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Viscoplastic rimming flow inside a rotating cylinder1
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A theoretical analysis is presented for the flow of a Herschel-Bulkley fluid around the
inside surface of a rotating cylinder, at rotation speeds for which the fluid largely collects in
a prominent pool in the lower part of the cylinder. The analysis, based on lubrication theory,
predicts the steady states typically reached after a small number of rotations. The analysis
is also modified to consider the drainage of the film around a stationary cylinder, which
allows an exploration of the dynamics when a rotating drum is suddenly stopped. The
predictions of the theory are compared with experiments in which a Carbopol suspension
is rotated inside an acrylic drum.
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I. INTRODUCTION16

The flow of a viscous fluid around the surface of a rotating cylinder has proved a popular1 17

configuration in which to study the fluid mechanics of coating flows [1,10,28,33,37,39]. Beginning18

with Moffatt [37], an initial point of interest was the development of a corner and shocks in19

leading-order lubrication theory, as a more uniform coating on the inside of a horizontal cylinder20

became increasingly influenced by gravity [28,39]. Such irregularities in the shape of the free21

surface become smoothed by surface tension, higher-order gravity effects, or over lengthscales22

violating the scale separation implicit in lubrication theory [1,10,33,44]. Instabilities leading to23

three-dimensional flow structures have also been of interest as illustrations of pattern formation24

[11,25,42,43].25

A key drawback of the leading-order lubrication model used to study flows with weak gravita-26

tional effects is that it fails to deal with situations in which gravity plays a dominant role, dragging27

most of the coating fluid around the rotating cylinder into a pool sitting near the lowest point. This28

situation led Tirumkudulu and Acrivos [44] and Ashmore, Hosoi, and Stone [1] to restructure the29

lubrication model, adding some important higher-order terms (incorporating either surface tension,30

gravity corrections, or both). The restructured model accounts for pooling at the bottom of the31

cylinder, together with the thin film that becomes drawn out of the pool, then coats the remainder of32

the cylinder surface before reentering the pool. The draw-out and reentry of the film at the edges of33

the pool correspond to the classical Landau-Levich problem and its variants [1,10,14,49].34

Despite the prevalence of analyses employing Newtonian fluid, the coating flows that feature35

in a large number of industrial processes [48] often involve complex fluids. Partly with this in36

mind, a number of studies have explored rimming flows of viscoelastic fluids and suspensions (see37

Ref. [42]). With more relevance to the present work, Johnson [28] considered coating by power-law38

fluids and Ross, Duffy, and Wilson [41] generalized Moffatt’s analysis to allow the coating fluid to39

have a yield stress. Neither of these studies, however, deal with situations with gravitational pooling40

at the bottom of the cylinder. When pooling does arise, that reservoir of fluid is not motionless,41

but continues to overturn driven by the rotation. In fact, for viscoplastic fluid, the resulting states42

have much in common with the steady surges encountered in laboratory experiments using inclined43

conveyor belts, designed to simulate geophysical flows [15,16,21,31]. The rotating drum arguably44
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FIG. 1. A sketch showing the geometry of the rimming flow. The red and blue stars mark the ends of the
“pool” over which most of the fluid collects and the depth ĥ varies significantly; beyond these points there
is a residual, potentially plugged up film. The pool has a typical length L ≪ R. Lubrication theory predicts
that the flow profile takes a distinctive form in which a strongly sheared layer intervenes between the drum
and a plug-like region, the “pseudoplug,” bordering the free surface; the strongly sheared layer has thickness
Ŷ . Beyond the pool, one anticipates a residual, plugged-up film to coat the remainder of the cylinder (with
Ŷ = 0).

provides a simpler configuration to explore such surges, providing a key motivation for the present 45

paper. 46

We organize the paper as follows: in Sec. II we mathematically formulate the problem and use a 47

shallow-layer approximation (lubrication theory) to derive a reduced model for the flow of a thin film 48

of a viscoplastic fluid described by a model constitutive law (the Herschel-Bulkley law [6]) along a 49

circular surface (cf. Refs. [4,29]). That said, our formulation is more general, applying to any nearly 50

horizontal, slowly varying surface and may therefore prove useful in other settings. However, by 51

avoiding any geometrical approximations in the gravitational terms, the model also recovers the 52

viscoplastic generalization of the leading-order lubrication analysis for a more uniform coating 53

[37,41] in a different limit of the model’s dimensionless parameters. Thus, by bridging between the 54

two asymptotic limits, the model captures the dynamics of both the pool at the bottom of the cylinder 55

and the residual film coating it elsewhere (cf. Ref. [44]). In Sec. III, we use the model to explore the 56

steady rimming solutions that are predicted to develop within a rotating drum. We follow this up in 57

Sec. IV, with a discussion of the dynamics when the cylinder does not rotate, which allows us to 58

explore what happens when a rotating cylinder is suddenly stopped. In particular, we consider how 59

the coating drains to rest, which inevitably becomes controlled by the yield stress (if one is present). 60

The theoretical results are then compared with some laboratory experiments in Sec. V. We conclude 61

in Sec. VI. The Appendix contains some details of the theoretical construction of steady rimming 62

flows without surface tension (which is otherwise included in our model formulation). 63

II. THE MODEL 64

A. Formulation 65

Consider the flow of a two-dimensional, incompressible film of Bingham fluid on the inside of 66

a cylinder of radius R, rotating anticlockwise with rate !. We neglect inertia, and represent the 67

geometry of the cylinder using polar coordinates system (r̂, θ ), with θ = 0 corresponding to the 68

vertically down direction, as illustrated in Fig. 1(a). The shallow fluid layer coating the inner surface 69

is described using a local curvilinear coordinate system (ŝ, ẑ) in which ŝ = Rθ is arc length along 70
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the cylinder and ẑ = R − r̂ [see Fig. 1(b)]. The fluid velocity and pressure are (û(ŝ, ẑ), ŵ(ŝ, ẑ)) and71

p̂(ŝ, ẑ), satisfying72

∂ û
∂ ŝ

+ (1 − κ ẑ)
∂ŵ

∂ ẑ
− κŵ = 0, (1)

∂τ̂ss

∂ ŝ
− ∂ p̂

∂ ŝ
+ (1 − κ ẑ)

∂τ̂sz

∂ ẑ
− 2κτ̂sz = ρg(1 − κ ẑ) sin θ , (2)

∂τ̂sz

∂ ŝ
+ (1 − κ ẑ)

(
∂τ̂zz

∂ ẑ
− ∂ p̂

∂ ẑ

)
+ κ (τ̂ss − τ̂zz) = ρg(1 − κ ẑ) cos θ , (3)

where the curvature is73

κ = ∂θ

∂ ŝ
≡ R−1, (4)

τ̂ij is the deviatoric stress tensor, and subscripts (in Roman font) indicate tensor components. The74

Bingham law relates the stress to the strain rates by75

τ̂ij =
(

µ + τY

ˆ̇γ

)
ˆ̇γ ij for τ̂ > τY , (5)

and ˆ̇γ ij = 0 otherwise, where µ is the (plastic) viscosity, τY is the yield stress, and76

{ ˆ̇γ ij} =
(

2(ûŝ − κŵ)/(1 − κ ẑ) (ŵŝ + κ û)/(1 − κ ẑ) + ûẑ
(ŵŝ + κ û)/(1 − κ ẑ) + ûẑ 2ŵẑ

)
. (6)

Here subscripts of ŝ and ẑ on the velocity components denote partial derivatives, and ˆ̇γ =77 √
1
2

∑
i j

ˆ̇γ ij
ˆ̇γ ij and τ̂ =

√
1
2

∑
i j τ̂ijτ̂ij denote the tensor second invariants.78

We have further employed a hat notation to denote dimensional variables; this decoration is79

removed using suitable scalings in our nondimensionalization of the problem below.80

At the free surface of the fluid film, ẑ = ĥ(ŝ, t̂ ), ignoring surface tension,81

(1 − κ ĥ)τ̂sz − (τ̂ss − p̂)
∂ ĥ
∂ ŝ

= (1 − κ ĥ)(τ̂zz − p̂) − τ̂sz
∂ ĥ
∂ ŝ

= 0 (7)

and82

ŵ = ∂ ĥ
∂ t̂

+ û

1 − κ ĥ

∂ ĥ
∂ ŝ

. (8)

On the cylinder, no slip demands that83

û = R! and ŵ = 0. (9)

B. Scaling84

The pool at the bottom of the cylinder has a characteristic length L and a typical depth H. The85

fluid is shallow, so that ϵ = H/L ≪ 1, and the pool occupies a small fraction of the circumference,86

L ≪ R; see Fig. 1. More specifically, to account properly for the effect of gravity on the pool,87

the gravitational force along the surface of the cylinder, ρg sin θ ∼ ρgŝ/R, must be comparable to88

hydrostatic pressure gradients in the fluid, p̂θ ∼ ρg∂ ĥ
∂ ŝ .89

Balancing the magnitudes of these two terms indicates that H = O(ϵ2R) or L = O(ϵR). Further-90

more, when the pool contains a significant fraction of the fluid, the pool’s area, of O(HL), must be91

comparable to the total fluid area, πR2 f , where f ≪ 1 is the “fill fraction” of the drum. In other92

words, ϵ = O( f
1
3 ).93

We now remove the dimensions from the equations by defining the new variables,94

s = ŝ
L

, (z, h) = (ẑ, ĥ)
H

, u = û
R!

, w = ŵ

ϵR!
, t∗ = R!t̂

L
, (10)
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p = p̂
ρgH

, τij =
τ̂ij

ϵρgH
, γ̇ij =

ˆ̇γ ijH
R!

. (11)

To leading order, the dimensionless equations become 95

us + wz = 0, (12)

∂τsz

∂z
− ∂ p

∂s
= gs ≡ sin θ

ϵ
, (13)

−∂ p
∂z

= gz ≡ cos θ . (14)

Because the pool has a limited angular extent, ϵ−1 sin θ ∼ s = O(1), and the gravity components 96

(gs, gz) are both order one. Rather than introducing their leading order replacements, (s, 1), however, 97

we retain the trigometric functions in (gs, gz) to make contact with existing literature and allow 98

the model to capture the dynamics of the residual film coating the cylinder outside the pool (see 99

Sec. II E). 100

The dimensionless, yielded version of the constitutive law is 101

τij =
(

*−1
∗ + Bi∗

γ̇

)
γ̇ij, {γ̇ij} =

(
2ϵus + O(ϵ3) uz + O(ϵ2)
uz + O(ϵ2) 2ϵwz

)
, (15)

where the dimensionless parameters, 102

*∗ = ρgH3

µLR!
and Bi∗ = τYL

ρgH2
. (16)

Provided uz = O(1), Eq. (15) indicates that the shear stress dominates the other deviatoric stress 103

components and the yield condition reduces to |τsz| > Bi∗. In this situation, the fluid is relatively 104

strongly sheared. There is, however, a second way to deal with the constitutive relation: if we take 105

uz = O(ϵ), we must retain all the components of the deformation rate tensor at the same O(ϵ) order. 106

This leads to the perfectly plastic relation τij = Bi∗γ̇ij/γ̇ to leading order. Because this applies where 107

uz = O(ϵ), |τsz| < Bi∗ and
√

τss
2 + τsz

2 ∼ Bi∗, the flow here is plug-like, but still yielded; this is 108

Walton and Bittleston’s pseudoplug [2,47]. It turns out that shallow viscoplastic flows typically 109

contain both a strongly sheared region and a pseudoplug [2,4]. 110

Finally, the surface boundary conditions reduce to 111

p = τsz = 0 and w = ∂h
∂t∗

+ u
∂h
∂s

, on z = h. (17)

The dimensionless no-slip conditions are 112

u = 1 and w = 0 on z = 0. (18)

C. Reduction 113

Equations (13) and (14) imply that 114

p = gz(h − z) and τsz = −(gs + gzhs)(h − z) (19)

[bearing in mind that ps = gzhs + O(ϵ2)]. Unless the entire film becomes plugged up, the flow 115

therefore splits up into a sheared region near the cylinder, where 116

|τsz| > Bi∗, uz = −*∗(gs + gzhs)(Y − z), Y = h − Bi∗
|gs + gzhs|

, 0 < z < Y, (20)

and an overlying pseudoplug with 117

|τsz| < Bi∗, uz = O(ϵ), Y < z < h (21)
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(cf. Fig. 1). This furnishes the velocity profile,118

u =
{

1 − 1
2*∗(gs + gzhs)(2Y − z)z, 0 < z < Y,

up = 1 − 1
2*∗(gs + gzhs)Y 2, Y < z < h,

(22)

and the angular flux119

q∗(s, t∗) =
∫ h

0
u dz = h − 1

6
*∗(gs + gzhs)Y 2(3h − Y ). (23)

Mass conservation, integrated over the thickess of the film, then demands that120

∂h
∂t∗

+ ∂q∗

∂s
= 0. (24)

When Y , as defined in Eq. (20), approaches zero the pseudoplug is predicted to fill the entire layer121

and the velocity vanishes. The condition, h ! Bi∗/|gs + gzhs|, then corresponds to the creation of122

a genuine plug attached to the cylinder. In this situation, the flux q∗ must equal h. To recover the123

correct flux from Eq. (23) we therefore replace the definition of Y in Eq. (20) by124

Y = Max
(

0, h − Bi∗
|gs + gzhs|

)
. (25)

Equations (23)–(25) adapt the shallow viscoplastic fluid model of Liu and Mei [4,29] to the125

rotating drum configuration. As written, however, the model in Eqs. (23) and (24) is more general,126

applying to shallow viscoplastic flow over an arbitrarily shaped, nearly horizontal surface, as long127

as one revises the connection between arc length and angle [from ŝ = Rθ to θŝ = κ (ŝ)].128

D. Inclusion of surface tension and shear thinning129

When surface tension is included, we must modify the normal force condition at z = h. In130

particular, the surface pressure, p = P at z = h, no longer vanishes and we replace Eq. (19) with131

p = P + gz(h − z) and τsz = −(gs + gzhs + Ps)(h − z), (26)

where the surface pressure is132

P = const. − σhss

ρgL2
, (27)

the surface tension is σ and we take the dimensionless group σ/(ρgL2) (related to a Bond number)133

to be order one. The reduction of the equations now follows as before, but for the addition of Ps to134

the hydrostatic pressure gradient gs + gzhs.135

If we use the Herschel-Bulkley law instead of Bingham, the key change is the replacement of the136

effective viscosity (µ + τY
ˆ̇γ −1) in Eq. (5) with (K ˆ̇γ n−1 + τY

ˆ̇γ −1). The consistency K and power-137

law index n can now be employed to redefine the viscosity scale as µ = K (R!/H)n−1, and the138

nondimensionalization of the model then proceeds as above. The dimensionless viscosity function139

is [(γ̇ /*∗)n + Bi∗]γ̇ −1, with140

*∗ = !−1
(

ϵρgR
K

) 1
n
(

H
R

)1+ 1
n

, (28)

and the flux in Eq. (23) becomes141

q∗ = h − n*∗Y 1+ 1
n [(1 + 2n)h − nY ]

(n + 1)(2n + 1)
|gs + gzhs + Ps|

1
n sgn(gs + gzhs + Ps). (29)

003300-5



FH10202 PRFLUIDS February 6, 2024 11:23

THOMASINA V. BALL AND NEIL J. BALMFORTH

More details of the reduction for the Herschel-Bulkley model can be found in Refs. [4,31] There is 142

also a relatively thin buffer between the strongly sheared region and the pseudoplug over which the 143

solutions for the two become matched, but which needs no explicit consideration [2,20,47]. 144

E. Summary 145

We now return to the original angular variable θ in place of s, which has the awkward feature 146

that the length of the pool L is selected as the scale during nondimensionalization, but this is not 147

known ahead of time. We further follow Ashmore et al. [1] in defining some new variables based 148

on the fill fraction of the cylinder, f , which for a shallow film is 149

f =
∫ 2π

0
ĥ(θ , t̂ )

dθ

πR
. (30)

In particular, we set 150

t = !t̂ ≡ Lt∗
R

, η(θ , t ) = ĥ
R f

≡ Hh
R f

, Y (θ , t ) = HY
R f

, q(θ , t ) = Hq∗

R f
, (31)

which indicate that 151

ηt + qθ = 0, q = Q(η,-) = η − *Y1+ 1
n |-| 1

n

n + 1
[(1 + 2n)η − nY] sgn(-), (32)

along with the constraint, 152

1 =
∫ 2π

0
η(θ , t )

dθ

π
, (33)

where 153

- = sin θ + f ηθ cos θ − Sηθθθ , Y = Max
(

0, η − Bi
|-|

)
, (34)

* = n*∗L
1
n ( f R)1+ 1

n

(2n + 1)H1+ 2
n

= n f 1+ 1
n

(2n + 1)!

(
ρgR
K

) 1
n

, Bi = τY

ρgR f
≡ H2Bi∗

RL f
, S = σ f

ρgR2
, (35)

and we have extended our subscript notation to partial time and angle derivatives. 154

A final modification that is possible is to make the nonasymptotic replacement, 155

Sηθθθ →
[

S(η + ηθθ )
(
1 + f 2η2

θ

)3/2

]

θ

, (36)

for the surface tension term in Eq. (34), a commonly employed device that seeks to better incorporate 156

surface curvature [1,49]. We follow this suit in the computations reported below, although it has little 157

impact on the solutions presented. Indeed, surface tension altogether has a relatively minor effect. 158

That said, the evolution equation (32) is problematic when S = 0 because the resulting nonlinear 159

diffusion equation has a negative diffusivity (being proportional to cos θ ) in the upper half of the 160

cylinder. This awkward behavior is conveniently removed when surface tension is included, as in 161

the Newtonian version of the problem [1,10]. 162

With the definition of the new variables and parameters, the scales H and L now disappear from 163

the formulation of the model (indicating that it is no longer necessary to select either). Nevertheless, 164

our asymptotic reduction applies in a certain limit of the problem corresponding to ϵ = H
L ≪ 1. In 165

particular, in our shallow-layer limit, the dimensionless parameters and variables in Eqs. (32) and 166

(33) are not all order one, with their size depending on how ϵ ultimately becomes related to the fill 167

fraction f [formally, ϵ = O( f
1
3 )]. 168
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Note that the model in Eqs. (32) and (33) also applies in a different limit of the coating problem,169

corresponding to f ≪ 1 and θ = O(1). In this case, the film coats the cylinder more uniformly, and170

a different asymptotic reduction leads to Eqs. (32) and (33), but with the sole modification that one171

must drop the free-surface gravity term, f ηθ cos θ , in comparison to the other terms, sin θ − Sηθθθ ,172

in -. This alternative reduction corresponds to the Herschel-Bulkley generalization of the leading-173

order lubrication model considered by Moffat and others (as accomplished for a Bingham fluid by174

Ross et al. [41]).175

Such considerations lead us to now relax any constraints on the parameters in Eqs. (32) and (33),176

allowing us to consider both the pool and residual film, or coatings in which the lengthscale L is177

larger, and indeed comparable to R. In other words, we use our model to bridge between the limit178

considered by Moffatt and others, and the one underlying our asymptotic reduction (cf. Ref. [44]).179

III. MODEL SOLUTIONS180

We solve the evolution equation (32) as an initial-value problem, choosing a fixed grid in angle181

and employing spectral differentiation matrices to evaluate spatial derivatives [45]. This reduces182

Eq. (32) to a set of coupled ordinary differential equations (ODEs), which we integrate using183

Matlab’s stiff integrator ODE15s. To ease the computation and take into account any unyielded184

plugs, we regularize the constitutive law by replacing the second relation in Eq. (34) by185

Yε = η − Bi
|-|

, Y = 1
2

(
Yε +

√
ε2 + Y2

ε

)
, (37)

where ε is a regularization parameter. Practically we take ε to be 10−4 or smaller, and verify that186

its precise value has little effect on the solutions other than smoothing out some of the finer scale187

features near the yield points.188

As found by Ashmore et al. in the Newtonian version of the problem, solutions rapidly converge189

to steady state whenever an appreciable pool forms near the bottom of the cylinder. These steady190

states can be found more directly by abandoning (32) and setting instead q = Q(η,-) = const.191

With surface tension, this corresponds to a differential eigenvalue problem with periodic boundary192

conditions and the constraint (33), which can be solved using Matlab’s BVP4c solver [again193

regularizing via Eq. (37)]. The flux condition must be inverted to write - in terms of η and q as194

part of this solution strategy. The BVP4c steady solution solver has the advantage of exploiting an195

adaptive grid to resolve any finer features in the solution.196

A. Sample solutions197

Figure 2 displays sample steady solutions for a Bingham fluid (n = 1) at fixed * = 10, f = 0.01198

and S = 10−4 with varying Bi. Plotted are the angular profiles of the free surface, h(θ ), and fake199

yield surface, Y (θ ). At these parameter settings, surface tension has only a minor effect and a narrow200

pool forms near the bottom of the cylinder. The solutions feature prominent pseudoplugs over the201

pool and film, which thicken to become true plugs (where Y = 0) over sections to the left of the pool202

and at the top of the cylinder. Over these true plugs, η = q. The pseudoplugs are shaded according203

to the local plug speed, and the yield points where Y → 0 are indicated. Insets show illustrations of204

how the pool would appear within the rotating drum. Increasing the yield stress from the Newtonian205

limit reduces the size of the pool and drags it up the side, whilst thickening the residual film coating206

the remainder of the cylinder; the pool disappears for Bi → 1
2 . This trend, which is shown in more207

detail in Fig. 3 for a wider set of solutions, is similar to an increase in rotation rate in the Newtonian208

problem [1].209

A sequence more like an experimental series is shown in Fig. 4, which shows solutions with fixed210

rheological parameters (Bi = 0.158 and n = 0.38), fill fraction ( f = 0.0838) and surface tension211

(S = 10−4), but varying rotation rate (*). The trends with increasing rotation rate (decreasing *)212

reproduce those for increasing yield stress in Fig. 2. The choices for f , n, and Bi in Fig. 4 actually213
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FIG. 2. Steady solutions with varying Bi (as indicated) for (*, f , n, S) = (10, 0.01, 1, 10−4). Shown are
the positions of the free surface η and yield surface Y , with the pseudoplug and plug shaded according to the
local value of plug speed, up ≡ 1 − 3

2 *-Y2. The vertical dot-dashed lines show the yield points. In panel (a),
the dashed line shows the corresponding Newtonian solution, and the left-hand inset replots all the surface
profiles (from blue to green) using the scaled variables η/ηmax and (θ − θmax)/

√
ηmax, and comparing with the

approximation in Eq. (38) (red dashed line). The right-hand insets show the profiles of some of the solutions
as they would appear inside the drum.

003300-8
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FIG. 3. (a) Flux, q, and (b,c) peak height and position, ηmax and θmax, plotted against Bi for (*, f , S) =
(10, 0.01, 10−4). The solid line in panel (a) shows the prediction from Eq. (40). The solid lines in panels (b) and
(c) show the results from the analysis of the Appendix in which surface tension is neglected, and the dashed
lines show the predictions from Eqs. (44) and (46).

correspond to the experiments discussed below in Sec. V. The choice for S, though, is too large by214

a factor of about four, assuming that the experimental fluid, Carbopol, has a surface tension slightly215

lower than that of water [13,23]. This is not significant, given the minor role played by surface216

tension in the solutions.217

FIG. 4. Steady solutions with increasing * (from green to blue) for ( f , Bi, n, S) =
(0.0838, 0.158, 0.38, 10−4). In panel (a) the free surface profile is shown for the values of * indicated.
The upper left inset shows a collapse of these profiles over the pool, along with the prediction in Eq. (38).
In panels (b–d), the flux q, and the peak height and position, ηmax and θmax, are plotted against * for a wider
set of solutions (stars). The solid lines in panel (b) shows the predictions from Eq. (41), and the solid lines in
panels (c, d) indicate the results from the S = 0 analysis of the Appendix. The dashed lines in panels (b, c, d)
show the predictions from Eqs. (42), (44), and (46).
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FIG. 5. Steady solutions with S = 10−4, 10−5, and 10−6 (solid, from blue to green), for (*, Bi, n, f ) =
(10, 0.1, 1, 0.01). The dashed line shows the construction of the Appendix for S = 0. The dotted line shows
the approximation (38). The main panel shows the pool solutions; the insets show the entire solutions and
magnifications near the borders of the pool (as indicated by the shading and arrows).

To emphasize this point, we show solutions with varying S in Fig. 5, for a Bingham fluid with 218

(*, f , Bi) = (10, 0.01, 0.1). The solution with S = 10−4 is still slightly sensitive to this surface 219

tension parameter; once S is decreased to 10−5 or smaller, however, only some of the finer details 220

of the solutions depend on S. This figure also includes a construction of the steady solution without 221

surface tension altogether, as described more fully in the Appendix. The suite of solutions shown 222

in Fig. 4, with the Herschel-Bulkley parameters chosen to match the experiments, are even less 223

sensitive to S, as highlighted by the match of the peak depth and position between solutions 224

computed for S = 10−4 and S = 0 (unlike in Fig. 3, where there is a minor difference). 225

B. Anatomy of the steady, pooled solution 226

More details of a steady, pooled solution are displayed in Fig. 6. A similar picture, but for a 227

solution in which the pool has been dragged well up the side of the cylinder, is shown in Fig. 7. 228

The latter example corresponds to the viscoplastic generalization of one of the Newtonian solutions 229

with shocks considered in previous literature (e.g., Refs. [1,10]). Note that the significantly pooled 230

example in Fig. 6 possesses a substantial recirculation cell (as revealed by the streamline pattern 231

also drawn), whereas the more shock-like case in Fig. 7 displays no recirculation. 232

As illustrated in Fig. 6, the pool is mostly relatively narrow and of high amplitude for f ≪ 1 and 233

* ≫ 1, remaining localized to the bottom of the cylinder (θ ≪ 1). The flux relation q = Q(η,-) 234

then indicates that - must be O(*−n) over this region. A local approximation of the first relation 235

in Eq. (34) then implies that f ηθ + θ ≈ 0, provided surface tension remains unimportant. Hence, 236

η ≈ ηmax − θ2/(2 f ), which reflects how the surface of the pool becomes relatively flat, and can be 237

cast as a more formal asymptotic solution relevant to the limit * ≫ 1. The pool solutions in Figs. 2, 238

4, and 5 match fairly well with the approximation, even when the pool becomes shifted away from 239

θmax = 0, as long as we make the replacement θ2 → (θ − θmax)2, i.e., the solution for the pool is 240

approximately 241

η ≈ ηmax − (θ − θmax)2

2 f
. (38)

The pool therefore has a width of approximately 2
√

2 f ηmax, and contains about 4
3ηmax

√
2 f ηmax of 242

the total fluid area. 243
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FIG. 6. Anatomy of the solution with (*, f , Bi, n, S) = (10, 0.01, 0.1, 1, 10−4). Plotted are η (blue) and
Y (red), along with a selection of streamlines (light gray solid lines). In panel (b), the residual film is shown
in more detail. The dashed gray lines show the root of the cubic q = constant with - = sin θ , to which the
solution converges over the film; the gray dotted line shows a second root, which intersects the first at the green
circle at θ = 1

2 π . A magnification of the pool is shown in panel (c). Details of where the film reenters the pool
are plotted in panel (d), along with ηθθ .

Outside the pool, over the residual film coating the remainder of the cylinder, we have q =244

Q(η,-) = const. and - ≈ sin θ , which for n = 1 boils down to a cubic equation for η:245

* sin θ

(
η3 − 3

2
bη2 + 1

2
b3

)
− η + q = 0, b = Bi

| sin θ |
. (39)

FIG. 7. A similar set of plots to Fig. 6, but for Bi = 0.4.
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As shown in Figs. 6 and 7, the steady solutions to the full problem do indeed converge to one of the 246

roots of the cubic over the film. Importantly, at θ = 1
2π (- ≈ 1), two of the roots intersect, to allow 247

the film thickness to continue to decrease to the right of the pool (cf. Refs. [10,39]). The intersection 248

(i.e., the presence of a double root) implies that 249

q = 1
4*− 1

2

[(
β2 + 4

3

) 3
2 + 2β − β3

]
, β = *

1
2 Bi, (40)

as illustrated in Fig. 3(a). For β ≪ 1, we recover the Newtonian result q ∼ 1
4*− 1

2 ( 4
3 )

3
2 . When β ≫ 250

1, we enter instead a plastic limit (cf. Sec. III C) with q ∼ Bi. When n < 1, similar predictions 251

follow from demanding 252

Q(η, sin θ ) − q = 0 and
∂

∂η
Q(η, sin θ ) = 0, (41)

although the results are not explicit and must be found by solving an algebraic problem numerically. 253

As long as Bi*
n

n+1 ≫ 1, the second relation in Eq. (41) can be solved in the limit Y ≪ 1, to find 254

Y ∼ [(2 + n−1)*η]n ∼ [(2 + n−1)*Bi]n, and the first relation then implies that 255

q ≈ Bi + 1
n + 1

[
n

(2n + 1)Bi*

]n

. (42)

These results indicate that η = O(q) over the film, which is small when there is a significant pool 256

near the bottom of the cylinder. Consequently, the fluid is mostly contained in the pool, and so 257

4
3
ηmax

√
2 f ηmax ∼ π or ηmax ∼

(
9π2

32 f

) 1
3

, (43)

which is independent of all parameters but f . The pool solutions plotted in Figs. 2–7 have not yet 258

reached the limit in Eq. (43), and still depend on Bi and *. To advance past the limitations of 259

Eq. (43), we keep track of the contribution of the residual film to the fluid area. In particular, by 260

taking η ≈ q over the film, and retaining its contribution to the constraint (33) [i.e., adding 2πq to 261

the left of the first relation in Eq. (43)], we arrive at 262

ηmax ∼
[

9π2(1 − 2q)2

32 f

] 1
3

. (44)

Note also that the peak position, where - = sin θmax if |Sηθθθ | ≪ 1, follows from solving 263

q = Q(ηmax, sin θmax), (45)

or Eq. (39) if n = 1. Approximately (when Y is small and ηmax ≫ q), we have 264

sin θmax ∼ Bi
ηmax

+
[

(n + 1)Bi

(2n + 1)*η
2+ 1

n
max

] n
n+1

. (46)

The predictions from Eqs. (40), (44), and (46) are included in Fig. 3, and those from Eqs. (42), 265

(44), and (46) in Fig. 4. The predictions for the flux in Eq. (40) or Eq. (41) follow from discarding 266

the O( f ) and surface tension terms from Eq. (34), a relatively accurate approximation as seen in 267

Fig. 3(c). By contrast, the cruder approximations leading to Eqs. (42), (44), and (46) introduce 268

noticeable discrepancies with the numerical solutions in Figs. 3(b) and 3(c) and 4(b)–4(d). 269

Finally we comment on the structure of the transition layers between the pool and residual film. 270

In Figs. 2 and 4–7, the layer to the right contains mild undulations owing to the importance of 271

surface tension; by analogy with the Newtonian problem, the asymptotic structure of these standing 272

capillary waves is likely complicated [10], although the impact of the yield stress is not known. 273

Nevertheless, these undulations disappear once the surface tension parameter S becomes sufficiently 274

small (cf. the Appendix), leaving a relatively smooth transition. The layer to the left of the pool is 275
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more complicated: here the solutions with surface tension (S > 0) again pass through a wavetrain. In276

the viscoplastic problem, this wavetrain takes a distinctive form, with the curvature ηθθ converging277

to decaying sawtooth wave (see Figs. 6 and 7), as explored further in a related problem by Jalaal278

et al. [26,27]. The convergence to the limit S → 0 is also further obscured by the presence of279

discontinuities in surface slope for S = 0 (see Fig. 5 and the Appendix), which must be smoothed280

on a sufficiently small scale by surface tension whenever S is finite.281

C. Plastic limit282

The solutions presented above indicate that the most significant effect of the yield stress arises283

at the slowest rotation rates (* ≫ 1): as evident from Fig. 4 and Eq. (46), the viscoplastic fluid284

coating converges to a shape with finite slope in this limit. This feature contrasts sharply with the285

Newtonian problem, for which the free surface must become horizontal when surface tension is not286

significant.287

For fluid with a yield stress, * → ∞ actually corresponds to the “perfectly plastic” limit,288

wherein the yield stress dominates the viscous stress except over a thin boundary layer adjacent289

to the cylinder. That is, Y → 0, with the pseudoplug spanning most of the fluid depth and a good290

fraction of the residual film fully plugged up. Because Y → 0, the yielded regions of the limiting291

state satisfy η ≈ Bi/|-|, or the ODE,292

ηθ ≈ Bi − η sin θ

f η cos θ
, (47)

when surface tension is neglected. This ODE can be integrated from a yield point θ = θL at the left293

border of the pool to the right-hand yield point θ = θR , which approaches θ = 1
2π in the plastic294

limit. The slope is discontinuous at θL , but smoother at θR (cf. Figs. 2, 6, and 7). The position of295

the left-hand yield point θL must be selected to satisfy the constraint (33) (practically, this can be296

accomplished by adopting a trial value for θL , computing the solution and the implied fluid area,297

then performing Newton iteration until the constraint is satisfied). Sample solutions constructed in298

this fashion are illustrated in Fig. 8. With surface tension, the construction is more complicated in299

view of the behavior near the left-hand yield point [cf. Fig. 6(d)].300

For f ≪ 1, the pool is approximately given by Eq. (38) [as follows from neglecting Bi on the301

right-hand side of Eq. (47) and taking θ ≪ 1], whereas the film is given by η = Bi/ sin θ [dropping302

the left-hand side of Eq. (47)]. The pool then has the maximum depth in Eq. (43), or more accurately303

Eq. (44) with q = Bi, and an almost flat surface with a finite inclination given by sin θmax = Bi/ηmax304

[see Figs. 8(b) and 8(c)]. These results can be seen much more readily by first observing that,305

given the fill fraction f , the maximum depth of the segment of the drum occupied by the pool is306

approximately Eq. (43), or Eq. (44) if the residual film is taken into account. Then, per unit width,307

the net gravitational force on the central cross-section of the segment (through θ = θmax) has an308

angular component ρgĥmax sin θmax that must be largely balanced by the yield stress, τY . That is,309

sin θmax = τY

ρgĥmax
≡ Bi

ηmax
. (48)

This result mirrors that for the onset of flow in a uniform sheet down an incline, which has been310

suggested as a practical rheometer [19]. Similarly, one could envision using a slowly rotating drum311

to infer yield stresses.312

The second term in Eq. (42) illustrates how corrections to q arise at O(*−n). As can be seen313

from combining Eqs. (42) and (44), this suggests that ηmax and θmax ∼ sin−1(Bi/ηmax) also contain314

corrections terms of that order. Thus, ηmax and θmax should converge to the plastic limit at the315

rate *−n, as appears to be borne out in Figs. 8(c) and 8(d), in which these quantities are plotted316

against *−n. However, as evident from the second term on the right of Eq. (46), there are also317

potentially larger corrections of O(*− n
n+1 ). In fact, these corrections, which do ultimately control318

the convergence to the plastic limit, are hidden at relatively small values of *−n in Figs. 8(c) and319
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FIG. 8. (a) Solutions in the plastic limit for f = 0.055, 0.064, 0.0747, 0.0838, and 0.1, with S = 0 and
(n, Bi) = (0.38, 0.158); the stars indicate the yield points. The solutions are replotted as they would appear in
the drum in panel (b), with the dashed lines indicating the approximation of the pool as a segment given by
Eqs. (A2) and (48). (c) Peak depth ηmax and its position θmax plotted against f . The dotted lines show Eqs. (43)
and (48); the improvements in Eqs. (44) and (A2) are shown by dashed and dot-dashed lines, respectively. The
stars indicate the values of f shown in panel (a). (d, e) Peak depth ηmax and its position θmax plotted against
*−n for the same values of f as in panel (a). The limits for * → ∞, from panel (b), are indicated by stars.

8(d). Instead, a conspiracy between the parameter settings ensures that the intermediate rate of 320

convergence *−n, or !n in terms of the dimensional rotation rate, is more obvious. 321

IV. DRAINAGE SOLUTIONS 322

If the flux function Q(η,-) in Eq. (32) is modified to delete the first term, the background rotation 323

of the cylinder is removed (the scalings of the problem then employ an arbitrary rate !, which could 324

be removed by another scaling of time; we avoid this extra rescaling here). The evolution equation 325

then models the gravitationally driven drainage of the fluid coating. For a viscous fluid, the outcome 326

of such drainage is a flat pool at the bottom of the cylinder with an ever-thinning residual film 327

elsewhere. When there is a yield stress, however, drainage ends with pools with finite free surface 328

slopes, analogous to the slumped states resulting from dambreaks on flat surfaces [4,5,30,32,35], 329

together with a residual film of finite thickness. 330

A. Viscous (and power-law) drainage 331

Solutions for viscous drainage [(n, Bi) = (1, 0)] are shown in Fig. 9. These initial-value prob- 332

lems commence with either a uniform film [η(θ , 0) = 1
2 ] or a state corresponding to a steadily 333

rotating solution (with * = 1), simulating the sudden stop of the cylinder. The latter is left-right 334

asymmetrical at the outset, but the solution quickly symmetrizes and the long-time behavior of both 335

solutions is similar. In particular, a slowly growing pool forms the bottom of the cylinder, as a 336

residual film slowly drains downwards. 337

The long-time drainage solutions can be described analytically, as follows. First, over the pool, 338

- ∼ sin θ + f ηθ cos θ ∼ 0, with the approximate solution in Eq. (38). Second, over the film in the 339

right-half of the cylinder (0 < θ < π and sin θ > 0), we have - ∼ sin θ and the evolution equation 340

003300-14



FH10202 PRFLUIDS February 6, 2024 11:23

VISCOPLASTIC RIMMING FLOW INSIDE A ROTATING …

FIG. 9. Two viscous drainage solutions for f = 0.0838 and S = 10−4 (* = 1). The initial conditions are
(a) η(θ , 0) = 1

2 and (b) a steady rotating solution with * = 1. The residual film is scaled by η(π , t ) in panel
(c), and the time series of η(π , t ) is plotted in panel (d). The times of the snapshots in panels (a, b), which
increase from blue to red, are plotted as dots in panel (d); the circles show the slightly fewer snapshots plotted
in panel (c). The dots in panel (c) and gray dashed line in panel (d) show the prediction from Eq. (50) with
n = 1.

for Bi = 0 reduces to341

ηt − *[η2+ 1
n (sin θ )

1
n ]θ ∼ 0 (49)

[the long-time solution is symmetric, with η(θ , t ) = η(−θ , t )]. We note the separable solution,342

η ∼
[

n
(2n + 1)*t

(sin θ )−
n+1

2n+1

∫ π

θ

(sin θ )−
1

2n+1 dθ

] n
n+1

, (50)

which is compared to late-time numerical solutions in Fig. 9(c) for n = 1. The viscous film therefore343

drains as t− 1
2 , as seen in Fig. 9(d). For n < 1, and the fluid becomes more shear thinning, the film344

drains more slowly as t−n/(n+1).345

B. Drainage with a yield stress346

Sample drainage solutions with a yield stress are displayed in Fig. 10. In the first of these, a flat347

pool at the bottom of the cylinder is suddenly rotated clockwise by 90◦, and then allowed to slump348

to rest. The slump leaves behind a thin residual layer held at the yield stress (with η ≈ Bi/| sin θ |),349

spanning the location of the original pool. To generate a second solution, the final state from this350

slump is then rotated again by 90◦, and left to slump again. Repeating this exercise two more times351

then gives four rotate-and-slump solutions, the final states of which are shown in Fig. 10(b). As the352

slumps are sequentially rotated, more fluid is left coating the cylinder and the area of the pool slowly353

decreases. For the final rotate-and-slump, the slumping fluid encounters the residual film left by the354

first slump on its way to the bottom of the cylinder.355

The rotate-and-slump scenario leads to fluid slumping in one direction and an asymmetrical356

final deposit. Other examples, with less asymmetry are shown in Figs. 10(c) and 10(d). In these357

two cases, the initial conditions correspond to steady solutions for a rotating drum at two different358

rotation rates, each simulating a sudden stop. Because these solutions feature both an offset pool and359

a residual film thickened by rotation, when the fluid begins to drain, flow occurs down both sides360

of the cylinder. For the slower example in Fig. 10(c), the drainage down the left side of the cylinder361
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FIG. 10. Drainage solutions for ( f , Bi, n, S) = (0.0838, 0.158, 0.38, 10−4). In panel (a), a flat pool at the
bottom of the cylinder is suddenly rotated clockwise by 90 degrees; shown are snapshots of η(θ , t ) as the fluid
slumps back to rest (from blue to red). The black dashed line shows η ∼ Bi/| sin θ |, and the dots plot (38).
In panel (b), the final state is plotted, along with three others generated by successive rotate-and-slump events
(see main text, with the progression plotted from green to blue). In panels (c, d), slumps from steady states in
rotating drums are used (respectively, * = 684 and 68.4), simulating sudden stops. For panel (e), the slump
occurs from a uniform coating [η(θ , 0) = 1

2 ]. The right-hand insets show the solutions as they would appear
in the cylinder, and the insets on the left show the time series of η(0, t ), with the stars showing the times of
the snapshots in the main panels. For the solutions in panels (a) and (b), to avoid any issues with contact lines,
a thin prewetted film of thickness 10−2 is included to ensure that η(θ , 0) > 0 everywhere. The black dots in
panels (c) and (e) plot the results predicted in the plastic limit for S = 0 [i.e., from integrating Eq. (47)] subject
to either η = Bi at the left of the pool and θ = 1

2 π (c), or symmetry about θ = 0 (e).

is mild and the final deposit is almost as asymmetric as those from the rotate-and-slump examples. 362

More drainage arises on the left for the faster example in Fig. 10(d). 363

When all the drainage takes place down one side, the final state is the same as the plastic limit 364

(* → ∞) of the steadily rotating solutions of Sec. III C, except for any differences arising over the 365
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FIG. 11. Images of the rotating drum, with fits to the surface profile of an enclosed Carbopol suspension,
dyed blue with food colouring. In panels (b, c), with rotation rates are ! = 0.024 rad/s and 0.14 rad/s,
respectively, two fits are shown. The solid line shows a fit to the profile along the front face; the dashed line
is a fit with a weaker threshold that captures more of the profile further inside the drum as well as the residual
film outside the pool. The two fits are mostly the same in panel (b), but at the faster rotation speed in panel
(c), the three-dimensionality of the front edge of the pool becomes more pronounced; the second fit takes some
account of this to furnish a more averaged profile. An oblique view of a three-dimensional surface profile is
shown in panel (d), along with some surface wrinkles generated by the flow dynamics. f = 0.0838.

plugged sections of the residual film. This correspondence arises because, for final solution from the366

initial-value problem to approach rest, the yield condition Y → 0 must be reached over the flowing367

regions, implying Eq. (47). The limiting, steadily rotating solution for * → ∞ is also plotted in368

Fig. 10(c). Despite the common form expected for the solutions over the yielded sections of the369

film, differences can remain over the plugs, since the rotating solution has η = Bi here, whereas the370

drainage solution may have η < Bi.371

Finally, the last example of Fig. 10(e) shows a slump from a uniform initial coating [η(θ , 0) = 1
2 ].372

This example is necessarily left-right symmetrical. The maximum depth also now no longer arises at373

the center of the pool, where, instead, a mild minimum arises at the meeting of the counter-flowing374

drainage currents. The final state in this case is more directly computed by neglecting surface tension375

and integrating the ODE (47) from a trial value of η at θ = 0, to the right and up to to θ = 1
2π . As376

the integration of Eq. (47) proceeds past the pool, the solution converges to the residual film, with377

η ≈ Bi/ sin θ , which can then be used to continue the solution past the singular point θ = 1
2π (as in378

the construction of the Appendix) and up to the plug at θ ≈ sin−1(2Bi), where η = 1
2 . The solution379

for θ < 0 is then given by reflection. This computation can be iterated again, adjusting the value of380

η at θ = 0, such that the constraint (33) is eventually satisfied. The dots in Fig. 10(e) show the result381

of this construction. There is a minor difference between the construction and the final snapshot of382

the initial-value computation because surface tension plays a slight role near the center of the pool383

for the latter (cf. Fig. 5), smoothing out the corner at the local minimum.384

V. EXPERIMENTS385

To complement the theoretical analysis, we conducted some experiments using an aqueous386

suspension of Carbopol in an acrylic cylinder; see Fig. 11. The Carbopol (Ultrez 21) suspension was387

neutralized with sodium hydroxide and had a concentration of about 0.2% and density ρ ≈ 1 g/cm3.388

A Herschel-Bulkley fit of the flow curves measured in a rheometer (Kinexus, Malvern, fitted with389
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FIG. 12. (a) Experimental syrup profiles at the dimensionless rotation rates, *−1 = 3µ!/(ρgR f 2 ) =
(0.21, 0.43, 0.67) (from green to blue), with f = 0.0687. (b) Maximum depths ĥmax and (c) angular positions
θmax plotted against *−1. The open stars correspond to the drum with inner radius and width, (R,W ) =
(27.8, 13.1) cm; the filled stars correspond to a wider drum with (R,W ) = (28.8, 20) cm. The solid and dashed
lines in panels (b, c) show equivalent theoretical results with S = 10−5 and S = 0, respectively. The red circle
in panel (b) shows the depth expected for ! = 0. The fits of the surface in the experiments are all to the syrup
profile as observed at the front face of the drum.

roughened parallel plates) gave the parameters, 390

τY = 18 Pa, K = 13 Pa sn, n = 0.38. (51)

The inside surface of the cylinder was roughened with 60 grit sandpaper in an effort to eliminate the 391

effective slip that Carbopol suffers against acrylic surfaces [8,18,20]. The front and back surfaces 392

were left smooth, however, to allow the Carbopol to slide more freely over them, and try to maintain 393

a more two-dimensional flow pattern. The cylinder, with inside diameter of 27.8cm and a length of 394

13.1cm, was placed on friction rollers attached to a stepper motor to drive a prescribed rotation. 395

To conduct a set of experiments, fluid was first loaded into the drum up to a given fill fraction. 396

The drum then sealed, to minimize evaporation, and its rotation rate was first increased and then 397

decreased in a step-like manner to sweep over a range of !. At each rotation rate, the free surface 398

was imaged through the clear, front, acrylic face. Figure 11 shows two examples illustrating our 399

fit of the surface profile using image processing (based on a threshold intensity for the difference 400

between the blue and red channels of the RGB image). Whenever the fluid drained into a pool near 401

the bottom of the cylinder, a steady state was reached. Several images were taken of such steady 402

states and the extracted profiles combined to furnish an average. Except at the lowest rotation rates, 403

these averages were taken over at least two rotations of the drum. For the lowest rotation rates, each 404

average spanned more than thirty minutes, and the sweep in rotation rate performed over the course 405

of hours. 406

As a comparison against a suite of control experiments with a Newtonian fluid, we also conducted 407

tests in which the cylinder was filled with golden syrup (density ρ = 1.54 g/cm3, viscosity 11 408

Pa s) to a fill fraction of f = 0.0737. Results for these controls are shown in Fig. 12. Displayed 409

are a selection of measured depth profiles, and the peak depth and its position, plotted against 410

rotation rate. The figure includes corresponding results from the theoretical model (for n = 1 and 411

Bi = 0, adopting either S = 0 or S = 10−5, the latter corresponding to a dimensional surface tension 412

parameter of 0.5 Nm−1; the overlap of the two theoretical lines highlights how the results are 413

insensitive to surface tension effects). There is some agreement between theory and experiment, 414

although the location of the pool is somewhat shifted between the two, particularly at higher rotation 415

rate. Better agreement is reported by Tirumkudulu and Acrivos [44] who used a different drum 416

geometry and fluid, but similar fill fractions. In particular their drum was rather longer than ours 417

(in comparison to drum radius). It is therefore possible that the three-dimensionality of the flow 418
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FIG. 13. (a) Experimental Carbopol profiles for f = 0.0838 at the rotation rates, ! =
(0.012, 0.036, 0.097, 0.24, 0.44) rad/s, corresponding to * = (457, 152, 57, 23, 12) (from blue to green)
and (n, Bi) = (0.38, 0.158). The dots show the profiles fitted for the front face; the dash-dotted lines show
the fits including more of the interior (see Fig. 11). (b) Maximum depths ĥmax and (c) angular positions θmax

plotted against rotation rate !. The solid and dashed lines in panels (b, c) translate the theoretical results
(with S = 10−4 and S = 0, respectively) from Fig. 4; the stars and triangles show the two fits (front face and
including interior, respectively).

field is responsible for the discrepancy in our experiments. In fact, there were noticeable residual419

films of syrup coating annuli on the front and back faces of the cylinder, the length of the pool was420

comparable to the drum width, and the shape of the pool became visibly more three dimensional in421

the experiments as the rotation rate increased (cf. Fig. 11). Nevertheless, repeating the experiments422

in a longer drum did not substantially change the results for the peak depth and its position; see423

Fig. 12.424

Figure 13(a) shows a sequence of surface profiles for increasing rotation rate for experiments with425

Carbopol at fill fraction f = 0.0838. These tests correspond to a set of values for the dimensionless426

parameter * similar to those in Fig. 4. Also plotted are the (dimensional) maximum depth, ĥmax,427

and its angular location, θmax, against ! for a much wider set of experiments. Again, there is some428

qualitative agreement between the experimental results in Fig. 13 and those predicted theoretically,429

but the two disagree quantitatively. As in the Newtonian case, this disappointment may arise partly430

because of the three-dimensionality of the experimental flows. The effect of the third dimension is431

illustrated by the comparison between the profiles extracted at the front face of the drum, and those432

found when the thresholding in the image analysis is weakened to capture more of the profile further433

inside the drum as well as the residual film outside the pool (Fig. 11). At lower rotation rates, the434

two profiles largely match, but they disagree significantly for ! > 0.1 rad/s.435

The discrepancy between theory and experiment may also arise because the fill fraction in the436

experiments, f = 0.0838, corresponds to ϵ ≈ 0.3 in the asymptotic theory. The relatively large437

size of ϵ suggests that the theory may not be very accurate. Indeed, the surface slopes observed438

experimentally were fairly steep, potentially invalidating the shallow-flow theory. Imaging problems439

(the need to view the flow through the sidewall and the local meniscus there) and the incomplete440

elimination of wall slip may also both contribute.441

Experimental results closer to the plastic limit (! → 0) and for varying fill fraction are shown442

in Fig. 14. Here, following the theoretical predictions in Fig. 8, we plot the maximum depth and its443

angular position, hmax = ĥmax/R ≡ f ηmax and θmax against !n. According to the theory, this power444

of rotation rate should straighten the data into straight lines. Figure 14 does indeed suggest this to be445

the case: the data is certainly straightened in comparison to a plot using !, although any exponent446

between 0.3 and 0.45 is as successful. Linear fits to the data plotted in this way can be used to447

estimate the limiting maximum depth and its position for ! → 0, as also shown in the figure. The448
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FIG. 14. Experimental results for Carbopol with varying fill fraction ( f = 0.055, 0.064, 0.0747, 0.0838
and 0.1, from green to blue), showing (a) maximum depth hmax = ĥmax/R ≡ f ηmax and (b) position θmax plotted
against !n (with ! in rad/s). The dotted lines show linear fits, and the insets plot the implied intercepts (for
! → 0) against f . The solid lines in the insets show Eqs. (44) and (48) (with q = Bi).

limit for the maximum depth compares somewhat favourably with the prediction in Eq. (44) (with 449

q = Bi), but the experimental results for the position are again too high in comparison to Eq. (48). 450

Finally, Fig. 15 displays some experimental results for the drainage problem. As predicted theo- 451

retically, the final state reached after drainage supports finite surface slopes and has a varying degree 452

of left-right symmetry depending on how the draining flow was initiated, and, in particular, how 453

much of the fluid drained down each side. The experiments shown in Fig. 15 roughly correspond to 454

the theoretical solutions plotted in Fig. 10. In particular, shown are a succession of rotate-and-slump 455

events, or adjustments taking place when a rotating cylinder, with its fluid coating in steady state, 456

is abruptly stopped. For the final example of the latter three tests, the cylinder was rotated at 457

sufficiently high speed that the fluid coating became relatively uniform; the drainage that resulted 458

after stopping the cylinder was then almost left-right symmetric. 459

VI. CONCLUSIONS 460

In this paper, we have considered the viscoplastic version of the problem of viscous rimming flow 461

around a rotating drum. Our analysis extends some earlier work that considered relatively rapidly 462

rotating coatings of either power-law or Bingham fluids [28,41]. In particular, we allowed the fluid 463

to be described by the Herschel-Bulkley constitutive law and to rotate more slowly, so that the fluid 464

mostly gathers into a pool near the bottom of the drum. The main effect of introducing a yield stress 465

is to arrest and thicken the residual film coating the cylinder outside the pool, thereby drawing more 466

fluid out of the pool and forcing that feature to ascend up the side of the drum. We complemented the 467

theory with some experiments with a Carbopol suspension, finding qualitative, but not quantitative 468

agreement. The discrepancies between theory and experiment may result from, in the experiments, 469

three-dimensional flow fields (the theory is two-dimensional), the presence of wall slip [8,18,20], or 470

overly steep surface slopes (we employ a shallow flow theory). 471

A distinctive feature of shallow viscoplastic fluids is the development of a superficial, plug-like 472

flow. In most situations, this plug-like region cannot be rigid because there must also be weak strain- 473

ing motion along the film, leading to previous work referring to this region as a pseudoplug [2,6,47]. 474

Such pseudoplugs also feature in the viscoplastic rimming flows considered here. Nevertheless, in 475

some settings, the pseudoplug can itself fall below the yield stress, to lead to genuine floating plugs 476

[3,22,31]. In the curved geometry of the shallow coating flow, it is more difficult to understand how 477
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FIG. 15. Experimental drainage tests with Carbopol; f = 0.0838 and (n, Bi) = (0.38, 0.158). In panel (a),
a mound of material emplaced at the bottom of the cylinder was rotated clockwise by about 90◦ to force an
adjustment to rest (green curve). The new mound was then rotated again twice (by a similar angle) to prompt
two more adjustments (each leaving a longer residual coating behind; solid lines, from green to blue). The
cylinder was then rotated three more times, with the fluid now encountering the coating from the previous
rotate-and-slump events (dashed lines, from green to blue). In panels (b–d), steady-state cylinders rotating with
rates of ! = 0.008 rad/s, 0.08 rad/s and 2 rad/s were abruptly stopped, leaving the fluid to drain (outlines
from blue to red). In panel (d), the dots show the outcome of a repetition of the experiment. In all panels, the
shaded region indicates the uniform film expected with a fill fraction of f = 0.0838, and the units are in cm.

the pseudoplug could become truly rigid in the present context, except near the angular positions478

where the speed of the pseudoplug becomes relatively flat near an extremum. Such positions do arise479

near the center of the pool, suggesting that this feature could partly plug up. In fact, it is possible480

to extend the analysis presented in Refs. [3,22,31,47] to explicitly build in the plugged parts of481

the pool. It is also conceivable that when the film is no longer shallow (at higher fill fractions and482

slow rotation rates), the entire pool plugs up. Indeed, in some experiments that we conducted with a483

thicker Carbopol suspension (not reported in the main text), pools with complicated surface features484

could be emplaced in the drum; these features survived the rotation of the drum, persisting for the485

length of the experiment.486

Rotating drums are popular devices to study the flow of various materials, besides viscous487

fluids [42]. In particular, rotating drums have been used to help formulate constitutive theories488

for granular media [36]. At low rotation rates, granular flow in rotating drums becomes unsteady,489

continuous avalanching (or “rolling”) becoming replaced by episodic avalanching (“slumping”;490

e.g., Refs. [7,42]). Although this transition may be a unique feature of a granular medium, one of491

our interests in conducting the experiments of the present work was to explore whether nonideal492

viscoplastic effects near the yield stress [6] might prompt analogous or novel, unsteady flow493

dynamics at very low rotation rates. None were evident for the Carbopol suspension, suggesting494

that a fluid with more hysteretic material behavior might be needed in the drum [17,24,38]. At495

higher rotation rates, however, surface features with a relatively small spatial scale did become496

evident for the Carbopol [Fig. 11(d)]. These features resembled the wrinkling of elastic or viscous497

films [12,40,46] and may have some correspondence with surface patterns seen in other viscoplastic498

flows [34].499
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Finally, for Newtonian rimming flow, it has been of interest to move beyond the Stokes limit 500

and add inertia to the thin film problem to explore the potential for hydrodynamic instability (e.g., 501

Ref. [9]). One could also continue along this vein for viscoplastic rimming flow. Indeed, one expects 502

that inertial visoplastic surges should become unstable and time-dependent at sufficiently high 503

speeds, a possibility that does not appear to have been recorded in the conveyor belt experiments of 504

Chambon and co-workers, but was noted in related numerical computations [31]. Time-dependent 505

motions were observed in our rotating drum at high rotation rates, but at these speeds the flow was 506

also fully three-dimensional and well beyond the scope of our two-dimensional theory (fluid flowed 507

sideways, collecting into localized patches that could be carried all the way around the drum or 508

dripped off the upper surface). 509
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APPENDIX: STEADY SOLUTIONS WITHOUT SURFACE TENSION 512

Without surface tension, the steady solutions, with q = Q(η,-) = const., satisfy a first-order 513

differential-algebraic problem. For the Newtonian problem, Tirumkudulu and Acrivos [44] pointed 514

out some of the numerical difficulties inherent in the Newtonian version of this problem. For 515

small f , however, the solutions can be found using a relatively simple shooting technique: we first 516

parametrize the solution by ηmax = η(θmax), the height of the peak in the pool. Because the flux is 517

given by Eq. (40) for n = 1, or more generally by Eq. (41), the peak location θmax (where ηθ = 0) 518

follows from q = Q(ηmax, sin θmax). We may then integrate the ODE for η(θ ) to the left and right of 519

the peak. Progressing to the right, the pool ends when the solution reaches the residual film, dictated 520

approximately by q = Q(η, sin θ ), or Eq. (39) for n = 1. The integration can then be terminated 521

before reaching the singular point at θ = 1
2π , and the solution continued using the approximation 522

for the film. Further right, the film encounters a yield point where η = q, and the film plugs up 523

thereafter. To the left, the integration either again reaches the film solution, or hits another yield 524

point (again with η = q). Over the rigid sections, the film thickness maintains the value η = q, 525

until one reaches the other yielded section surrounding θ = π , where the solution is again given 526

approximately by q = Q(η, sin θ ). In the Newtonian case (Bi = 0 and n = 1), the strategy is the 527

same, but for the omission of any plugs. The last part of the exercise is to iterate the procedure, 528

adjusting the value of ηmax until the mass constraint (33) is satisfied. Sample constructions are 529

shown in Fig. 16. 530

Evidently, when the pool ends to the left at a yield point, the free surface slope becomes 531

discontinuous (see Fig. 5). This feature becomes smoothed by surface tension to generate the 532

viscoplastic wavetrain seen in Figs. 6 and 7, and discussed more thoroughly by Jalaal et al. [26,27]. 533

The transition from the pool to the film is smoother to the right, and only features undulations with 534

sufficient surface tension (cf. Fig. 5). 535

For * ≫ 1, we enter the plastic limit of the problem in which the bulk of the fluid flow is 536

controlled by the yield stress. In this situation, the pseudoplug fills most of the layer, Y → 0, and 537

q → Bi (see Sec. III B). The solution can then be written down more explicitly: the residual film 538

is mostly plugged up, with η = q = Bi, except over the region spanning the edge of the pool to 539

θ = π . Here, and over the pool, the problem reduces to the ODE (47), with the approximate solution 540

discussed in Sec. III C. The contributions of each region to the constraint (33) is as follows: the 541

area of the pool is approximately 4
3ηmax

√
2 f ηmax (see Fig. 6), whereas the rigid section of the 542

residual film has area 3
2πBi. The yield section of the film extends from the right-hand border of 543

the pool, at position θmax +
√

2 f ηmax ∼ O( f
1
3 ) to 1

2π ; the corresponding area is then, to leading- 544

order, 1
3 Bi log f −1. The constraint then implies that 545

4
3ηmax

√
2 f ηmax + 3

2πBi + 1
3 Bi log f −1 = π , (A1)
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FIG. 16. Construction of steady solutions without surface tension for (a) Newtonian and (b, c) Bingham
fluid (parameter settings indicated). Beginning from the peak, we integrate left (blue solid) and right (red solid)
until the solution converges to one of the residual film solutions (gray dashed) or a yield point (red stars). Over
any plugs, η = q. The thin black line shows the constructed solutions. The dotted line shows the approximation
for the pool in panel (38). For panel (c), the steady solution is given approximately by Eq. (47) and the film
solution is just η ≈ Bi/| sin θ | or η ≈ Bi.

or546

ηmax =
(

π − 3
2
πBi − 1

3
Bi log f −1

) 2
3
(

9
32 f

) 1
3

. (A2)

This approximation fails for f → 0, corresponding to a fill-fraction regime where the left-hand edge547

of the yielded residual film has greatest area.548
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