply to be that
the characteristic scalings underlying Oldroyd’s analysis do not apply. Instead, one
requires a different boundary-layer theory, in which the layer is thinner and the
pressure gradient along it is balanced by viscous shear stresses alone, to leading
order, as in the viscoplastic generalization of Reynolds’ lubrication theory. For
Bingham fluid, this balance is consistent with Piau’s layer of aspect ratio B−1/2

(or B−1/(1+N) for the Herschel–Bulkley law), although it equally applies to any layer
that is asymptotically thinner than B−1/3, with the precise exponent for a given
situation being set by the external pressure gradient.
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Appendix. Numerical scheme

To compute numerical solutions of the various problems considered in this
paper, the governing Stokes equations (2.8)–(2.9) were solved using an augmented-
Lagrangian scheme. This approach involves the iterative solution of a linear Stokes
equation together with a set of nonlinear algebraic equations, which allows for
accurate, if fairly slow, convergence and avoids the need for regularization of the
nonlinear viscoplastic rheology. Both the method and its application to the study of
viscoplastic fluids have been widely discussed in previous literature (e.g. Vinay, Wachs
& Agassant 2005; Dean, Glowinski & Guidoboni 2007), to which the interested reader
is referred.

The linear Stokes equation was written as a biharmonic equation for the streamfunc-
tion, and solved at each step of the iteration procedure over the domain 0 < x < xu

and 0 < y < yu using a Fourier transform in one direction and second-order finite
differences in the other. The details of the method, together with the choice of xu and
yu, vary depending on the specific problem being solved. For jets, we chose xu = 1
and used a Fourier sine transform in the y direction to impose symmetry at y = 0
(and at y = yu, which was chosen to lie sufficiently far from the inlet such that the
fluid at this boundary was a stationary plug). For the finite plate, we instead used a
sine transform in the x direction to impose symmetry at x= 0 (and at x= xu which,
together with yu, was chosen so that the fluid at the boundary was a rigid plug). We
also verified the jet solutions using a separate numerical scheme based on the finite
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element package Rheolef (Saramito 2015); data for the plug sizes and boundary-layer
thicknesses agreed to within a few per cent in the worst comparisons.

For channel flows, we used a full Fourier transform in the x direction to impose
periodicity down the channel. In order to impose the non-rectangular boundaries of
the channel, we utilized the fact that the boundary conditions for fluid next to a
rigid plug are equivalent to those for flow next to a rigid object (i.e. the no slip
conditions), except that the stress must also fall below the yield stress there. We
relaxed this latter condition by artificially increasing the Bingham number over some
regions of the domain, which forces the fluid there to be a rigid plug and so simulates
a rigid boundary at the edge of the region. To check the accuracy of this method, we
reproduced the various results of Roustaei et al. (2014), who studied flow in a channel
with uneven walls.

In all cases, we ensured that our chosen grid resolution fully resolved the thin
viscoplastic boundary layers. We found that a fairly large number of Fourier modes
needed to be included to give accurate results, which was probably because of the
non-smooth derivatives associated with the transition from a rigid plug to a flowing
region. The precise grid spacing varied depending on the problem being studied: for
Bi = 2048, the grid spacing was typically either 1x = 1y = 1/2048 or 1x = 1y =
1/4096. We iterated the augmented Lagrangian scheme until the maximum change
in the strain-rate invariant γ̇ had fallen below 10−7. The relaxation parameter in the
scheme was chosen to be equal to the Bingham number.
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