
Viscoplastic fingers and fractures in a Hele-Shaw cell

T.V. Balla,∗, N.J. Balmfortha, A. Dufresnea

a Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada

Abstract

A summary is provided of the theoretical description of two instabilities that may arise in radial displacement flows of
yield-stress fluid in a Hele-Shaw cell: the viscoplastic Saffman-Taylor instability and a recently proposed extensional flow
instability of shear-thinning fluids. The latter has been identified previously in the context of the two-dimensional flow
of a cylinder of power-law fluid; here we extend the analysis to the Herschel-Bulkley model, conjecturing that it may be
relevant in Hele-Shaw cells when there is a substantial amount of effective slip. With this background in mind, a variety
of experiments are performed in which an aqueous suspension of Carbopol is displaced, or displaces, a Newtonian fluid.
The Saffman-Taylor instability is observed, but not the extensional flow instability. When the Carbopol is in contact
with water, rather than either air or another immiscible liquid, other instabilities appear that take the form of localized
tears or fractures of the Carbopol when that material is placed under tension. The fractures lead to a rich range of
patterns within the cell that we attribute to a reduction in the fracture energy of the suspension when in contact with
another water-based fluid.

1. Introduction

The so-called Saffman-Taylor instability [1] is well-
known to lead to labyrinthian fingering patterns when a
viscous fluid emplaced in a narrow conduit is displaced by
a second, less viscous fluid. The simplest visualization of
this phenomenon is provided by emplacing the more vis-
cous fluid in a thin rectangular slot, or Hele-Shaw cell,
and then (radially) pumping in the second fluid [2, 3, 4],
or simply pulling apart the walls allowing air to displace
the fluid interface (a popular device that has found its
way into art installations). This type of fingering insta-
bility has also been studied for complex fluids, includ-
ing both viscoelastic liquids [5, 6] and yield-stress fluids
[7, 8, 9, 10, 11, 12, 13, 28, 27], with potential applications
to oil extraction from porous media in the petroleum in-
dustry.

Fingering patterns with a different origin have also re-
cently been suggested to arise when the displacing fluid
is the more viscous, but shear thinning [14, 15]: Sayag &
Worster performed a theoretical analysis using a power-
law fluid to complement an experiment in which Xanthan
gum spread out on top of a bath of salty water. Although
the gum therefore expanded as a shallow current, they ig-
nored the resulting thickness variations and drew an anal-
ogy between the expanding edge and the surface of a cylin-
der pumped out from an axisymmetrical source. A linear
stability analysis of that two-dimensional configuration re-
vealed an instabilility of shear-thinning power-law fluids.
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Sayag & Worster thereby rationalized a dramatic fingering
phenomenon that they observed in the experiments.

It should be stressed that the instability explored by
Sayag & Worster is two-dimensional and should not oper-
ate in a Hele-Shaw cell: for such narrow conduits, when the
displacing fluid is viscoplastic and of higher effective vis-
cosity (the opposite of the Saffman-Taylor configuration),
Coussot [7] demonstrated that the interface is linearly sta-
ble. The difference, of course, lies in the transverse struc-
ture of the flow in the Hele-Shaw cell: fluid driven down
a narrow conduit must flow over the walls, and with a no-
slip condition the shear rate and stresses across the cell
play the dominant role in the rheology and dynamics. By
contrast, for the two-dimensional expanding cylinder, the
extensional flow and stresses are key.

Nevertheless, complex fluids often suffer from the phe-
nonemon of effective slip: the migration of constituent
particles away from bounding walls leaves relatively dilute
layers that can effectively lubricate the bulk of the fluid
[16]. In some situations, the slip is so extreme to prompt
the emergence of novel fluid mechanical effects. One there-
fore wonders whether sufficient wall slip may weaken the
dominance of shear rates and stresses in a Hele-Shaw cell
and permit the emergence of Sayag & Worster’s instabil-
ity in radial displacement flows. Indeed, it has been sug-
gested previously that sliding prompted by effective slip
in conjunction with this instability may be responsible for
the development of weakly non-axisymmetrical patterns in
gravity currents of Carbopol [17].

In the current paper, we therefore undertake an exper-
imental exploration of the fingering patterns created by
viscoplastic radial displacement flows in a Hele-Shaw cell.
We consider both the Saffman-Taylor configuration, to ex-
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amine the viscoplastic version of classical fingering, and
the inverse, to gauge whether shear-thinning extensional
flow instability may arise because of slip. We open our
discussion with theoretical background, generalizing the
Sayag & Worster analysis to a Herschel-Bulkley fluid, and
providing details of the viscoplastic Saffman-Taylor prob-
lem that advance beyond previous work.

In our experiments, the working fluids are mainly aque-
ous suspensions of Carbopol in combination with either
air or water. We expose a variety of patterns that form in
the displacement flows, many of which are not driven by
instabilities of either the Saffman-Taylor or shear-thinning
extensional flow variety. Instead, we argue that the Car-
bopol gel actually fractures in a solid-like manner when in
contact with water and under tension. This leads to a rich
range of fracturing patterns. Only when we use either air
or an immiscible liquid does the Carbopol resist fracture
and the conventional Saffman-Taylor instability appear.
In none of the experiments is there any suggestion that a
shear-thinning extensional flow instability is present.

Visco-elastic fracture has previously been suggested to
arise in displacement flows of other complex fluids in Hele-
Shaw cells [18, 19, 20, 9, 21]. However, this was claimed
to develop as a natural variation on the Saffman-Taylor
theme, with no critical dependence on whether the second
fluid is water-based (although van Damme et al. point
out the significance of whether the materials are misci-
ble or not). By contrast, for our Carbopol suspensions,
we show that the fracturing is definitely distinct from
Saffman-Taylor-type fingering and is critically sensitive to
the presence of water at the interface, along similar lines
to a number of other problems [22, 23, 24].

2. Theoretical pre-amble

For viscoplastic flow down a narrow slot, two limits are
possible for the flow structure depending on the degree
of slip over the walls: if there is no slip, the configura-
tion corresponds to the viscoplastic version of the classical
Hele-Shaw cell; when free sliding is permitted over the
walls, the problem becomes equivalent to two-dimensional
viscoplastic flow. In either case, we may consider an ideal-
ized problem in which an initially axisymmetrical volume
of viscoplastic fluid is pumped radially outward or inwards
within the cell. The viscoplastic fluid is buffered at either
its outer or inner edge, or both, by a Newtonian fluid of
relatively small viscosity. In the celebrated Saffman-Taylor
configuration, the yield-stress material is displaced by the
Newtonian fluid; in Sayag & Worster’s extensional flow
configuration, the viscoplastic fluid displaces the viscous
fluid. We deal with the latter case first.

2.1. Two-dimensional shear-thinning, extensional flow

We consider a Herschel-Bulkley fluid that is pumped
into the cell with fluxQ through a central hole of radius rv.
The cell has thicknessH. The constitutive law contains the

consistency factor K, power-law index n and yield stress
τY. We write the governing equations in dimensionless
form, using the characteristic scale L = rv to scale lengths,
a velocity scale V = Q/(2πLH), timescale L/V and stress
scale K(V/L)n. In the inertialess limit, force balance and
incompressibility then demand

pr =
1

r2
∂

∂r
(r2τrr) +

1

r

∂τrθ
∂ϑ

, (1)

pϑ =
1

r

∂

∂r
(r2τrθ) +

∂τθθ
∂ϑ

(2)

and

(ru)r + vϑ = 0, (3)

where p and {τrr, τrθ, τθθ} denote the pressure and devi-
atoric stress components, and (u, v) is the velocity field.
Assuming that the fluid always remains yielded as it is
driven through the cell (demanding τrr

2 + τrθ
2 > Bi2), the

constitutive law can be written as

[τrr, τrθ] =

(
γ̇n−1 +

Bi

γ̇

)
[2ur, (uϑ − v)/r + vr], (4)

where

γ̇ =
√

4u2r + [(uϑ − v)/r + vr]2 (5)

and the Bingham number is

Bi =
τYLn

KVn
. (6)

The outer radius of the fluid is given by r = R(ϑ, t). Here,
the kinematic and stress conditions demand

Rt +
v

R
Rϑ = u, (7)

(
1 +

R2
ϑ

R2

)
p−

(
1− R2

ϑ

R2

)
τrr + 2

Rϑ
R
τrθ = 0 (8)

and (
1− R2

ϑ

R2

)
τrθ + 2

Rϑ
R
τrr = 0, (9)

in the absence of any interfacial tension or forces exerted
by the adjacent fluid.

2.1.1. Stability theory

When the flow remains axisymmetrical, a base outflow
is established with

u =
1

r
, R =

√
1 + 2t, γ̇ =

2

r2
, τrr = −Bi− 2n

r2n
,

(10)

p = 2Bi ln

(
R

r

)
− Bi +

2n

n
(1− n)r−2n − 2n

n
R−2n. (11)

Along the lines summarized by Sayag & Worster, we
may analyze the linear stability of this state towards non-
axisymmetrical disturbances with azimuthal wavenumber
m. The perturbations to the solution in (10)–(11), which
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Figure 1: Instantaneous (a,b) growth rates G(t) and (c,d) amplification factors A(t) for m = 2, 3, 4 ..., 10 and Bi = 0 (a,c) and Bi = 1 (b,d);
n = 0.4. The insets in (a,b) replot the data for G(t) against mt, which aligns the windows of instability (Sayag & Worster).
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Figure 2: Maximum amplification factors Amax over 0 < t < 100
against Bi for m = 2, 3, ..., 6. (n = 0.4)

we denote by adding a hat decoration and with dependence
eimϑ, satisfy the relations,

∂

∂r
(τ̂rr − p̂) +

2

r
τ̂rr +

1

r

∂τ̂rθ
∂ϑ

= 0,

∂

∂r

(
r2
∂τ̂rθ
∂ϑ

)
+m2r(τ̂rr + p̂) = 0,

ûr +
1

r
û+

v̂ϑ
r

= 0,(
v̂ϑ
r

)
r

− 1

rµ

∂τ̂rθ
∂ϑ
− m2

r2
û = 0, (12)

with

µ = 2n−1r2−2n+ 1
2r

2Bi, τ̂rr = −2nnr1−2n
(
û+ r

v̂ϑ
r

)
.

(13)

The boundary conditions are û(1, ϑ, t) = v̂ϑ(1, ϑ, t) = 0
(fixed inflow at the vent), and

τ̂rr − p̂+
2

r
R̂

(
2n

r2n
+ Bi

)
= 0 (14)

and

r
∂τ̂rθ
∂ϑ

+ 2m2R̂

(
2n

r2n
+ Bi

)
= 0 (15)

at r =
√

1 + 2t (the unperturbed outer radius).
As in conventional Stokes problems, the system dynam-

ics enters only through the motion of the boundary; i.e.
the interface r = R(ϑ, t)→

√
1 + 2t+R̂(t)eimϑ. The equa-

tions for the linear perturbations can therefore be solved
as a spatial problem at each moment in time, with the
solution being proportional to R̂(t). The result can then
be fed into the kinematic condition, R̂t = û, to define an
instantaneous growth rate G(t) = R̂t/R̂. Evidently,

R̂(t) = R̂(0) exp

[∫ t

0

G(t̂)dt̂

]
≡ A(t)R̂(0), (16)

where the amplification factor A(t) can be evaluated at
some nominal time to furnish a convenient measure of the
strength of instability.

Figure 1 displays numerical solutions to the linear sta-
bility problem for m = 2, 3, ..., 10, using the rheological
parameter settings n = 0.4 and Bi = 0 or 1 (such val-
ues are guided by the experiments conducted in §3, which
use a Carbopol solution with that shear-thinning exponent
and operating conditions corresponding to Bi = O(1)). As
found by Sayag & Worster, each azimuthal wavenumber
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Figure 3: Instantaneous growth rates for the m = 1 mode with the
values of Bi indicated, as well as the Bi� 1 limit. (n = 0.4)

passes through an interval over which the instantaneous
growth rate is positive, implying mode growth. However,
as indicated by the growth factor A(t), for Bi = 0 the ac-
tual degree of amplification is small, with only the m = 2
mode amplifying above the initial value over its window
of instability, and damping over longer times suppressing
every mode. Modes grow slightly more significantly with
Bi = 1, although the overall picture is much the same.
This is emphasized further in figure 2, which shows the
maximum possible amplification factor for a selection of
modes as a function of Bi. Note that, as observed by Sayag
& Worster, the instantaneous growth rate G(t) collapses
to a common form for the higher-order modes (m � 1)
when plotted against mt, implying significant limitations
on the corresponding amplification factor A(t).

At least with these choices for the rheological parame-
ters, the extensional flow instability therefore seems rather
weak, particularly in the limit of a power-law fluid (Bi =
0). The inclusion of surface tension likely suppresses the
instability yet further, especially at high wavenumber. The
m = 1 mode is, however, different: this mode remains un-
stable over a relatively long interval (see figure 3), sufficient
to permit a substantial amount of amplification. Neverthe-
less, as this mode corresponds mostly to a sideways shift of
the expanding fluid column, the instability is not expected
to generate a pattern with the form of multiple “fingers”.

For large yield stress (Bi� 1), we may solve the linear
stability problem analytically: from (13) we observe that
τ̂rr remains O(1), whilst p̂ and τ̂rθ must both become O(Bi)
in order to balance the largest terms in (12) and (15).
Thus, the first two relations in (12) decouple from the
others and imply that

p̂ ∼ 2

r
Bi(cos Θ+Γ sin Θ) &

∂τ̂rθ
∂ϑ
∼ −2

r
m2Bi cos Θ,

(17)
in view of the leading-order boundary conditions, where

Θ = Γ log

√
1 + 2t

r
, Γ =

√
m2 − 1. (18)

These relations can be substituted back into the remain-

der of (12) and (13) to find û. After a little algebra, the
kinematic condition then furnishes the handy result,

R̂−1
dR̂

dt
= G(t) ∼ 1

Γ
sin[Γ log(1 + 2t)]− cos[Γ log(1 + 2t)].

(19)
For m � 1 and t � 1, we find G → − cos(2mt), which is
analogous to a result provided by Sayag & Worster in the
limit n � 1 for a power-law fluid. However, the result in
(19) applies for all wavenumbers and times. The progress
of numerically computed growth rates to the Bi� 1 limit
is illustrated in figure 4 for modes with m = 4. The limit
in (19) has a curious oscillatory structure, explored in de-
tail by Sayag & Worster. The repeated intervals with posi-
tive growth rate highlight how the instability is potentially
more powerful in the perfectly plastic limit. Nevertheless,
the m = 1 mode still dominates over longer times, with
the growth rate actually growing logarithmically with t:
G(t) ∼ log(1 + 2t)− 1 (cf. figure 3).

2.2. Viscoplastic Hele-Shaw flow

2.2.1. Reduced model

Following classical theory for a Hele-Shaw cell [25], the
slot-averaged flux q satisfies

∇ · q = 0, q = −Q(S; Bi, n)

S
∇p, (20)

where S = |∇p|, the in-plane gradient operator is ∇, and
the flux function,

Q =
1

n+ 1
(1− Y )

1+1/n
+ (n+ 1 + nY )S1/n, (21)

with

Y =
Bi

S
, (1− Y )+ ≡ Max(1− Y, 0). (22)

The scaling leading to this dimensionless model is pro-
vided by scaling pressure p by 12µ∗VL/H2, and the devi-
atoric stress components by 6µ∗V/H, where µ∗ = 1

3K(2 +
1
n )n (2V/H)

n−1
. The dimensionless yield stress, or Bing-

ham number, is

Bi =
τYH
6µ∗V

. (23)

The key difference with the two-dimensional theory of §2.1
is that the shear stresses across the slot provide the main
resistance to the flow driven by the pressure gradient, es-
tablishing a characteristic flow profile across the gap. Pro-
vided Y < 1, that profile consists of fully sheared layers
adjacent to the walls of the cell, sandwiching a central
plug-like flow over −Y < z < Y ; if Y reaches unity (the
dimensionless wall position), the plug-like layer fills the
gap to form a rigid blockage.

The flux-pressure-gradient relation (21) is illustrated in
figure 5 and has two key limits: for Bi → 0, Q → S1/n,
corresponding to the limit of a power-law fluid; if, addi-
tionally, n = 1, Q → S and (20) reduces to Laplace’s
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Figure 4: Instantaneous growth rates for the m = 4 mode with the values of Bi indicated. The (red) line marked Bi� 1 shows the prediction
(19). (n = 0.4)

equation, in the usual manner of viscous Hele-Shaw flow.
For Bi � 1, Q → (2n + 1)(1 − Y )1+1/nBi1/n/(n + 1),
which demands that S = O(Bi) and Y → 1. This limit
corresponds to a perfectly plastic material with a specific
sliding law applying at the walls dictated by the yielded
boundary layers that remain there.

Experimentally, one can conveniently set up a configura-
tion susceptible to Saffman-Taylor fingering by first pump-
ing viscoplastic fluid within the cell, and then switching
the feeder tube to pump in a second Newtonian fluid. This
creates an expanding annulus of viscoplastic fluid for which
the inner edge may lose axisymmetry and develop fingers
(cf. [26]). To explore this situation theoretically, we there-
fore consider an annular region contained between inner
and outer edges located at r = R

I
(ϑ, t) and r = R

O
(ϑ, t),

satisfying the kinematic conditions,(
∂

∂t
+

q · ϑ̂
r

∂

∂ϑ

)
R = q · r̂ at r = R = R

I
or R

O
.

(24)
We can also set up another arrangement to study the vis-

coplastic version of Saffman-Taylor fingering by extracting
a disk of yield stress fluid from the cell, with either air or
another Newtonian fluid with relatively small viscosity on
the outside. For a given flux and at comparable radii, the
instantaneous growth rate of disturbances to the unstable
interface is not expected to be very different in the two
situations. However, in the first case, in which the inner
interface is expanding and expected to be unstable, the an-
gular stress of the yield-stress fluid is tensile. Conversely,
for the extraction problem, the unstable outer interface
has an compressive angular stress. We return later to this
important difference.

2.2.2. Stability theory for axisymmetrical flow

When the net dimensionless flux is constant and equal
to 2π, an axisymmetrical flow is possible, driven by a lo-
cal radial pressure gradient, S → S(r, t), satisfying the
algebraic relation,

1

r
= Q(S;n,Bi). (25)

For an expanding annulus, the flux is directed outwards
and the pressure gradient is negative. The corresponding
circular fluid edges are

R
I
(t) =

√
1 + 2t ≡ R

I
(t),

R
O

(t) =
√
R2

A
+ 2t ≡ R

O
(t), (26)

where R
A

is the initial outer radius. For an extracted disk,
the flux is directed inwards and the background pressure
gradient is positive; the single interface is at

r = R(t) =
√
R2

A
− 2t, (27)

where R
A

now denotes its initial position. If we neglect
the pressure of the ambient fluid beyond r = R

O
(ϑ, t) or

r = R(ϑ, t) then the base pressure distribution is

P(r, t) =

∫ R
O

r

S(r̃)dr̃ or −
∫ R
r

S(r̃)dr̃. (28)

Linear perturbations to this state, with dependence eimϑ

and a pressure distinguished by a hat decoration, satisfy

(rQ′p̂r)r =
m2p̂

rS
Q(S;n,Bi)→ m2p̂

r2S
, (29)

where

Q′ =
1

r

[
(n+ 1)

(n+ 1)S + nBi
+

(n+ 1)

n(S − Bi)
− 2

S

]
. (30)

2.2.3. An expanding viscoplastic annulus

When a Newtonian fluid with relatively small viscosity is
pumped into an annulus of viscoplastic fluid, the pressure
within the inner interface is almost uniform in space but
adjusts in time so that the net flux through the cell is fixed.
To see this in detail, we first solve Laplace’s equation for
the pressure perturbation in 1 < r < R

I
, applying a fixed

influx condition at the vent r = 1 (using the radius of
that orifice in the scaling of the problem): p̂r(1, t) = 0.
To first order in the perturbations, this gives the pressure
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distribution,

p(r, t) = P(R
I
, t)+

µ

µ∗
log

(
R

I

r

)
+
rm + r−m

Rm
I

+R−m
I

p̂in(t)eimϑ,

(31)
if µ is the viscosity of the Newtonian fluid, and given that
the scaling of the problem implies the local flux-pressure-
gradient relation S = (µ/µ∗)Q. Here, p̂in(t) is the am-
plitude of the pressure perturbation at r = R

I
. Matching

pressures and the radial velocity at the inner interface (but
expanding all quantities about the unperturbed position)
now demands that

p̂(R
I
, t) =

[
S(R

I
, t)− µ

µ∗
R−1

I

]
R̂

I
(t)eimϑ + p̂ineimϑ.

(32)
and

[Q′p̂r]r=R
I

=
µ∗
µ

m(R2m
I
− 1)

R
I
(R2m

I
+ 1)

p̂ineimϑ. (33)

where R̂
I
eimϑ denotes the perturbation to the edge posi-

tion. Eliminating p̂in(t) leads to the boundary condition,

p̂(R
I
, t) =

[
S(R

I
, t)− µ

µ∗
R−1

I

]
R̂

I
(t)eimϑ

+ [Q′p̂r]r=R
I

µ

µ∗

R
I
(R2m

I
+ 1)

m(R2m
I
− 1)

. (34)

As long as m 6= 0, we may therefore impose p̂ =
SR̂

I
(t)eimϑ at r = R

I
when µ� µ∗.

Likewise, at the outer edge, we assume that the pres-
sure is held at that of the ambient fluid (which we again
neglect): p = 0 at r = R

O
. The linearization again implies

that p̂ − SR̂
O
eimϑ = 0 at r = R

O
, where R̂

O
eimϑ is the

shift of the outer edge.
We may therefore find two solutions to (29), p̂I (r, t)eimϑ

and p̂O (r, t)eimϑ, satisfying the conditions,

p̂I =

{
S at r = R

I

0 at r = R
O

, p̂O =

{
0 at r = R

I

S at r = R
O

.

(35)
Writing the edge perturbations as R̂

I
eimϑ and R̂

O
eimϑ,

the desired linear solution is then,

p̂ = [R̂
I
(t)p̂I (r, t) + R̂

O
(t)p̂O (r, t)]eimϑ.

The linearizations of the kinematic conditions now furnish
the system

dR̂
I

dt
= −

[
(Q′p̂I

r + r−2)R̂
I

+Q′p̂O
r R̂O

]
r=R

I

, (36)

dR̂
O

dt
= −

[
Q′p̂I

rR̂I
+ (Q′p̂O

r + r−2)R̂
O

]
r=R

O

. (37)

2.2.4. Extraction of a viscoplastic disk

For the extraction problem, the theoretical description
is simpler: we write r = R(ϑ, t) = R(t) + R̂(t)eimϑ and
p̂ = p̂A(r, t)R̂(t)eimϑ for the disturbed interface position
and pressure. The linear perturbations satisfy (29) subject
to the boundary conditions,

p̂A
r (1) = 0 & p̂A(R, t) = −S(R), (38)

which correspond to specifying the extracted flux at the
vent r = 1 and fixing the ambient pressure. The lin-
earized kinematic condition then provides the instanta-
neous growth rate,

R̂−1
dR̂

dt
= −[Q′p̂A

r ]r=R −
1

R2
. (39)

2.2.5. Interfacial tension effects

Interfacial tension (which is often incorporated in order
to regularize Saffman-Taylor instability for immiscible flu-
ids) can be included in this analysis simply by replacing
S in the two relations in (35) by S(R

I
)− κ

I
(m2 − 1)/R2

I

and S(R
O

) + κ
O

(m2 − 1)/R2
O

, where κ
I

and κ
O

are di-
mensionless parameters given by the interfacial tensions,
γ

I
and γ

O
:

(κ
I
, κ

O
) =

H2

12µ∗VL2
(γ

I
, γ

O
). (40)

Similarly, in (38), we replace S(R) with S(R) − (m2 −
1)κ/R2 for another interfacial tension parameter κ.

2.2.6. Planar instability

We may recover the viscoplastic version of the Saffman-
Taylor instability for a single planar interface from (29)
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by switching radial derivatives for Cartesian ones on the
left-hand side, r−1(rQ′p̂r)r → Q′p̂xx, and introducing the
planar transverse wavenumber ` ≡ m/r on the right. The
interface, now at x = X +X̂(t)ei`y, travels at a fixed speed
Q under a constant pressure gradient of magnitude S in
the absence of the transverse perturbations with amplitude
X̂(t). We take the viscoplastic fluid to lie to the left of the
interface; when that fluid is advancing, the interface moves
to the right with a speed Q and the pressure gradient is
−S; in retreat, the interface moves left with speed −Q
under a pressure gradient S. Thence,

p̂xx =
`2Q

SQ′
p̂, (41)

or

p̂ = −(σS − κ`2)X̂ exp

(
i`y + |`|

√
Q

SQ′
|x−X|

)
, (42)

after linearizing about the undisturbed position of the in-
terface, x = X , given that the pressure condition there
becomes p̂ + σSX̂ei`y = κ`2X̂ei`y, where κ is again a di-
mensionless surface tension and σ = ∓1 distinguishes the
cases of an advancing or retreating interface (i.e. indi-
cates the sense of the background pressure gradient). The
linearized kinematic condition, X̂t = −Q′p̂x, now gives

X̂t = |`|
√
QQ′

S
(σS − κ`2)X̂. (43)

The retreating interface is therefore unstable to trans-
verse perturbations with wavenumbers |`| <

√
S/κ, with

the wavelength of maximum growth given by 2π/` =
2π
√

3κ/S. Notably, because one must exceed a thresh-
old pressure gradient for force flow, S remains finite for
Q → 0, and so the most unstable wavelength remains fi-
nite in the limit that the flow rate ceases (for finite in-
terfacial tension), in contrast to the viscous version of the
problem (cf. [7, 8]). In particular, in dimensional terms
and the perfectly plastic limit (S → Bi), the most unsta-
ble wavelength is 2πL

√
3κ/Bi = π

√
6Hγ/τY. Note that

the growth rate implied by (43) is a little different from
that presented by [7] because we avoid any approximation
of the flux-pressure-gradient relation in (21) (similarly the
results for radial flow, when restricted to the case of a
single interface, are also different from those presented by
both [7] and [11]).

2.2.7. Instability in the Newtonian limit

For a Newtonian annulus, the two solutions p̂I and p̂O

are built from the two independent solutions, r±m, to

Laplace’s equation, leading to

dR̂
I

dt
=

m(R2m
I

+R2m
O

)

R2
I
(R2m

O
−R2m

I
)R̂

I

− R̂
I

R2
I

−
2mRm−1

I
Rm−1

O
R̂

O

R2m
O
−R2m

I

,

(44)

dR̂
O

dt
=
R̂

O

R2
O

−
m(R2m

O
+R2m

I
)R̂

O

R2
O

(R2m
O
−R2m

I
)

+
2mRm−1

I
Rm−1

O
R̂

I

R2m
O
−R2m

I

.

(45)

When R
O
� R

I
, the two equations decouple and

dR̂
I

dt
=

(m− 1)R̂
I

R2
I

&
dR̂

O

dt
= − (m+ 1)R̂

O

R2
O

,

(46)
which demonstrates the instability of the inner edge (with
instantaneous growth rate (m− 1)/R2

I
), and the stability

of the outer edge. Conversely, for a thin annulus with
R

O
−R

I
� 1, we find

d

dt
(R̂

O
+ R̂

I
) ∼ − 2

R
O

(R
O
−R

I
)
(R̂

O
− R̂

I
)

d

dt
(R̂

O
− R̂

I
) ∼ −m

2 − 1

2R3
O

(R
O
−R

I
)(R̂

O
+ R̂

I
), (47)

implying an instantaneous growth rate,
√

(m2 − 1)/R2
O

.
In the extraction of a Newtonian disk, on the other

hand, the pressure solution is given by p̂ = −(rm +
r−m)R̂eimϑ/[R(Rm+R−m

O
)], leading to the instantaneous

growth rate,

R̂−1
dR̂

dt
=

(m− 1)R2m −m− 1)

R2(R2m + 1)
. (48)

If we set R � 1 (corresponding to a relatively small vent)
and then include surface tension, we find a growth rate,
(m− 1)[1−m(m+ 1)κ/R]/R2, which recovers results de-
rived by Wilson [4] (in the limit µ � µs) and Paterson
[2].

2.2.8. Large yield stress

In the opposite limit of large yield stress,

S → Bi +

[
(n+ 1)Bi

(2n+ 1)r

]n/(n+1)

(49)

and

Q′ → n+ 1

nr1/(n+1)

[
(2n+ 1)

(n+ 1)Bi

]n/(n+1)

, (50)

leading to[
rn/(n+1)p̂r

]
r
∼ nm2p̂

r2[(n+ 1)(2n+ 1)nBi]1/(n+1)
. (51)

Since the right-hand side of (51) is O(Bi−1/(n+1)), we
may neglect it to arrive at the two limiting solutions to
the annulus problem,

(p̂I , p̂O )→
Bi(R1/(n+1)

O
− r1/(n+1), r1/(n+1) −R1/(n+1)

I
)

R1/(n+1)
O −R1/(n+1)

I

.

(52)
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Figure 6: Numerical solutions for an expanding annulus, showing (a) R̂I (t) and (b) R̂O (t) for m = 1, 2, ..., 7, starting from the initial

conditions R̂I (0) = 1 and R̂O (0) = 0, with Bi = 0.42 (blue, solid lines) and Bi = 0 (red dotted lines), and n = 0.4. Times are shown in
seconds, taking H = 1.7mm, Q = 20ml/min, and L = rv = 5mm (typical experimental parameters of §3). Interfacial tension is included,
assuming κI = κO = 0.07. The inset in (b) shows a snapshot of the final state, assuming that the different modes in m are linearly superposed
and all initialized with amplitudes of O(10−8L) and random phases.

Hence,

R
I

dR̂
I

dt
∼ R

O

dR̂
O

dt

∼ (2n+ 1)n/(n+1)Bi1/(n+1)(R̂
I
− R̂

O
)

n(n+ 1)n/(n+1)
[
R1/(n+1)

O −R1/(n+1)
I

] . (53)

The modulation in the thickness of the annulus therefore
amplifies with an instantaneous growth rate,

(R̂
O
− R̂

I
)−1

d

dt
(R̂

O
− R̂

I
) ∼

(2n+ 1)n/(n+1)Bi1/(n+1)(R
O
−R

I
)

n(n+ 1)n/(n+1)R
I
R

O

[
R1/(n+1)

O −R1/(n+1)
I

] , (54)

which is independent of m. Evidently, the amplification
increases with Bi, in line with the notion that the insta-
bility grows stronger for a larger effective viscosity con-
trast across the inner interface. The neglect of the final
term in (34) is, however, suspicious in this limit because

Q′p̂r = O(Bi1/(n+1)).
For the extracted disk, we must work further with (51),

evaluating the right-hand side perturbatively. We find

p̂ ∼ −Bi− nm2(nr + 1)

n+ 1

[
(n+ 1)Bi

(2n+ 1)r

]n/(n+1)

. (55)

The instantaneous growth rate is then

R̂−1
dR̂

dt
∼ m2R−2(R− 1), (56)

which is O(1) and dependent on m, but stronger than in
the Newtonian limit (comparing (56) with (48)).

2.2.9. Results for Bi = O(1)

Numerical solutions of (29) for R̂
I
(t) and R̂

O
(t) for an

expanding annulus with n = Bi = 0.42 and m = 1,2, ..., 7
are shown in figure 6, beginning with the initial conditions,
R̂

I
(0) = 1 and R̂

O
(0) = 0. The choices for n and Bi are

values guided by the experiments in §3.1 (cf. figure 8), and
interfacial tension is included at both edges, taking κ

I
=

κ
O

= 0.07 (corresponding to adopting the surface tension
of water for γ

O
and γ

I
). The interfacial tension stabilizes

the higher modes at early time, but this effect declines
as the edges expand and curvatures decreases, until all the
modes begin to grow with rates that increase with m. This
competition leaves the m = 6 mode as the strongest at
the end of the computation, as can be seen in the sample
pattern formed from the seven modes, obtaining from a
linear superposition with equal initial amplitudes of 10−8L
and random angular phases. For comparison, solutions
with Bi = 0 are also shown, which amplify less quickly, in
line the expectations from the analysis of the limit of large
yield stress.

Solutions for an extracted disk are shown in figure
7 for (n,Bi) = (0.4, 0.32) (parameter settings that are
again guided by the experiments of §3.1; figure 8). At
smaller times (larger radii), the effect of interfacial ten-
sion (parametrized here by setting κ = 0.3) is relatively
low, leaving the higher wavenumber modes as the most un-
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(c)

Figure 7: Interface perturbation amplitude R̂(t) for an extracted disk with RA = 20, m = 1, 2, ..., 16, Bi = 0.32, n = 0.4 and κ = 0.3. In

(a), the amplitudes are plotted against time; R̂(t) is plotted against R(t) in (b). The dashed (red) lines show the corresponding results for
Bi = 0. The shape of the interface when the mean radius is about 1

2
RA is shown in (c), assuming a linear superposition of the modes with

random phases and initial amplitudes of 10−5.

stable. That tension grows in importance due to the the
increasing curvature of the interface as the disk shrinks,
gradually stabilizing the higher−m modes and promoting
the importance of the lower angular wavenumbers. The
solutions again confirm that the instability is stronger for
Bi > 0. For the parameters chosen, the most unstable
modes have m = 11 or 12 when the mean radius of the
interface is about half of the initial value.

3. Experiments

Our experiments involved pumping aqueous suspensions
of Carbopol (Ultrez 20, with concentrations of between
0.15-0.45% by weight, and neutralized with sodium hy-
droxide) into or out of a cell made from plexiglass plates.
Spacers between the plates furnishes cells with gaps of
thickness ranging from 1.7mm to 4.3mm. We used fits
to the flow curves obtained from a rheometer (Kinexus
Malvern rheometer fitted with roughened parallel plates)
to estimate suitable parameters of the Herschel-Bulkley
law for the Carbopol solutions.

When the test was aimed at exploring the displacement
of a Newtonian fluid by Carbopol, we pumped the gel into
either an empty cell (so that the Carbopol displaced air),
or first filled the gap with a viscous liquid. When the test
demanded that we displace the gel, we began by pumping
Carbopol into the cell to form a disk with a given radius.
We then either switched the inlet pipe and pumped in a
Newtonian fluid to create an expanding viscoplastic annu-
lus, or reversed the pump to extract the Carbopol. In the
latter tests, we either left the gap empty to study displace-
ment by air, or surrounded the Carbopol with a displacing
viscous liquid.

A first observation is that the Carbopol remains largely
axisymmetrical when pumped into an empty (air-filled)
cell. Evidently, any imperfections in the surfaces and
alignment of the walls are not sufficiently significant to
desymmetrize the flow. Moreover, there is no sign that
effective slip over the plexigass plates precipitates the ex-
tensional flow instability described by Sayag & Worster.

However, when we displace the gel by air, or place wa-
ter next to the Carbopol, a variety of different kinds of
fingering patterns are observed that are not all related to
Saffman-Taylor fingering, as we describe next.

Figure 8: Experiments pumping air into an annulus of Carbopol
(left) or withdrawing a disk of Carbopol surrounded by air. Shown
are snapshots of the unstable interface, colour coded by time, with
the final distribution of Carbopol shown shaded and the vent in-
dicated by a small black disk. (Pump rate Q ≈ 20ml/min; gap
H = 1.7mm; rheology (n, τY,K) = (0.38, 22Pa,13Pa sn).)

3.1. Viscoplastic Saffman-Taylor fingers

The displacement of Carbopol by air provides a conve-
nient illustration of the viscoplastic analogue of classical
Saffman-Taylor fingering. Two versions of this problem are
shown in figure 8. On the left side of the picture, snap-
shots of the evolving, unstable interface are displayed that
result when air is pumped into an annulus of Carbopol;
the interface initially expands axisymmetrically, but then
develops a non-axisymmetrical pattern characterized by
relatively low angular wavenumbers. At the end of the
test, just before the air breaks through the Carbopol into
the surrounding empty cell, the pattern has a dominant
m = 8 component. This relatively weak fingering pat-
tern is suggestive of Saffman-Taylor fingers controlled by
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a relatively strong interfacial tension, as expected theoret-
ically in §2.2.9 (see figure 6). Similar results and patterns
were found when we pumped immiscible Newtonian fluids
into the cell instead of air. In particular, we used mineral
spirits and a paraffin-based lamp oil, with viscosities com-
parable or slightly higher than that of water (about 1 or 2
Pa s, respectively), and tensions at an interface with water
expected to be about half the surface tension of water in
air.

The second experiment, shown on the right side of figure
8, is a test in which a disk of Carbopol in an air-filled cell is
withdrawn through the vent. Again, a finger pattern devel-
ops, this time characterized by angular modes with slightly
higher wavenumber; just before the strongest finger breaks
through to the vent (which occurs when the average radius
is about half the initial one), the mode with m = 12 or so
dominates the pattern. This observation is again consis-
tent with the theoretical expectations of §2.2.9, as shown
in figure 7, although these calculations use a value for the
surface tension parameter κ that is six times larger than
that based on the experimental parameters (assuming the
Carbopol has a surface tension comparable to water).

Similar viscoplastic Saffman-Taylor fingering patterns to
those in figure 8 are presented by [9] for radial displace-
ment tests in thinner Hele-Shaw cells, and by [27, 28, 10]
For in which the plates were pulled apart. However, the
fingering is stronger and more labyrinthian in structure.

Figure 9: Withdrawal of Carbopol from a cell filled with blue-
coloured water. (Pump rate Q ≈ 20ml/min; gap H = 1.7mm;
rheology (n, τY,K) = (0.38, 22Pa,13Pa sn). The images in the top
row show the Saffman-Taylor-like pattern which develops relatively
slowly; the lower images on the right display rapidly propagating
fractures. In the main panel, the interface is plotted at a succession
of times, with the colour representing time; the final distribution of
Carbopol is shown shaded.

3.2. Fracture patterns

3.2.1. In extraction

When we repeat the extraction experiment (i.e. that
on the right side of figure 8) with water filling the cell
around the Carbopol, the water-Carbopol interface ini-
tially evolves much as in the air-displacement test: the
interface shrinks around the vent, then suffers a mild fin-
gering instability characterized by angular wavenumbers
of m = 12 or so; see figure 9. Subsequently, however, a
very different behaviour arises in which some of the con-
cave sections of the interface abruptly tear apart, creating
to what appear to be fractures of the gel across the entire
gap of the Hele-Shaw cell. These fractures then propa-
gate rapidly into the gel at angles close to the azimuthal
direction, rather than radially (the direction in which the
Saffman-Taylor fingers typically break through to the vent
at the end of an air-displacement test). The fractures
thereby disfigure the fingering pattern, severing several
of the Saffman-Taylor fingers and leaving a rather more
complicated looking structure. The locations at which the
fractures first form correspond to the positions along the
interface with greatest concavity; indeed, the fractures ap-
pear to emerge where the interface sharpens almost to a
corner, suggestive of the areas with highest tensile stress.
Thus, with water as the displacing fluid, the extraction
experiment clearly shows a primary, weak Saffman-Taylor-
type instability, followed by a secondary, but strong, tear-
ing instability.

Figure 10: Blue-coloured water pumped into an annulus of (light
green) Carbopol in a cell of thickness 3.3mm, with pump rate Q ≈
40ml/min. (Rheology: n = 0.4, τY = 17Pa, K = 9.8Pa sn).

3.2.2. For a viscoplastic annulus

A similar fracture phenomenon arises when water is
pumped into an annulus of Carbopol rather than air. Fig-
ures 10-12 display three such tests. The experiment in
figure 10 shows the dendritic fracture network that arises
from pumping blue-coloured water into a light-green disk
of Carbopol. In this example, no weak Saffman-Taylor-
like instability appears like that seen on the left of fig-
ure 8. Instead, fractures emerge directly from the vent;
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Figure 11: Blue-coloured water pumped into an annulus of (light
green) Carbopol in a cell with thickness 1.7mm at pump rate Q ≈
10ml/min. (Rheology: n = 0.4, τY = 17Pa, K = 9.8Pa sn).

Figure 12: Blue-coloured water pumped into an annulus of (light
green) Carbopol in a 4.3mm thick cell at pump rate Q ≈ 10ml/min.
(Rheology: n = 0.4, τY = 17Pa, K = 9.8Pa sn).

Figure 13: A collage of final fracture patterns for different fluxes
(10, 20, 40 and 60 ml/min) and gap thicknesses (1.7, 3.3 and 4.3mm).
Pure type-II fracture modes (distinguished by the lighter and broader
blue colours) appear in the top left experiment; type-I modes char-
acterize all the others, with the three tests at the bottom right fea-
turing coexisting type-II fractures. (Rheology: n = 0.4, τY = 17Pa,
K = 9.8Pa sn).

the dendritic pattern forms as the fractures, which propa-
gate in almost straight lines, repeatedly split into two con-
duits of roughly equal size, or spawn multiple smaller side
branches without the main conduit changing direction.
Overall, the invasive pattern is very different from that
in the extraction experiments. The key difference is that

Figure 14: Relative frequency distribution of the angle between split
fractures or side branches, showing the experiment with (Q,H) =
(20ml/min, 1.7mm) and the data set taken from all the experiments
except that particular test.

the expanding Carbopol annulus is in a state of tension
throughout, rather than compression as for the extracted
disk. Tearing under tension is therefore immediately pos-
sible for the expanding annulus, whereas Saffman-Taylor
fingering must develop first for the extracted disk to cre-
ate locally favourable sites along the interface at which to
fracture.

Nevertheless, fractures of this type, in which the gel
tears across the whole gap of the Hele-Shaw cell, are not
the only possibility. The second experiment, shown in fig-
ure 11, displays a second phenomenon: initially a dendritic
fracture pattern starts to emerge, but then a more dif-
fuse and wider mode of invasion appears that at first sight
is more reminiscent of traditional Saffman-Taylor fingers.
The new mode is not, however, a fingering displacement,
but is actually a different form of fracturing: the Carbopol
now fractures off one of the confining plates, rather than
internally across the cell, arising either due to the imposed
normal or shear stresses there. In other words, a second,
boundary mode of fracturing appears. As evident from the
images in the figure, the second mode propagates faster
than the first one, with the more diffuse conduits reaching
the edge of the Carbopol disk first, thereby draining most
of the water pumped into the cell.

Although full-gap fractures characterized many of the
displacements in our experiments, the wall mode could
also emerge by itself. This is illustrated by the final exper-
iment of figure 12, which also corresponds to the cell with
the widest gap. In such cases, it is possible that the gel
fractures primarily off the wall below the Carbopol once
the water is introduced through the feeder pipe attached
to the lower plate, before there is time to tear across the
entire gap. Aside from such cases, full-gap fractures form
earlier than those along the walls, presumably as a result
of higher tensile stress concentrations within the gap. A
summary of the final fracture patterns in a suite of ex-
periments in which we varied both the pumping rate and
cell thickness is shown in figure 13. Mode-I-type fractures
(i.e. tears across the slot) feature in all but the thickest
cells at the lowest fluxes, which exhibit mode-II-type frac-
tures (against the wall). The two fracture modes co-exist
at the highest fluxes in the narrower cells. However, addi-
tional experiments, not shown in this figure (but see fig-
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Figure 15: Snapshots of expanding interfaces every 2 seconds in the slot of thickness 4.3mm with the fluxes shown, and colour coded by time.
(Rheology: n = 0.4, τY = 17Pa, K = 9.8Pa sn).

ure 11), also demonstrated that competing fracture modes
could arise in the narrower cells at low fluxes, obscuring
the conditions favouring each mode. Overall, the num-
ber of fractures increases with the flux, due mostly to an
enhancement in the frequency at which splittings or side
branchings occur, promoting the complexity of the pat-
terns. Another notable feature in figure 13 is that the
width of the conduits created by the fractures is relatively
insensitive to the flux, but does depend on the gap thick-
ness. All that said, apart from a difference in scale, the
patterns are similar along diagonals in the figure.

Measurements of the angles formed when fractures split
or side branches appear are shown in figure 14. Each of the
tests in figure 13 shows little discernible differences in these
angle distributions (the figure compares the measured an-
gles for one of the tests with the corresponding data for all
the others), reflecting how the underlying process is insen-
sitive to the flow rate and cell geometry. The distributions
show little structure other than a broad peak around 75 de-
grees and a standard deviation of 20 degrees, over a range
from 30 to 120 degrees. This phenomenology is different
from that observed in [20] for Hele-Shaw displacement ex-
periments with a colloidal gel, where “visco-elastic” frac-
ture patterns were observed with splitting angles close to
90 degrees.

Additional details of the evolution of the fracture pat-
terns in a subset of the tests (those in the widest cell) are
shown in figure 15. Once a fracture appears, the surround-
ing Carbopol becomes largely arrested, with fluid motion
primarily taking place at the fracture tip. The tips of the
main fractures advance at roughly constant rate, as seen by
the regular spacing of the snapshots of the interface, taken
every two seconds. Most of the side branches quickly stop
progressing to form dead-ended conduits.

The conduits displayed in figure 15 also maintain a fairly
uniform width along their lengths, except at the junctions
where the fractures divide. This feature is brought out
in more detail in figure 16, which illustrates how conduit
widths vary with radial position from the vent for the final
patterns of the tests with pure mode-I fractures in figure

13. For simplicity, the widths are extracted by consider-
ing the intersections of the fractures with circular arcs (see
panel (a)) and so the measured widths are not strictly per-
pendicular to the conduits. However, the measurements
are then averaged over all the fractures to remove any ori-
entation effects, and then plotted against radius (panel
(b)). The roughly constant width of the conduit is then
evidenced, leading us to take the mean over the radial po-
sitions shown in (b). We then plot the result against gap
thickness H in panel (c), bringing out how the conduit
width depends on cell geometry (but not flux). In partic-
ular, the width appears to be roughly proportional to H,
as in immiscible viscous fingering regularized by surface
tension (see §2.2.7 and [2]), or miscible viscous fingering
and viscoelastic fracture [3, 18] (although the constant of
proportionality looks somewhat different, being closer to
4 there), but unlike linear viscoplastic Saffman-Taylor in-
stability (see §2.2.6 and [7, 8]).

If the fractures open up into conduits of constant width
proportional to H, the constant flux imposed in the ex-
periments demands that the tips must advance linearly
in time, as suggested by the uniformly spaced interface
snapshots of figure 15. Further evidence for this feature
(save for a short transient at early times, and a final phase
where the fractures approach the outer edge of the Car-
bopol) is shown in figure 16(d), which plots the maximum
radial extent of the fracture pattern against time. The
time required for the pattern to reach a fixed radial posi-
tion should therefore depend on the combination Q/H2, as
seen in panel (e), in which the data for the time to reach
a fixed radial position are largely collapsed.

3.2.3. For an interface stable against Saffman-Taylor

Finally, we revisit the problem in which we pump Car-
bopol into the Hele-Shaw cell, but this time filling the
gap with water. The Saffman-Taylor instability is not ex-
pected to operate in this setting. However, the interface is
in a state of expansion, and therefore tension, which po-
tentially sets the stage for fractures to appear. Indeed, as
shown by the example in figure 17, the cracks spanning the
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Figure 16: Measurements of conduit width for the final patterns of
the tests in figure 13 with pure mode-I fractures. These are ex-
tracted by considering the intersection of the fractures with circular
arcs (discounting conduits less than about 0.2mm wide; panel (a)).
The average width over all the fractures is plotted against radial
position from the vent in (b), and then averaged again over radius
and plotted against gap thickness in (c). The inset of (c) replots
the data, scaling the averaged width by gap thickness H. In (d), we
show the maximum radial advance of the fractures against time for
the various tests. The symbol convention used to plot all the data is
shown by the legend in this panel. Finally, in (e), we plot the time
taken for the fractures to first reach a radius of 9cm against the flux;
the inset replots this data against Q/H2.

cell do appear at the interface. These features destroy the
axisymmetry of the interface, but remain relatively local-
ized and expand in step with the interface. This results in
relatively weak pattern of instability. Note that, in these
experiments, to ensure that the interface was circular at
the outset of the test, we first pumped a small amount of
Carbopol into an empty cell (to a radius of about a cen-
timetre), then poured the water into the rest of the cell
around the emplaced disk. We also used suspensions with
a wider range of Carbopol concentrations; table 1 lists the
parameters of the Herschel-Bulkley fits (we use the yield
stress as a convenient label for each).

As illustrated in figures 18 and 19, the degree of non-
axisymmetry in the fracture pattern depends on the Car-
bopol concentration and flux. To quantify this feature,
we first observe that the average radius Rav of the in-
terface grows with the pumped volume as though it were
largely axisymmetric (figure 18(b)). Moreover, the dif-
ference between the maximum and minimum radii, Rmax
and Rmin, scales approximately with Rav after an initial
transient (figure 18(c-d)). Thus we formulate the aver-
age 〈(Rmax − Rmin)/Rav〉, for volumes over the range,
10 < V < 60ml. This diagnostic is plotted against τY
and Q in figure 20; additional experiments in cells with
different gap width are also shown. Evidently, the im-
plied strength of the pattern decreases with yield stress
and flux, and increases with the gap thickness. The scal-

τY (Pa) 51 45 39 35 30 21 8
K (Pa sn) 29 25 24 23 20 12 6

n 0.38 0.38 0.37 0.36 0.36 0.39 0.41

Table 1: Herschel-Bulkley fits for the different Carbopol concentra-
tions used in the tests of §3.2.3.

ing of Rmax and Rmin with Rav suggests that the fracture
patterns may evolve into a self-similar form; some addi-
tional evidence for this is provided in figures 18 and 19,
which replots the snapshots of the interface after scaling
distance by the maximum radius.

Figure 20 also plots the number of clearly identifiable
fractures at the end of the tests, which indicates the typical
spacing of these features given that a comparable amount
of Carbopol was pumped into the cell each time. The frac-
ture spacing is insensitive to the Carbopol concentration,
but certainly decreases as the flux is increased or the gap
reduced (cf. figures 18 and 19; note that the smaller corru-
gations evident in the first set of interfaces in figure 19 are
not the result of independent fractures, but are the corners
of the four primary cracks that become swept sideways by
the radial expansion).

A more insidious effect is provided by the plates of the
cell themselves: for the most part we used smooth plexi-
glass for the cell. However, in view of the likely presence
of wall slip, we also performed tests with plates that were
roughened with sandpaper to reduce any effective sliding.
A comparison between tests in smooth and roughened cells
is shown in figure 17. The cracks spanning the smooth cell
open further in radius and are more numerous around the
interface. This suggests that there is an additional contain-
ment effect for roughened walls, limiting the development
of the fractures, that perhaps results from the elimination
of wall slip.

One interesting feature brought out by the plots of the
interface at successive instants in figures 18 and 19 is the
fractures sometimes isolate almost straight pieces of the
interface that become advected out radially without any
change of shape. As these sections, and the adjoining,
apparently unyielded material, separate from one another
under the radial expansion, fresh fluid flows into the gaps,
creating distinctive, petal-like structures. The relatively
regular spacing of the fracture then lends a flower-like ap-
pearance to the fracture pattern.

We close by briefly comparing the Carbopol tests with
an experiment with a different viscoplastic fluid: joint
compound (a commercially available, kaolin-based mate-
rial) diluted with water to a concentration where the yield
stress is about 50 Pa. Pumping this fluid into an empty
Hele-Shaw cell again generates a smooth, axisymmetrically
expanding interface. But with water in the cell, the inter-
face rapidly develops a fracture pattern somewhat like in
the Carbopol tests; see figure 21. However, for this ma-
terial the interface appears to have very little integrity,
breaking up due to the creation of many fine cracks and
developing a rougher appearance. Larger V-shaped cracks
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Figure 17: Carbopol (with yield stress 51Pa) pumped into water in a 4.3mm thick cell at pump rate Q ' 20ml/min. On the left of each
snapshot, the cell has smooth plexiglass walls; on the right, the walls have been roughened with 60-grit sandpaper.

Figure 18: Carbopol with the yield stresses indicated pumped into a 4.3mm thick cell at pump rate Q ' 20ml/min. (a) shows snapshots
of the interface, equally spaced and coloured by time (with distance measured in cm); the lower plots show the interfaces rescaled by the
maximum radius, eliminating the first few to remove the initial transient. On the right, we plot (b) average radius Rav , (c) the difference in
maximum and minimum radii Rmax − Rmin and (d) the scaled different (Rmax − Rmin)/Rav , all coloured by τY. The dashed line in (b)

shows the expected radius with axisymmetry: Rav =
√
L2 + V/(πH) if L is the initial radius.

subsequently develop from some of the fine structure, giv-
ing the pattern another flower-like shape. Again, there is
evidence for self-similarity: the last images on the right of
figure 21 are plotted with an expanding scale (as evidence
from the grid on the paper backing to the cell).

Note that the opacity of the joint compound permits us
to look for any residual layers of (dyed) water attached
to the walls of the cell left behind by the displacing vis-
coplastic fluid. Such observations do indeed reveal thin
layers of water buffering the cell wall near the advancing
interface. However, these layers are not wide and appear
to end at a water line, implying the joint compound largely
displaces the water from the surface. Tests in which Car-
bopol displaced dark ink showed the same feature. Thus,
there appears to be little additional lubrication of the vis-
coplastic fluids at the plates due to residual wall layers of
water.

4. Discussion

In this paper, we have summarized the theoretical anal-
ysis of two instabilities that may operate in radial displace-
ments of viscoplastic fluids in Hele-Shaw cells. The first is
a recently proposed extensional flow instability that arises
in two-dimensional shear-thinning fluids [14, 15]. With
the possibility of substantial affective slip, the latter may
become relevant in a Hele-Shaw cell. We generalized the
linear stability theory for this problem to the Herschel-
Bulkley model, thereby incorporating a yield stress and
examining the perfectly plastic limit. An important find-
ing of our analysis is that the extensional flow instability
is relatively weak, with fairly extreme shear thinning or
highly plastic behaviour required to observe its effect in
a Hele-Shaw cell, even when the fluid is allowed to slide
freely over the walls.
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Figure 19: Carbopol with yield stress 51Pa pumped into a 4.3mm
thick cell at the fluxes indicated. Shown are snapshots of the inter-
face, equally spaced in the amount of pumped fluid, and coloured
by time (with distance measured in cm); the lower plots show the
interfaces rescaled by the maximum radius, eliminating the first few
to remove the initial transient.
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Figure 20: The average scaled radial difference, 〈(Rmax −
Rmin)/Rav〉, for 10 < V < 60ml, and number of fractures plot-
ted against (a) τY (for Q = 10ml/min, H = 4.3mm), (b) Q (for
τY = 51Pa, H = 4.3 mm) and (c)H (for Q = 10ml/min, τY = 51Pa).

The second instability is classical Saffman-Taylor finger-
ing, as modified by a yield stress and examined previously
by Coussot [7]. In this case, we delved into further details
of the stability problem, considering two specific problems
involving radial displacements and again studying the per-
fectly plastic limit.

Our theoretical discussion complements a variety of lab-
oratory experiments conducted with aqueous suspensions
of Carbopol displacing or displaced by either air or water.
The viscoplastic version of the Saffman-Taylor instability
is observed when air is pumped into a cell filled with Car-
bopol, or when a disk of Carbopol emplaced in the cell is
withdrawn. For the former experiments, theoretical pre-
dictions appear to be in fair agreement with experimental
observations: the most unstable angular wavenumber is
roughly consistent with the patterns observed (assuming

interfacial tensions to be comparable to the surface tension
of water). Curiously, for the extraction problem, the com-
parison is less satisfying, with the linear stability theory
predicting higher wavenumbers that seen experimentally.
Similar discrepancies were observed by Derks et al. [28] in
plate-separation experiments.

Both experiments show dramatic differences when per-
formed with water as the second fluid: in the extraction
experiment, a similar viscoplastic Saffman-Taylor instabil-
ity is observed initially. Although the angular wavenum-
bers are slightly higher than for air displacement, they are
not significantly so, which is surprising in view of the fact
that the two fluids are now miscible. Interfacial tension
effects are therefore minimal, and so the most unstable
wavelengths are expected to scale down to the thickness of
the cell [3]. This surprise is compounded by a secondary
instability that appears when the finger pattern has devel-
oped sufficiently to create concave sections of the interface.
The tension generated over these pieces of the interface
then causes the Carbopol to fracture; the cracks rapidly
propagate in an almost angular direction, severing fingers
and disfiguring the pattern.

In the experiments in which water is pumped into a
Carbopol-filled cell, the entire expanding interface is under
tension and the fractures form immediately, supplanting
any Saffman-Taylor fingering. Dendritic fracture patterns
then advance rapidly into the cell. Two types of fractures
are observed: the most common consist of cracks across
the cell, but a second variety can also appear in which the
Carbopol fractures off the cell walls.

The fractures do not occur when other immiscible flu-
ids are used instead of water, with Saffman-Taylor fingers
appearing much like in the air displacement experiments.
Also, the fractures are not sensitive to whether the wa-
ter was distilled, taken directly from a tap, or coloured
with ink. We further added sugar to raise the viscosity
by up to a factor of about ten (and potentially change the
interfacial interaction with the Carbopol), with no qual-
itative effect on the fracturing and a minimal quantita-
tive one. The experiments therefore clearly distinguish
Saffman-Taylor fingering from fracture patterns, and sug-
gest the main property of the second fluid that is required
for the latter is that it is water-based.

When Carbopol was pumped into an air-filled cell, the
interface remained axisymmetrical, as expected from the
absence of the Saffman-Taylor instability in this configura-
tion and our theoretical prediction that the shear-thinning
extensional flow instability was insignificant even under
extreme wall slip. Once more, however, pumping Car-
bopol into a water-filled can lead to non-axisymmetrical
patterns. The culprit was again the fracturing of the ex-
panding interface under tension. In this setting the frac-
tures do not develop strongly but remain localized close to
the interface, becoming effectively contained by the yield
stress of the fluid, the narrow gap and the inability to slide
freely over the cell walls.
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Figure 21: Joint compound with a yield stress of around 50 Pa. On the left, the images have the same scale; on the right, the images are
cropped to bring out the structure of the edge and self-similar evolution (the scale can be judged from the size of the grid on the paper
backing to the cell).
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