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Abstract

The capillary-driven rise between two plates of a yield-stress fluid modelled by the Herschel-Bulkley constitutive law is
considered. For the geometry of a relatively narrow (Hele-Shaw) cell, the mathematical problem simplifies considerably,
the dynamics being captured by a viscoplastic generalization of Darcy’s law. This formulation can be used to determine
the height of rise within a cell with varying gap thickness. In the limit that the gap varies over a wider scale than
the height to which the fluid can rise, the problem reduces to one-dimensional, viscoplastic capillary rise, the solution
of which has been given previously and compared with experiments. More generally, the dynamics is richer, with the
capillary pressures causing fluid to first rise and then plug up parts of the cell.

1. Introduction

Capillary imbibition is conveniently illustrated by allow-
ing a wetting fluid to be drawn into the gap between two
closely spaced, vertical plates. For a viscous fluid, imbi-
bition ceases when the capillary pressure driving ascent
becomes hydrostatically balanced. The final height of rise
is then controlled by the thickness of the gap, because
that dimension sets the shape of the meniscus, and there-
fore the driving capillary pressure. The expression relating
the height of rise to the gap thickness is often referred to
as Jurin’s law. If the cell is not uniform, the final height
becomes set by the local gap, and varies with position.
In these “Hele-Shaw” cells, the governing equations of vis-
cous fluid mechanics also simplify considerably, setting the
scene for complementary theoretical modelling.

When the fluid has, in addition, a yield stress, the driv-
ing capillary stress must overcome both gravity and the
implied rheological barrier during imbibition [1, 2]. The
final height of viscoplastic capillary rise therefore depends
not only on the local gap, but also the yield stress. Whilst
interrogating experiments with Carbopol suspensions in
wedge-shaped slots, Géraud et al. [2], sought to disentan-
gle the effects of the local gap and yield stress by formu-
lating a relatively simple, viscoplastic generalization of Ju-
rin’s law. Although viscoplastic versions of the Hele-Shaw
approximation for viscous fluid mechanics have been pro-
vided previously [3, 4, 5], and can be applied to this prob-
lem, Géraud et al. proceed more qualitatively by treating
each vertical section of the slot independently. Though
relevant to the construction of the final height of rise for
a viscous fluid, this procedure implicitly ignores horizon-
tal variations along the slot, which potentially limits its
applicability.

The goal of the present work is to explore viscoplas-
tic capillary imbibition along a Hele-Shaw cell with vary-
ing gap, using the viscoplastic version of the conventional

Hele-Shaw reduction [3, 4, 5]. In doing so, gradients along
the slot are consistently incorporated. The final height
of rise is found by considering when the flux through the
slot becomes arbitrarily small, which corresponds to an
approach to the perfectly plastic limit of the model when
there is a yield stress. As found for the spreading of vis-
coplastic fluids with a free surface over an inclined plane
[6, 7], the limiting plastic problem recovers a version of
the eikonal equation, which can be solved analytically us-
ing Charpit’s method [8]. This strategy leads to a con-
sistent generalization of Jurin’s law for a narrow slot in
which the usual assumptions of the Hele-Shaw reduction
remain valid. Nevertheless, some pitfalls are encountered
along the way which reveal a richer dynamics to viscoplas-
tic capillary imbibition.

2. Mathematical formulation

Consider a two-dimensional, incompressible, Herschel-
Bulkley fluid flowing between two plates with variable sep-
aration. A Cartesian coordinate system is aligned with the
midsection, so that the z−axis points vertically upwards
and the y−axis is the horizontal coordinate along the slot,
(the x−axis is perpendicular to the midsection). Gravity
acts in the z−direction, but fluid is pulled upwards against
this body force by capillary effects.

When the cell has a characteristic thickness H that is
much less than the characteristic lengthscale L along the
slot, an asymptotic expansion can be performed to furnish
a reduced model for the flow dynamics (e.g. [5]): in di-
mensionless form, the fluid pressure, denoted by p(y, z, t),
is nearly uniform across the gap and the flux, q = (qy, qz),
satisfies the slot-averaged conservation of mass equation,

∂qy
∂y

+
∂qz
∂z

= 0. (1)
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Figure 1: Sketch of the geometry describing the gap for (a) a tapered
slot, and (b) offset cylinders.

The flux and pressure gradient ∇p are related by

q = −Q
S

(
py

pz + 1

)
, (2)

where Q = |q|, S =
√
p2y + (1 + pz)2, and

Q(S; Bi, n) =
(n+ 1)hS + nBi

(n+ 1)S2
[Max(hS−Bi, 0)]1+

1
n . (3)

Here, 2h denotes the local gap width and we have used
subscripts as shorthand for partial derivatives, except for
the flux, where the Roman style for the font highlights
the significance as component. This dimensionless form is
furnished by scaling y and z with a lengthscale L, x and h
by H, pressure p by 3µ∗UL/H

2, and the deviatoric stress
components by 3µ∗U/H, where U is a characteristic speed
scale along the slot and

µ∗ = 1
3K

(
2 + 1

n

)n(U
H

)n−1
(4)

is a measure of the effective viscosity, expressed in terms of
the consistency K and power-law index n of the Herschel-
Bulkley model. The velocity scale is chosen so that

U =
ρgH2

3µ∗
, (5)

and the lengthscale L characterizes the height to which
the fluid would rise in the absence of the yield stress,

L =
γ cos Θ

ρgH
, (6)

where γ is the surface tension and Θ is the contact angle.
The dimensionless yield stress, or Bingham number, is

Bi =
τ
Y
H

3µ∗U
, (7)

where the original yield stress is τ
Y

.
The flux-gradient relation in (3) is illustrated in figure 2.

The switch that arises for S = Bih−1 corresponds to the
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Figure 2: Flux functions for different (a) Bingham numbers Bi = 0,
1, 2 and 3 (with n = 1) and (b) different power-law exponents n = 1
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and 1 (with Bi = 1).

yield point; if S < Bih−1, the fluid is unyielded and a rigid
plug bridges across the local gap to block any flow. For
Bi = 0, we obtain the flux-gradient relation for a power-law
fluid, and if, in addition, n = 1, we recover the Newtonian
law Q = h3S.

The fluid extends from a bath at z = 0 up the slot to
a free surface at elevation z = Z(y, t). In view of the
preceding scalings, and ignoring atmospheric pressure, the
boundary conditions at the underlying bath and the over-
lying interface are

p(y, 0, t) = 0, p(y, Z, t) = − 1

h
, (8)

Zt + qy(y, Z, t)Zy = qz(y, Z, t). (9)

The second condition in (9) assumes that, locally to the
free surface, the meniscus is pulled into a cylindrical shape
dictated by the contact angle.

We consider the specific situation that the gap width,
2h(y), is independent of height, as illustrated in figure 1.
The two sketches in this figure illustrate two configura-
tions of particular interest: a wedge-shaped slot and the
eccentric annular gap between two offset cylinders.

3. Uniform slots

Neglecting any horizontal variations in y, we find that
qz = Q(t), and so S = S(t). Therefore, p = −z[1 + S(t)].
The top surface conditions then indicate that

Zt = Q(S; Bi, n) & hZ(1 + S) = 1. (10)

Consequently,

Zt = Q[(hZ)−1 − 1; Bi, n]. (11)

The form of the flux function indicates that Z must in-
crease upto the height where Zt → 0, or S = Bi/h. The
equilibrium height is

Z =
1

h+ Bi
, or Z̃ =

γ cos Θ

ρgh̃+ τY
(12)

in dimensional form (denoted with the tilde decoration).
This last result is given by Geraud et al. [2].
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Looking at the progress to the final state (with hS → Bi
and Z < (h+ Bi)−1),

Q ∼ (2n+ 1)h2

(n+ 1)Bi
(hS − Bi)1+

1
n , (13)

and so

Zt ∼
h2(2n+ 1)

Bi(n+ 1)
(h+ Bi)1+

1
n (1− hZ − BiZ)1+

1
n , (14)

implying the algebraic dependence,

Z ∼ 1

h+ Bi
− (h+ Bi)−2n−2

[
n(n+ 1)h2Bi

(2n+ 1)t

]n
. (15)

By comparison, in the Newtonian problem, with Q =
h3S,

Zt

(
hZ

1− hZ

)
= h3, (16)

or

log(1− hZ) + hZ = −h4t, (17)

indicating Z ∼ h−1 − Ce−h4t for t � 1. The switch from
exponential decay in (17) to algebraic decay in (15) high-
lights how the capillary rise is much slowed by the yield
stress. Note that (17) implies that ZZt ∼ h2 for Z � 1,
which increases with h, but the final height of rise is higher
for smaller h. This suggests that, in a cell with variable
gap, a Newtonian film will rise first in the widest part of
the gap before slowing and being overtaken by the flow
through the narrowest side. This uneven rise results be-
cause, as the gap narrows, the viscous resistance increases
more strongly than the driving capillary pressure. The
feature also carries over to the viscoplastic version of the
problem and is evident in the numerical solutions of initial-
value problems reported later.

Another noteworthy point is that final Newtonian state
given by (17) (Z = h−1, Q = S = 0 and p = −z),
also applies when the gap is not uniform. This feature
arises because (1) is solved exactly by this solution even if
h = h(y). Thus, to construct the final rise of height for a
viscous fluid, once can consider each vertical cross-section
of the slot independently. By contrast, the nonlinearity
of the constitutive law for a viscoplastic fluid, which leads
to the more complicated flux-pressure-gradient relation in
(3), prevents any such construction when there is a yield
stress. Instead, one must consider the states arising when
the flux becomes arbitrarily small, which corresponds to
the perfectly plastic limit of the model, as discussed next.

4. Limiting plastic states

Flow in the slot ceases (Q→ 0) when Sh = Bi. Thus,

Bi2

h2
−Υ2 − (1 + Ξ)2 = 0, Υ = py, Ξ = pz, (18)

which is a nonlinear first-order partial differential equa-
tion similar to the eikonal equation that can be solved by
Charpit’s method [8]: the characteristic equations are

dy

dζ
= −2Υ,

dz

dζ
= −2(1 + Ξ), (19)

dp

dζ
= −2Υ2 − 2Ξ(1 + Ξ), (20)

dΥ

dζ
=

2Bi2h′

h3
,

dΞ

dζ
= 0, (21)

where ζ denotes a coordinate lying along each character-
istic curve and h′ ≡ dh/dy. From these relations, we find

z = z0 − 2(1 + Ξ)ζ, (22)

Ξ = Ξ0, (23)

Υ = ςBi

√
h−2 − h−2∗ , (24)

where ζ = 0 and (y, z, p,Υ,Ξ) = (y0, z0, p0,Υ0,Ξ0) refers
to a point on the characteristics where some boundary
information is available, and

h∗ = − Bi

Ξ0 + 1
and ς = sgn(h′). (25)

Then,

dz

dy
=

1 + Ξ

Υ
= − ςh√

h2∗ − h2
,

dp

dy
= Υ + Ξ

dz

dy
, (26)

which can be reduced to quadrature.

In particular, provided the characteristic curve inter-
sects the base of the slot, z = 0, where the fluid is
in contact with the underlying bath, then we may take
z0 = p0 = Υ0 = 0, in which case h∗ = h(y0) and we arrive
at

z = ς

∫ y0

y

hdy√
h2∗ − h2

p = −z − ςh∗Bi

∫ y0

y

dy

h
√
h2∗ − h2

.

(27)

The capillary pressure condition at z = Z(y) now demands
that

Z = ς

∫ y0

y

hdy√
h2∗ − h2

1

h
= Z + ςh∗Bi

∫ y0

y

dy

h
√
h2∗ − h2

,

(28)

which dictates Z(y) once the parameter y0 is eliminated.

Note that if h′ = 0 at (y, z) = (y0, 0), then (19) and
(21) imply that Υ = 0, h = h∗ = h(y0) and y = y0 for
all ζ. That is, at any extremum in the gap thickness,
the characteristic curve becomes a vertical straight line.
Equation (20) now gives p = −z(1 + Bi/h∗) and Z =
(h∗ + Bi)−1, as for a uniform slot. This result also follows
from (27) and (28), though more circuitously.
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4.1. Wedges

For a tapered slot (figure 1(a)), we set h = L−1(y + α),
where L is the dimensionless horizontal length of the cell;
i.e. H is chosen to be the net change in width, with the
minimum dimensional width 2Hh(0) = 2αH/L set by the
dimensionless parameter α. In this case, ς = 1 and the
integrals in (27)-(28) may be evaluated analytically to find
that the characteristic curves are the circles,

(y0 + α)2 = z2 + (y + α)2, (29)

and the pressure is

p = −z − 1
2BiL ln

[√
z2 + (y + α)2 + z√
z2 + (y + α)2 − z

]
. (30)

The free surface is given by the implicit equation

L
y + α

= Z + 1
2BiL ln

[√
Z2 + (y + α)2 + Z√
Z2 + (y + α)2 − Z

]
. (31)

For (y + α)2 � Z2, this reduces to (12), corresponding
to the limit that the slot is relatively long in compari-
son to the capillary climb. When (y + α)2 � Z2, on the
other hand, we find Z ∼ h−1, which corresponds to the
Newtonian limit. Evidently, when the interface elevation
becomes too steep, lateral pressure gradients can no longer
be ignored, forcing a departure from the quasi-uniform-slot
solution in (12). In particular, as illustrated in figure 3 for
the case α = 0, this approximation becomes dangerous as
y → 0 and the gap closes.

Nevertheless, there are two issues hidden within the so-
lution (29)-(31): first, the characteristic curves emanating
from the bath at z = z0 = 0 no longer reach the free sur-
face, but instead intersect the minimum gap at y = 0 for
some y0+α < yc(L,Bi), as illustrated in figure 3(a). Above
the final characteristic with y0 + α = yc(L,Bi) (shown as
the dashed line in the plot), the free surface no longer lies
along characteristics beginning at the bath, but is instead
intersected by curves connected to y = 0. Problemati-
cally, this indicates that it is no longer consistent to pin
the characteristics at z = 0 and use the boundary infor-
mation z0 = p0 = Υ0 = 0, as has been used to arrive at
(29)-(31). Second, the characteristic beginning at y = L
curves upward and leftward to smaller y, leaving a region
to its right without any solution. Filling this region with
the characteristics from (29)-(31) demands these curves
begin along the open side of the slot at y = L, and again
possess inconsistent starting conditions. The two problem-
atic regions are shown shaded in figure 3(a).

One possible resolution of both issues is to generate a
second family of characteristics by beginning at y0 = 0
or L, with parameter z = z0, and setting p0 = 0 and
Ξ0 = 0 there. These conditions mimic a termination of the
slot at the sides at atmospheric conditions. However, such
starting conditions imply that the associated pressure field
is independent of height (pz ≡ Ξ = Ξ0 = 0), in conflict

with the solution elsewhere. A more involved analysis of
the side edges at y = 0 and y = L therefore seems needed.
Rather than proceed down this route, we instead abandon
the wedge-shaped slot and consider a different problem in
which the side conditions are more transparent.

4.2. Off-set cylinders

For a slot composed of two cylinders with almost equal
radii, but offset axes (figure 1(b)), the gap is given by

h(y) = 1− a cos θ, y =
Lθ
2π
, −π ≤ θ < π, (32)

after choosing H as the average half-thickness of the gap
and assuming that the cylinders’ radii are relatively large
in comparison (permitting the neglect of the cylinders’ cur-
vature). The dimensionless parameter a controls the offset
of the cylinders, or equivalently the variation of gap. In
this case, we avoid the need for any conditions at the side
of the slot, demanding periodic boundary conditions in y
instead.

With L = 1 and a = 4π−2, the characteristic curves
constructed from (28) are shown in figure 4. As remarked
earlier, because h′(± 1

2L) = h′(0) = 0, the characteristic
curves leaving the widest and narrowest positions along the
gap (θ = ±π and θ = 0) are vertical. In widest sections,
the curves curves spread out from y = ± 1

2L. Over the
narrowest section (θ = 0), however, the curves converge to
y = 0 and are given approximately by

y ≈ y0 cos

[
2πz

L
√
a−1 − 1

]
, (33)

for y0 � 1. The characteristics therefore cross at y = 0
for

z ≥ 1
4L
√
a−1 − 1 (34)

(see figure 4).
Provided Bi is sufficiently large that the free surface lies

below the crossing point implied by (34) (which demands
that Bi > a−1+4/(L

√
a−1 − 1), given that Z(0) = (1−a+

Bi)−1 here), the Charpit construction provides a complete
pressure solution for the limiting state. The solution with
Bi = 3 in figure 4 shows one such example. Lowering
Bi however, to the second solution with Bi = 2 leads to
a free surface that still intersects the characteristics field
along curves that begin at the bath, but also includes a
section along the minimum gap where the characteristics
have crossed. This conflict is problematic for the pressure
field as it implies that the associated solution is multi-
valued unless the characteristics are terminated where they
meet at y = 0. But rendering the solution single-valued in
this manner still leaves a “scar” in the pressure field, with
associated jumps in the horizontal pressure gradient (as
illustrated by the corners evident in the isobars at y = 0
plotted for Bi = 2), the consequences of which are unclear.

At still lower Bi (e.g. Bi = 1.5 and 1 in figure 4), pieces
of the free surface no longer intersect characteristics start-
ing at the bath, reintroducing the complication observed
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Figure 3: Capillary rise solutions (blue, solid) to (31) for L = 1 and α = 0 (leading to the gap shown at the top left), with (a) Bi = 2, and (b)
varying Bingham number (Bi = 0.5, 1, 2 and 5). The red dashed lines show the uniform-slot result (12). In (a), the light grey lines show the
characteristics in (29). The black dashed line is the last curve from the bath (z = 0) that intersects the free surface (at the position marked
by a star). Above this circle, the characteristics no longer reach the base but emerge from the side of the slot where h→ 0; here, the solution
from (29) is drawn as a dot-dashed lines. The last characteristic from the side of the bath at (y, z) = (L, 0) also isolates a region against
the right edge where information must arrive from that side. The regions where the characteristics do not start along the bath are shaded in
light blue. The inset in (a) shows how a fan appears near y = 1 when the gap is rounded off as indicated. The inset in (b) replots the data
logarithmically and the dotted line shows the Newtonian limit Z ∼ h−1.

Figure 4: Capillary rise solutions (blue, solid) to (28) for an eccentric annular slot with a = 4π−2 and L = 1 (leading to the gap shown at
the top left) for Bi = 1, 1.5, 2 and 3. The light grey lines show the characteristics from (28); red dashed lines show the uniform-slot result
(12). The sections of the free surface for Bi = 1 and 1.5 lying along characteristics that do not start along the bath are plotted as dash-dotted
lines. The red circle indicates the first elevation for which the characteristics cross at y = 0. The panels to the right show density plots and
isobars of the pressure field predicted by the Charpit solution, for the values of Bi indicated.
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at high elevations for the wedge-shaped slot. Now, how-
ever, we cannot appeal to any side boundary conditions
to build an alternative family of characteristics, the line
y = 0 simply corresponding to the minium gap. Moreover,
above the last characteristic that first meets the free sur-
face tangentially (with intersection points marked by stars
in figure 4), the Charpit construction fails: no information
is available to complete the solution and locate the free
surface. In figure 4, the pieces of the free surface shown
by dot-dashed lines are inconsistent and cannot be trusted
as they are constructed by continuing the characteristics
from the bath through parts of the slot that are empty
of fluid. Instead, the free surface here must be dictated
by how the fluid was emplaced during the capillary rise,
forcing us to solve the initial-value problem discussed in
the next section.

Note that the spreading out of the characteristics from
y = ± 1

2L ensures that the solution can always be con-
structed around the the widest part of the slot. The
same construction applies to different slot shapes, with the
rounding off of h′ at the widest positions always leading to
a set of diverging characteristics filling the gap there. As
the scale over which h′ is rounded becomes smaller, this set
of characteristics limits to an expansion fan emerging from
the small window of corresponding values of y0. Thus, the
problem noted earlier for a wedge-shaped slot regarding
the shaded region on the right in figure 3(a) can be re-
solved by adding an expansion fan there, as illustrated by
the inset to that panel.

5. Numerical results

5.1. Numerical scheme and application to the rise of a
viscous fluid

To resolve the issues raised by the discussion of the lim-
iting plastic states, it is convenient to turn to numerical
solutions of (1), (3), (8) and (9), treated as an initial-value
problem. More specifically, consider the periodic gap given
by (32) with a = 4π−2 and L = 1, Bingham fluid with
n = 1, and the initial condition, Z(y, 0) = 0.05.

The computational problem is broken down into two
parts. First, at each moment in time, and given the instan-
taneous interface position z = Z(y, t), equation (1) can be
solved as a spatial boundary-value problem, subject to the
two conditions in (8). To ease this task, the vertical coor-
dinate z is first mapped onto a fixed rectangular domain
by defining ξ = z/Z(y, t). A fixed grid is then introduced
in y, and the fast Fourier transform exploited to evaluate
spatial derivatives in that direction. This turns (1) into a
set of coupled ODEs in ξ, that can be solved using MAT-
LAB’s in-built solver bvp5c. The grid in y has 128 points;
bvp5c introduces an adaptive grid with a variable number
of points for ξ. The switches in the flux-pressure-gradient
relation (3) are also smoothed by replacing Q(S; Bi, 1) in

(1) by
√
Q2 + ε2, where ε is a small regularization param-

eter. Practically, ε is chosen to be 10−4 or smaller, and the

effect of this regularization is gauged by varying the precise
value. If no plugs appear, the regularization parameter can
be set to zero in the computation without repercussions.
When plugs do appear, the solutions are insensitive to the
regularization, except as indicated later. The regulariza-
tion also leads to a prescribed pressure solution over the
plug, which would otherwise be indeterminate.

In the second part of the computation, the solution
for the pressure is used to construct the flux at the in-
terface. The third relation in (9) is then employed to
advance the interface postion z = Z(y, t) in time, us-
ing a simple, first-order, semi-Lagrangian scheme. A
variable, but constrained, time step ∆t is used based
on the instantaneous maximum speed of the surface:
∆t =Min(10−3, 0.01/Max(Q))).

We first present a solution for the Newtonian prob-
lem. Figure 5 shows a numerical solution for viscous fluid
(Bi = 0). Plotted are time series of the interface position
at the minimum and maximum gaps, together with a set
of snapshots of the full interface and the pressure distri-
bution. At early times, the pressure field develops a fully
two-dimensional structure. Simultaneously, the fluid rises
first over the narrow sides of the gap, before the rise at the
widest gap takes over at later times, as anticipated in §3.
However, the two-dimensionality of the pressure field en-
sures that the evolution is not quantitatively predicted by
(17) (see panel (a)). Eventually, the interface approaches
the steady state given by Z = h−1, with the pressure be-
coming independent of y, as again anticipated in §3.

5.2. Capillary rise with a yield stress

Computations for the viscoplastic case are shown in fig-
ures 6, 7 and 8. The first of these figures considers the
case Bi = 3, which, according to the analysis in §4 should
develop into a doubly peaked, limiting plastic state with-
out any crossed characteristics. Indeed, as shown in fig-
ure 6, the fluid rises under the capillary pressure, with
the interface developping two peaks to either side of the
minimum gap, once the flow through the narrow side of
the gap overtakes that at the higher side. Eventually, the
stresses everywhere decline to the yield point (given by
S = hBi; cf. the final panel), and the interface approaches
the steady state predicted by the Charpit analysis. Be-
cause the characteristics correspond to lines along which
Ξζ = 0, those curves can be traced out for the numerical
solution by plotting contours of constant vertical pressure
gradient Ξ = pz, as also indicated in figure 6.

In the second example of figure 7, the limiting plastic
state is predicted to contain characteristics that cross over
a higher section through the minimum gap (see figure 4).
The Charpit analysis relieves the implied conflict by insert-
ing a discontinuity into the pressure gradient there. For
the numerical solution of the initial-value problem, evolu-
tion proceeds initially in a similar to that for higher Bi,
with two peaks again forming to either side of the mini-
mum gap. At later times (t > 1.24), however, the stresses
fall below the yield point near the bottom of this section
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Figure 5: Capillary rise solutions for Newtonian fluid (n = 1, Bi = 0) in the gap given by (32) with a = 4π−2 and L = 1, showing (a) times
series of Z(0, t) and Z(± 1

2
, t), and (b) snapshots of Z(y, t) at the times indicated by stars in (a). The (red) dotted lines and arrows indicate

the final steady state, Z = h−1; the lighter (green) dashed lines in (a) show the result in (17). The lower left panel shows five snaphsots the
pressure field (equally spaced isobars in red) at the times indicates by the squares in (a).

Figure 6: Capillary rise solutions for Bingham fluid (n = 1) with Bi = 3, a = 4π−2 and L = 1 (ε = 0). Shown are (a) times series of Z(0, t),
Z(± 1

2
, t) and Zmax(t) =Maxy(Z) and (b) snapshots of Z(y, t) at the times indicated by stars in (a). The (red) dotted lines and arrows show

the limiting plastic solution of §4. Panel (c) shows two snaphsots of p and hS/Bi (isobars in red) at the times indicated (squares in (a)). In the
final snapshot of hs/Bi, the light green lines show some of the characteristics from figure 4, and the white dashed lines show correspondingly
chosen contours of constant pz .
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Figure 7: A similar figure to that shown in figure 6, but for Bi = 2. In this case, three solutions are shown with different values of the
regularization parameter ε (as indicated); these are indistinguishable, except near y = 0 at the latest times. The inset to (b) shows a
magnification of the final computed interfaces around the minimum gap, with the grid points indicated by dots. Two snapshots of the
pressure field for the solution with the lowest value for ε are plotted in (c) (at times t = 1

3
and 20). The plugged region for t = 20 is indicated

by the red contour in the final snapshot of hS/Bi; the light green lines show some of the characteristics from figure 4, and the white dashed
lines show correspondingly chosen contours of constant pz .

of the slot, generating a rigid plug there. As the interface
continues to rise, the plug expands, until at the end of
the computation (at t = 30), it occupies about half of the
bottom of the slot (z = 0) and extends almost halfway up
the minimum gap towards the free surface. The final state
then contains the plug, with a limiting plastic state held at
the yield stress arising everywhere else (see the final panel
of the figure).

The Charpit analysis of §4 does not account for the ap-
pearance of any such plugs. In particular, the plug in the
Bi = 2 computation of figure 7 eliminates the characteris-
tics that would otherwise arch upwards from z = 0 in the
vicinity of the minimum gap. Over the plastically deform-
ing region that is thereby vacated, the characteristic curves
must begin at the yield surface instead. This modifies the
final state from that considered in §4, and, in particular,
appears to allow the numerical solution to evolve towards
a state in which no discontinuities arise in the horizontal
pressure gradient (see the isobars of the final solution at
the bottom right of figure 7). In other words, the plug sev-
ers the characteristics from the bath that would normally
cross above the red circle in figure 4, and adjusts the over-
lying characteristics field to prevent any such crossings, as
illustrated by the contours of constant Ξ = pz also plot-
ted for the final snapshot in figure 7. Note that the final

solution pictured here has not yet reached steady state,
and the plug is still expanding (accounting for slight dis-
crepancies between the contours of constant Ξ = pz and
the characteristic curves from figure 4). Also, despite the
apppearance of plug and the implied adjustment of the
pressure field, the interface ascends to a final height that
is similar to that predicted in §4.

All that said, the numerical solution becomes particu-
larly sensitive to resolution and the regularization param-
eter in the vicinity of the minimum gap and free surface
at late times (see figure 7(b)). This renders the numerical
results less reliable, and calls for a numerical algorithm
that better accounts for the plugs and any stress discon-
tinuities (such as an augmented Lagrangian scheme [9]).
It is conceivable that the late-time solution is plagued by
numerical issues, and it cannot be concluded definitively
that the final state does not contain any discontinuities
in horizontal pressure gradient or crossed characteristics.
Nevertheless, the plug appears to be a robust feature of
the numerical solution, which must certainly impact the
final state.

Finally, figure 8 shows an example with Bi = 1. In
this case, the Charpit analysis fails because insufficient in-
formation is provided to construct the entire free surface
if the fluid reaches the limiting plastic state everywhere.
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Figure 8: A similar figure to that shown in figures 6 and 7, but for Bi = 1 (ε = 10−4). In (a), the free surface predicted by the Charpit
analysis is shown in red, with the same meaning of the star and line style as in figure 4. The red dashed line shows the one-dimensional
approximation, Z = (Bi + h). The plugged region for t = 30 is indicated by the red contour in the final snaphsot of hS/Bi in (c); the dashed
lines and stars show the final characteristic from the bath to intersect the free surface from figure 4, and the dotted lines are sample contours
of constant Ξ = pz .

For the initial-value problem, a plug again forms at the
base of the minimum gap as the fluid rises (this time for
t > 1). Although numerical difficulties again plague the
late-time solution, the plug looks to fill most of the slot
eventually, leaving a narrower plastic state elsewhere. The
emergence of this plug naturally accounts for the failure
of the Charpit analysis: only over a small section of the
bath are the characteristics launched from z = 0, and the
yield surface provides the information needed to complete
the field of characteristics. Although the fluid is still mov-
ing slightly at the end of the computation, the final rise of
height largely matches up with the prediction of §4 over
the piece of the free surface connected to the bath by un-
interrupted characteristics (see figure 8(a)), and the yield
surface is approaching the last of those curves. Elsewhere,
the interface looks somewhat different to that part con-
structed inconsistently in the Charpit analysis (shown as
the dot-dashed section). It is also worth noting that the in-
terface position for this example is certainly different from
the one-dimensional approximation Z ∼ (h + Bi)−1 (see
figures 4 and 8).

6. Conclusions

This paper has considered the capillary rise of a fluid
with a yield stress in a Hele-Shaw cell. When the gap
is non-uniform, the nonlinear relation between the flux
and pressure gradient ensures that sideways variations con-
tribute to dictating the final height of rise. This feature
contrasts with the situation for Newtonian fluid, for which
each local vertical cross-section can be considered indepen-
dently in determining the degree of imbibition. General-

izations of Jurin’s law that ignore sideways gradients are
therefore limited to situations in which the height of rise
is much less than the distances over which the gap varies.

A more consistent approach is to use the viscoplastic
analogue of the conventional Hele-Shaw approximation,
which recasts the problem in the manner of Reynolds lu-
brication theory for the flow of a yield-stress fluid down a
narrow gap. The model that results encapulsates the yield
condition as a criterion involving local pressure gradients.
The height of capillary rise can then be constructed analyt-
ically when the stresses reduce to the yield point through-
out the slot. The construction involves finding a set of
characteristics for the pressure field in this perfectly plas-
tic limit (similar to viscoplastic spreading problems with
a free surface [6, 7], or theory for the flow of highly shear-
thinning power-law fluids down slots in models of injection
moulding and Saffman-Taylor fingering [10, 11]), and then
determining where along these curves the free surface con-
ditions are met.

For a wedge-shaped slot, the construction highlights how
lateral gradients become key in controlling the height of
rise as the gap closes. Generalizations of Jurin’s law that
neglect sideways gradients therefore become inaccurate in
this limit. However, it turns out that the characteris-
tics construction of the final state is also problematic in
the same limit, as one cannot find a complete solution
throughout the slot. To understand this difficulty in more
detail, we retired to a different problem: the capillary rise
of fluid through the annular gap between two offset cylin-
ders. In this alternative problem, it is more straightfor-
ward to understand how the characteristics construction
fails, and further to instead provide numerical solutions
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for the time-dependent rise of the fluid. The numerical
solutions demonstrate how the fluid in the lowest and nar-
rowest parts of the slot plug up during the capillary rise,
resolving the puzzle of the characteristics.

According to the analysis, the capillary rise expected
over the narrowest parts of the lost should significantly
exceed that predicted from neglecting sideways gradients.
Curiously, this expectation disagrees with the experimen-
tal reported by Géraud et al. [2]: in their wedge-shaped
slots, the rise was not prominent near the corner and no
higher than their generalization of Jurin’s law. Possible
explanations for this discrepancy include the failure of the
Hele-Shaw approximation at the corner, or the omission
of the full interface curvature and its detailed geometry
when computing the capillary pressure and the interfacial
motion in the current theory (cf. [12]).
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