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A B S T R A C T

Stokes’s second problem is reconsidered for three models of complex fluids: an elasto-viscoplastic fluid, a
thixotropic viscoplastic fluid and a discontinuously shear-thickening fluid. In each case, the Stokes-layer
dynamics is interrogated with a view to examining the signatures of the detailed rheology. Significant
deformations are possible below the yield stress for elasto-viscoplastic fluids as a result of the excitation of
elastic waves, particularly near resonances. Thixotropic fluids with viscosity bifurcations layer internally, but
surface-speed signatures mostly appear similar to those for simple yield-stress fluids. Stokes-layer oscillations
of discontinuous shear thickening fluids can prompt abrupt increases in viscosity, introducing sudden jumps
in surface speed. Pre-existing experimental results for layers of kaolin slurries in a motorized, oscillating tray
are reconsidered and compared with the results for elasto-viscoplastic and thixotropic fluids.
. Introduction

In Stokes’s second problem, a wall adjacent to a viscous fluid is
scillated back and forth to drive fluid motion; the ‘‘Stokes length’’
haracterizes the thickness of the region affected by the oscillating wall.
ithout lateral side walls, flow remains one-dimensional, a simplifi-

ation that has motivated a number of previous articles in which the
roblem was reconsidered for non-Newtonian fluids, partly with the
im of rheological inference (e.g. [1–5]). The purpose of the present ar-
icle is to continue in this vein and consider Stokes’s second problem for
hree other models of complex fluids: an elasto-viscoplastic fluid [6], a
hixotropic fluid [7], and a discontinuously shear-thickening fluid [8].

Rheological models that advance beyond traditional ideal viscoelas-
ic or viscoplastic formulations, such as the three considered here, are
ncreasingly prevalent in the modelling of complex fluids. Given the
omplexity of these constitutive models, it can be difficult to decipher
he impact or interaction between different features of the rheology
n these models, particularly if the flow is itself already somewhat
onvoluted. The aim of this work, therefore, is to focus on a canonical,
nd mathematically simple, fluid-mechanical problem, and to draw
ut and interpret the impact of different rheological features in this
etting. Specifically, we will find that all three rheological models
nrich the dynamics of the Stokes-layer problem, whilst retaining its
patial simplicity.

Our exploration of a elasto-viscoplastic fluid model follows directly
n from the theoretical analysis presented in [2]: by introducing elastic
ffects using the model proposed by Saramito [6], we gauge how

∗ Corresponding author.
E-mail address: njb@math.ubc.ca (N.J. Balmforth).

elastic recoil may impact the viscoplastic response of a fluid layer
to oscillatory forcing. Elasticity has previously been reported to be
important in related oscillatory flow problems for viscoplastic fluids [9–
11], although it was discounted in experiments with kaolin slurries also
reported by Balmforth et al. [2]. In fact, Balmforth et al. [2] attributed
discrepancies between theory and the kaolin slurry experiments to the
presence of thixotropy in that material, partly motivating our study
of thixotropic Stokes layers. We revisit Balmforth et al.’s conclusions
later in the present study, armed with insights gained from the current
theoretical analysis.

The third model fluid we consider is that of a discontinuously shear
thickening material [8]. This type of material provides an interesting
counterpoint to the other two fluid models in that it may abruptly jam
up at high shear rates, rather than plugging up at low shear rates.
For our analysis of the Stokes’s problem, we use a modification of the
model proposed by Wyart & Cates [12], that further allows for time-
dependent relaxation of the microstructural changes taking place under
an evolving shear rate [13–15].

2. Formulation

Consider a layer of complex fluid described by the Cartesian coor-
dinates, (�̃�, �̃�), that is supported by a rigid plane wall which undergoes
oscillatory motion along its length. We orientate the plane with the �̃�-
axis, so that �̃� = 0 corresponds to the moving wall, and assume that the
ttps://doi.org/10.1016/j.jnnfm.2024.105328
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driven flow remains one-dimensional with velocity (�̃�(�̃�, 𝑡), 0) at time 𝑡.
or a sinsoidal motion of the wall, we set

�̃�(0, 𝑡) = − cos𝜔𝑡, (1)

ssuming a no-slip condition always holds, where  and 𝜔 are control-
able parameters of the problem.

In the absence of any dependence on �̃�, the momentum equation for
he fluid layer reduces to

𝜕�̃�
𝜕𝑡

=
𝜕𝜏

𝑋𝑌

𝜕�̃�
, (2)

here 𝜏
𝑋𝑌

is the shear stress, which is related to the shear rate

̃̇𝛾
𝑋𝑌

= 𝜕�̃�
𝜕�̃�

, (3)

y a suitable constitutive law. Below, we explore three versions of this
aw, suitable for elasto-viscoplastic, thixotropic and discontinuously
hear-thickening fluids. Each of these laws possesses a characteristic
iscosity constant, 𝜇

𝑂
.

At the top of the fluid layer, �̃� = , we consider two possible
oundary conditions: either no-slip if there is another, stationary wall
here, so that �̃�(�̃� = ) = 0; or a stress-free condition 𝜏

𝑋𝑌
(�̃� = ) = 0 if

here is a free surface. Note that, given (2), the first of these conditions
mplies 𝜕𝜏

𝑋𝑌
∕𝜕�̃� = 0 at �̃� = .

To remove distracting dimensional constants from the equations, we
ntroduce the dimensionless variables,

̃ = 𝜔−1𝑡, �̃� = 𝑦, �̃� =  𝑢(𝑦, 𝑡),

̃
𝑋𝑌

= 𝜌𝜔 𝜏
𝑋𝑌

(𝑦, 𝑡), ̃̇𝛾
𝑋𝑌

= 

�̇�(𝑦, 𝑡), (4)

where

�̇�(𝑦, 𝑡) = 𝜕𝑢
𝜕𝑦

(5)

is the dimensionless shear rate and

 =

√

𝜇
𝑂

𝜌𝜔
(6)

represents the Stokes length for a Newtonian fluid with viscosity 𝜇
𝑂

.
The momentum equation (2) then becomes

𝜕𝑢
𝜕𝑡

=
𝜕𝜏

𝑋𝑌

𝜕𝑦
(7)

nd the bottom boundary condition is
𝜕𝜏

𝑋𝑌

𝜕𝑦
= sin 𝑡 at 𝑦 = 0. (8)

The two possible upper boundary conditions are
𝜕𝜏

𝑋𝑌

𝜕𝑦
= 0 or 𝜏

𝑋𝑌
= 0, at 𝑦 = 𝐻 ≡ 


. (9)

The initial conditions depend partly on which of the constitutive
laws is employed. Practically, we may differentiate the momentum
equation with respect to 𝑦 to arrive at an evolution equation for the
shear rate, demanding an initial condition for �̇�(𝑦, 0). For a no-slip
upper wall, 𝑢(𝐻, 𝑡) = 0, this initial condition must satisfy an additional
constraint because

∫

𝐻

0
�̇�(𝑦, 0) d𝑦 = [𝑢(𝐻, 𝑡) + cos 𝑡]𝑡=0 = 1, (10)

which leads us to choose

�̇�(𝑦, 0) = 1
𝐻

, (11)

corresponding to constant initial shear. For a stress-free upper surface,
we need not adopt this condition and take instead �̇�(𝑦, 0) = 0. Neither
choice is particularly significant as we are more interested in the
periodic states reached after relatively short transients. However, in the
 r

2 
case of the Bingham model, a special case of the elastic-viscoplastic
model considered next, it does constrain the initial shear stress. We
outline the remaining initial conditions later, once we establish the
forms of the constitutive laws that we employ. Some details of the
numerical schemes we use to solve each of the models are given
in Appendix A.

3. Elasto-viscoplastic fluid

For an elasto-viscoplastic fluid, we adopt a one-dimensional version
of Saramito’s model, which sets the (dimensional) shear stress equal to
a sum of polymer and solvent components:

̃
𝑋𝑌

= 𝜏(�̃�, 𝑡) + 𝛽𝜇
𝑂
�̇�(�̃�, 𝑡), (12)

where 𝜏(𝑦, 𝑡) is the polymer shear stress, and 𝛽𝜇
𝑂

is the solvent viscosity
(so that 𝛽 represents a viscosity ratio). The polymer stress satisfies the
dimensional equation [6]
1
𝜆
𝜕𝜏
𝜕𝑡

+ max(0, |𝜏| − 𝜏
𝑃
) sgn(𝜏) = 𝜇

𝑂

𝜕�̃�
𝜕�̃�

, (13)

where 𝜆 is a relaxation rate. Note that Saramito’s model is normally
posed with an upper convected derivative on the stress tensor, which
can activate nontrivial extensional stress components in addition to the
shear stress (cf. [1]). The presence of such normal stresses (and their
differences) implies that the yield condition, which is based on a von
Mises criterion in Saramito’s model, should encode more than just the
shear stress. In (13), however, we opted for simplicity and stated the
yield condition only in terms of 𝜏

𝑋𝑌
, which avoids the need to include

additional evolution equations for the normal stresses.
With our characteristic scalings, we now arrive at the model dimen-

sionless system,

�̇�𝑡 = 𝜏𝑦𝑦 + 𝛽�̇�𝑦𝑦,

De 𝜏𝑡 + max(0, |𝜏| − Bi) sgn(𝜏) = �̇� ≡ 𝑢𝑦,
(14)

where we have used 𝑦 and 𝑡 subscripts as shorthand for partial deriva-
tives. The two new dimensionless parameters are the Bingham and
Deborah numbers,

Bi =
𝜏
𝑃


𝜇
𝑂


≡
𝜏
𝑃

𝜌𝜔
& De = 𝜔

𝜆
, (15)

which characterize, respectively, the relative importance of plastic and
viscous forces, and the elastic response time relative to the timescale
of the forcing from the wall. As mentioned above, the initial conditions
are either

�̇�(𝑦, 0) = 𝐻−1 & 𝜏(𝑦, 0) = 𝐻−1 + Bi, (16)

or a no-slip upper wall, or �̇�(𝑦, 0) = 𝜏(𝑦, 0) = 0 for a stress-free surface.

.1. Sample solutions

Sample solutions for different values of the depth 𝐻 are shown in
igs. 1–3 for fixed Bi = 1 and 𝛽 = 0. Each figure contains solutions
or varying De , illustrating the impact of elasticity. Consider first the
ingham solutions with De = 0, which are similar to those provided
arlier in [2,5]. For the Bingham number Bi used in these figures,
he fluid mostly yields near the base but the cycle is punctuated by
riefer intervals during which the fluid freezes onto the moving wall.
he resulting plugs subsequently ascend through the layer. When the
op surface is free, these plugs expand, and the yield surfaces eventually
eet to leave the overlying fluid permanently plugged. Where the yield

urfaces meet and a yielded region disappears, there is an abrupt switch
n shear stress. For the shallowest depth 𝐻 shown here (Fig. 1), the
lug occupies the entire fluid depth during part of the cycle, pinning
he surface speed to the base speed; with larger depths (Figs. 2 and 3)

yielded region always intervenes somewhere within the fluid layer
endering the surface speed into a sawtooth shape.
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Fig. 1. Elasto-viscoplastic Stokes layers with Bi = 1, 𝛽 = 0, 𝐻 = 2, for (a) a free-slip upper surface, and (b) a no-slip top surface. Solutions for three Deborah numbers are
displayed, De = 0, 0.01, 0.1, increasing from top (De = 0) to bottom. Shown are time series of (a) 𝑢(𝐻, 𝑡) (solid) and 𝑢(0, 𝑡) (dashed), and (b) 𝜏(𝐻, 𝑡); density maps below show
𝜏(𝑦, 𝑡). The dashed lines show the yield surfaces and the green lines indicate contours of constant speed.

.

Fig. 2. As for Fig. 1, but for 𝐻 = 5. The thicker (blue, dot-dashed) lines plotted on the density plots in the left column indicate local elastic ray paths. .
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Fig. 3. As for Figs. 1 and 2, but for 𝐻 = 14; 𝑢(0, 𝑡) is not plotted in (a). Again, the thicker (blue, dot-dashed) lines plotted on the density plots in the left column indicate local
elastic ray paths.
For a no-slip upper wall, the plugs can either narrow or expand as
they ascend through the layer; for the smaller two depths, the yielded
regions reach the surface, but for the largest depth these regions again
disappear to leave a plug at the top. The disappearance of a yielded
region (either within the layer or at the top wall) again prompts a jump
4 
in stress. As a result of these switches, the top shear stress resembles a
square-wave.

For finite relaxation times, De > 0, the structure of the solutions
becomes somewhat different, although in all the cases, the solutions
share the same alternation between yielding and freezing at the base.
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Fig. 4. Elasto-viscoplastic layers with a stress-free surface for (a) (𝐻,Bi) = (2, 4) and (b) (𝐻,Bi) = (5, 15); (De , 𝛽) = (0.1, 0). Upper panels show 𝑢(𝐻, 𝑡) + cos 𝑡 (blue) and 𝜏(0, 𝑡) (red);
lower panels display density plots of 𝜏(𝑦, 𝑡) with superposed constant-speed contours (green). In (a), fluid remains unyielded throughout; for (b), resonantly driven elastic waves
prompt yielding within the yield surfaces shown by dashed lines. The lighter lines in (a) show a second solution with De = 0.01. The lighter lines in (b) show two more solutions
with Bi = 10 and 20.
A key difference with the Bingham case is that stress signals begin to
translate in space over the plugged regions when De > 0. To understand
this feature, we combine the two equations in (14) into the nonlinearly
damped wave equation,

De 𝜏𝑡𝑡 + 𝜏𝑡𝛩(|𝜏| − Bi) = 𝜏𝑦𝑦, (17)

where 𝛩(𝑥) denotes the Heaviside step function. The damping switches
off when 𝜏 falls below the yield stress, leaving a linear wave equation
for the shear stress with a wave speed of De − 1

2 .
The elastic (first) term in (17) implies that the sudden switches in

stress which arise for the Bingham model must become smoothed by
elasticity (see also [10,11]). In some cases, the resulting sudden, but
smoothed, changes in stress excite a translating elastic response that
follows the ray paths 𝑦±De − 1

2 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (see the blue lines drawn in
Figs. 2 and 3), leading to a sawtooth-like pattern in the space–time plots
of the stress field. For the shallower layers in Figs. 1 and 2, these elastic
disturbances (which are similar to flow structures reported in [11]) are
damped rather abruptly once stresses return to levels exceeding Bi and
the fluid yields again. For the deeper layers in Fig. 3, the transmitted
stresses only weakly yield the upper regions, generating checkerboard
patterns on the space–time plots. The surface signals in 𝑢(𝐻, 𝑇 ) or
𝜏(𝐻, 𝑡) become shifted and more structured as a result of this dynamics.

Note that in the viscoplastic limit, a free slip upper surface has
the feature that the entire layer can remain rigid and unyielded when
Bi > 𝐻 . The fluid layer then oscillates like a rigid solid. For De >
0, however, an elastic deformation still arises, as illustrated by the
solution on the left of Fig. 4 with De = 0.1. In this case, the driving
by the wall excites elastic oscillations, leading to a multiply periodic
surface signal, with an amplitude set by De (cf. the second solution
included in Fig. 4(a) with De = 0.01). Nevertheless, as illustrated by
the contours of constant speed added to the space–time density plot of
𝜏(𝑦, 𝑡) in Fig. 4(b), the layer still oscillates sideways largely as whole.

More dramatic elastic behaviour below the yield stress is also pos-
sible. The non-dissipative wave equation that applies when 𝜏 fails to
breach the yield stress possesses the elastic normal-mode solutions,

𝜏 ∝ cos𝜔𝑛𝑡 cos 𝑘𝑛𝑦, 𝜔𝑘 =
𝑘𝑛

√

De
, (18)

with 𝑘𝑛 = (𝑛 − 1
2 )𝜋∕𝐻 for the free-surface case and 𝑘𝑛 = 𝑛𝜋∕𝐻 for

no-slip. Such modes can be resonantly driven by the motion of the
underlying wall, as in viscoelastic Stokes layers [1,3]. If the condition
for resonance is met, 𝜔𝑛 = 1, stresses are then expected to grow linearly
with time until fluid yields, at which point dissipative viscoplastic
deformation can arrest growth.
5 
Fig. 5. (a) Maximum surface speed and relative surface speed against 𝐻 for Bi = 1
and De = 0, 0.00316, 0.01, 0.0316 and 0.1. (b) The phase of the maximum surface
speed, relative to the maximum base speed (which occurs at 𝑡 = 𝜋). The dashed lines
shows the results for the Bingham (De = 0) model.

The shallowest layer for which resonance occurs is 𝐻 = 𝐻
𝑅

, with
𝐻

𝑅
= 𝜋∕2

√

De (free-surface) or 𝐻
𝑅

= 𝜋∕
√

De (no-slip). With De =
0.1 we have 𝐻

𝑅
≈ 4.97 or 9.93. On the right of Fig. 4, we show a

free-surface solution displaying near-resonant dynamics, in which the
spatio-temporal oscillations in stress and surface speed reach relatively
large amplitude.

Fig. 5 displays ‘‘response curves’’ for a layer with a free surface.
These curves are plots of the maximum over the final periodic cy-
cle of either the surface speed, Max(|𝑢(𝐻, 𝑡)|), or the relative speed,
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Max(|𝑢(𝐻, 𝑡) + cos 𝑡|), for (Bi, 𝛽) = (1, 0) and varying De . For a Bingham
fluid, De = 0, the entire layer remains unyielded for 𝐻 < Bi = 1,
and these curves demonstrate no response. For 𝐻 > Bi, the response
develops as indicated by the dashed lines. For finite De , on the other
hand, the fluid can deform elastically for 𝐻 < Bi = 1, leading to
a finite response that increases with De . The response curves also
show broad elevated responses in maximum surface speed for 𝐻 > Bi,
corresponding to the remnants of elastic resonances at 𝐻 = 𝐻

𝑅
. The

phase at which the surface speed achieves its maximum increases with
both 𝐻 and De .

3.2. Shallow or deep layers

For 𝐻 ≪ 1 and a no-slip surface, �̇� and 𝜏 become independent of 𝑦
while 𝑢 becomes linear:

𝑢 ∼ −
(

1 −
𝑦
𝐻

)

cos 𝑡 (19)

The dynamics is then all controlled by the constitutive law, which
becomes

De 𝜏𝑡 + max(0, |𝜏| − Bi) sgn(𝜏) = cos 𝑡
𝐻

. (20)

The role of the momentum equation is simply to dictate the spatially
varying corrections to the solution to (20). In other words, in this limit,
variations in space play a minor role and the problem reduces to that
for a controlled shear-rate rheometer, as discussed by Saramito [6].

With a free surface, the shallow limit is different, with

𝑢 ∼ −cos 𝑡, 𝜏 ∼ −𝑦 cos 𝑡, (21)

which ensure that the momentum equation and boundary conditions
are satisfied. The constitutive law now determines the spatially varying
correction to the leading-order flow speed. This particular limit is less
interesting because significant shear and stress are unable to build up
against the free surface.

For deep layers, the solution near the lower moving wall becomes
insensitive to the fluid depth 𝐻 and top boundary condition, as il-
lustrated by the shear stresses plotted in Fig. 6(a,b). For a Bingham
fluid, this is demanded once the top of the fluid layer becomes plugged
throughout the cycle, which implies that the upper boundary becomes
irrelevant. The situation is less clear for an elasto-viscoplastic fluid
because of the propagation of elastic disturbances to the top surface.
However, once those disturbances reflect back down from the top
surface they become strongly damped over the lower yielded regions,
nullifying their impact. Note that the checkerboard patterns appearing
for De > 0 in Figs. 3 and 6 indicate that the layer can contain an
arbitrarily large number of plugs at a given time for sufficiently large
𝐻 and De , unlike the Bingham case [2,5].

With a free surface, the large inertia of the upper plug arrests motion
for a Bingham fluid. Indeed, as discussed in [2], the surface speed
is expected to adopt a sawtooth form with a maximum amplitude of
1
2𝜋Bi𝐻

−1 for a very deep layer; cf. Fig. 6(c). This feature does not
persist with De > 0, however. Instead, the checkerboard generated by
propagating elastic waves leads to a square-wave signal in the top shear
stress and speed, the latter scaling with the elastic wavespeed De −1∕2

(Fig. 6(c)). The surface signal for both stress-free and no-slip upper
boundaries becomes delayed by the travel time of the elastic waves,
accounted for in Fig. 6(c,d) by plotting 𝑢(𝐻, 𝑡) and 𝜏(𝐻, 𝑡) against the
shifted time, 𝑡 −𝐻

√

De .

4. Thixotropic fluid

4.1. Constitutive model

For a thixotropic fluid, we employ the constitutive model,
𝜕𝛬
𝜕𝑡

= 1 − 𝛬
𝑇

− 𝛼𝛬| ̃̇𝛾| +𝐾 𝜕2𝛬
𝜕�̃�2

,

𝜏 =
[ 𝜏

𝑃
(𝛬)

|
̃̇𝛾|

+ �̃�(𝛬)
]

̃̇𝛾, if |𝜏| > 𝜏
𝑃
(𝛬), (22)
̃̇𝛾 = 0 otherwise,

6 
Fig. 6. (a,b) Left-hand panels show the basal shear stresses 𝜏(0, 𝑡) for relatively deep
layers (𝐻 ≫ 1) with (a) a free surface, and (b) a no-slip upper wall (Bi = 1 and 𝛽 = 0).
Solid lines show results for 𝐻 = 50; dashed lines reproduce the results for 𝐻 = 14 from
Fig. 3. The Bingham case is plotted in red, the results for De = 0.01 in green and those
for De = 0.1 in blue. The right-hand panels show the corresponding space–time density
plots of 𝜏(𝑦, 𝑡) for 𝐻 = 50. Although the colour scale is not shown for these density
plots, it can be inferred from the 𝑦−axes of (a,b). Corresponding surface speeds are
plotted in (c) for the layer with a free surface; the top shear stress 𝜏(𝐻, 𝑡) is plotted
in (d) for the no-slip upper wall. Both signals are plotted against the delayed time
𝑡−𝐻

√

De . In (c), for De = 0 and 𝐻 = 50, the surface speed scaled by depth, 𝐻𝑢(𝐻, 𝑡)
(red, solid), is compared with a sawtooth wave (dotted; [2]). For De = (0.01, 0.1) and
𝐻 = 50, the surface speed scaled by the elastic wavespeed, 𝑢(𝐻, 𝑡)

√

De (solid blue and
green), is compared against a square wave (dash-dotted).

where 𝜏
𝑃
(𝛬) and �̃�(𝛬) are suitable constitutive functions describing

the yield stress and viscosity of the material, respectively. This model
effectively combines the Bingham law with an evolution equation for an
order parameter, 𝛬(𝑦, 𝑡), that describes the degree of internal structure
[7,16,17]. The order parameter lies in a range [0, 1]; for 𝛬 = 0, the fluid
has no effective microstructure, while it is fully structured when 𝛬 = 1.
The evolution equation in (22) contains a restructuring term (1 −𝛬)∕𝑇
that drives 𝛬 towards the fully structured state, and a destruction term
dictated by the local shear rate |

̃̇𝛾|. Restructuring is characterized by a
healing timescale 𝑇 and destruction is parameterized by 𝛼. We have
also included a diffusive term to account for any spatial structural
diffusion, with diffusivity 𝐾.

The framework in (22) captures a range of constitutive behaviour.
We choose to focus on thixotropic materials with a yield stress, and set

𝜏
𝑃
(𝛬) = 𝜏∗𝛬 & 𝜇(𝛬) = 𝜇

𝑂
, (23)

where 𝜇
𝑂

is again the characteristic viscosity. That is, we adopt a
Bingham-like model in which only the yield stress depends on the struc-
ture parameter 𝛬. Overall, while this construction differs slightly from
non-viscoplastic thixotropic models (e.g. [4]), it is qualitatively similar
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to numerous others proposed in the literature, producing comparable
flow curves in steady, uniform shear [18–21], as discussed in the
following subsection.

With the rescalings in (4), we arrive at the model,

�̇�𝑡 = 𝜏𝑦𝑦,

�̇� = max(0, |𝜏| − 𝛬Bi) sgn(𝜏),

 𝛬𝑡 = 1 − 𝛬 − 𝛤 |�̇�|𝛬 + 𝛽𝛬𝑦𝑦

(24)

with

 = 𝜔𝑇 , Bi =
𝜏∗
𝜇
𝑂


, 𝛤 = 𝛼𝑈𝑇


, 𝛽 = 𝐾𝑇
2

. (25)

he important new parameters here are  , which characterizes how
apidly material rheology adjusts relative to the imposed oscillation
eriod (a thixotropic analogue to the Deborah number of the previous
ection) and 𝛤 , which compares the rate of destruction to that of aging.
he remaining parameter, 𝛽, describes the importance of structural
iffusion. Our main concern here, however, is the effect of rheological
ariations through thixotropy, rather than structural diffusion. Indeed,
e include the diffusion term in (24) partly to ensure that solutions

emain well resolved in space in situations in which sharp variations
ay appear. We therefore fix 𝛽 = 3 × 10−5 and avoid exploring the

effect of varying this parameter.
For brevity, we focus on one set of boundary conditions, a stress-free

upper surface, so that

𝜏𝑦(0, 𝑡) = sin 𝑡 & 𝜏(𝐻, 𝑡) = 0. (26)

That said, for completeness we provide some illustrative solutions with
a no-slip upper boundary in Appendix B. We further adopt no flux
conditions on the structure function (𝛬𝑦(0, 𝑡) = 𝛬𝑦(𝐻, 𝑡) = 0), which are
equired because of the second-order derivative in the diffusion term. In
ther words, we assume that structure is neither created nor destroyed
y interfacial interaction.

As initial conditions, we mostly set 𝜏(𝑦, 0) = 0 and 𝛬(𝑦, 0) = 0,
ignoring the transient before the final periodic state. In §4.4, however,
we examine such transients more closely and select other initial values
for 𝛬(𝑦, 0).

4.2. Flow curves

The flow curve for the model follows from considering steady,
spatially uniform conditions. In this setting, provided the applied stress
𝜏 does not exceed Bi, the fluid can be unsheared, �̇� = 0, and fully
structured, 𝛬 = 1. Alternatively, for �̇� > 0, Eq. (24) implies

𝛬 = 1
1 + 𝛤 �̇�

& 𝜏 = �̇� + Bi
1 + 𝛤 �̇�

. (27)

Such states are illustrated in Fig. 7 and require the applied stress to
exceed a certain threshold. For 𝛤Bi < 1, this threshold is the yield stress
of the fully structured state, 𝜏

𝐴
= Bi, and the flow curve resembles that

for a simple (non-thixotropic) yield-stress fluid. The two lower flow
curves in Fig. 7(a) illustrate this situation. If 𝛤Bi > 1, however, the
flow curve bends down for a range of shear rates, before reaching a
minimum at (�̇� , 𝜏) = (�̇�

𝐶
, 𝜏

𝐶
), and then ascending. Such a minimum in

the flow curve at finite shear rate implies an alternative stress threshold
given by 𝜏 = 𝜏

𝐶
where

𝜏
𝐶
= 1

𝛤
(2
√

𝛤Bi − 1)

(

�̇�
𝐶
=

√

𝛤Bi − 1
𝛤

)

. (28)

he upper three flow curves in Fig. 7(a) display this second type of
ehaviour. As illustrated in Fig. 7(b), such flow curves imply excursions
long hysteretic loops on first increasing, then decreasing the stress, in
he conventional manner of thixotropy. Sudden jumps in shear rate,
r viscosity bifurcations, arise at the stresses 𝜏 = 𝜏

𝐴
and 𝜏 = 𝜏

𝐶
. One

urther expects the descending branch of the flow curve, for �̇� < �̇�
𝐶

, to

e unstable.

7 
Fig. 7. Steady-state flow curves for (a) 𝛤 = 1 and varying Bi, and (b) (𝛤 ,Bi) =
(

10, 1
2

)

,
indicating the special stresses 𝜏

𝐴
(stars at �̇� = 0) and 𝜏

𝐶
(stars and dotted line). The

ashed line in (a) corresponds to a viscous fluid with Bi = 0. The arrows in (b) indicate
he path of a hysteretic loop taken on first increasing then decreasing the stress, starting
rom an initially structured state with 𝛬 = 1.

Note that the flow curves in steady shear are functions of Bi alone
when the stress and strain rate are both multiplied by 𝛤 (an indirect
consequence of our scaling of the problem). Repeating this scaling for
the Stokes problem eliminates the parameter 𝛤 from (24). However,
the boundary condition then becomes 𝛤𝜏𝑦(0, 𝑡) = 𝛤 sin 𝑡, indicating that
𝛤𝜏(0, 𝑡) = 𝛤𝐻 sin 𝑡 when �̇� = 0. Therefore, 𝛤𝐻 can also be thought
of as a measure of the dimensionless driving stress. Should this stress
fail to exceed 𝛤𝜏

𝐴
= 𝛤Bi, the implication is that the motion of the

wall creates insufficient stress to drive deformation in the fluid. That
is, the layer remains unyielded, if it is to begin with, furnishing the
yield condition, 𝐻 < Bi, as in the problem for a non-thixotropic (and
non-elastic) yield-stress fluid (see [2] and §3.1).

4.3. Thixotropic Stokes layers

Solutions to the Stokes problem for two values of 𝛤 are shown in
Figs. 8 and 9. For the cases shown in Fig. 8, there is no hysteresis
in the flow curve and the fluid acts like a simple yield-stress fluid
in steady-state shear. For sufficiently small relaxation times  (case
(a)), the fluid locally restructures to follow the steady-state flow curve;
the upper region remains relatively strongly structured and plug-like
regions appear similar to those found for a Bingham fluid. For larger
relaxation times (case (b)), the restructuring of the fluid does not take
place sufficiently quickly during the cycle to follow the steady flow
curve closely.

For yet higher relaxation times (case (c)), the oscillation of the
plate becomes too fast to significantly restructure the fluid at all during
a single period. Now the cycle-averaged shear rate or stress dictates
the local degree of structure and 𝛬 becomes approximately steady,
but spatially varying (cf. [4]). In this case, discarding diffusion (then
dividing (24) by 𝛬 and averaging), we have

𝛬 ∼ (1 + 𝛤 ⟨|�̇�|⟩)−1, (29)

as seen in Fig. 8(f). The corresponding spatially varying viscosity then
controls the dynamics of the fluid layer.

Despite the varying relaxation times and structure functions be-
tween the three cases in Fig. 8, the actual differences induced in 𝑢(𝑦, 𝑡)
by the thixotropic evolution is relatively small (see the speed contours
plotted in panels (a,b,c)). Indeed, there is minimal discernible impact
on the surface velocity field (Fig. 8(d)), which matches that for the
non-thixotropic Bingham-like model implied by the flow curve. The
space–time pattern of the shear stress 𝜏(𝑦, 𝑡) also remains similar to
those for the Bingham model (one can see this by comparing the yield
surfaces displayed in Figs. 8 with those for De = 0 in Fig. 1(a)).

Fig. 9 presents corresponding examples with parameter settings that
lead to a thixotropic hysteresis in steady shear. At low relaxation times
(case (a)), local restructuring essentially follows the stable branches of
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Fig. 8. Steady periodic states for (a)  = 10−2, (b) 1
3

and (c) 102, with (Bi, 𝛤 ,𝐻) = (0.5, 1, 2). On the right, structure functions 𝛬(𝑦, 𝑡) are shown as a densities over the (𝑦, 𝑡)−plane.
The dashed contours indicate the yield surfaces, 𝜏(𝑦, 𝑡) = ±𝛬Bi, and the green lines are contours of constant speed 𝑢. On the left, the (red) points show a scatter plot of (�̇� , 𝜏) along
with the steady flow curve (blue). Corresponding time series of (d) surface speed 𝑢(𝐻, 𝑡) and (e) 𝛬(0, 𝑡) are plotted below ( increasing from red to blue; the dashed line in (d)
shows 𝑢(0, 𝑡)). The final panel (f) plots the profile of 𝛬 for  = 100; the red dotted line shows (29).

Fig. 9. Solutions as for Fig. 8, but for 𝛤 = 10. The additional blue speckled contours in (a) show the contours where 𝜏(𝑦, 𝑡) = 𝜏
𝐴
≡ Bi and 𝜏(𝑦, 𝑡) = 𝜏

𝐶
.
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Fig. 10. Maximum surface speed and relative surface speed against 𝐻 for (a) 𝛤 = 10
and varying  (0.01, solid; 0.1, dotted; 1, dot-dashed; 10, dashed), and (b)  = 0.01 and
varying 𝛤 (1, solid; 2.5, dotted; 5, dot-dashed; 10, dashed). The phase of the maximum
surface speed relative to the maximum base speed (𝑡 = 𝜋) is shown below. In both
cases, Bi = 0.5, and the vertical dotted lines indicate the threshold 𝐻 = 𝐻𝑐𝑟𝑖𝑡 = Bi = 1

2
.

the flow curve, with rapid jumps arising at the bifurcations 𝜏
𝐴

and 𝜏
𝐶

.
Note how the yield surface 𝑦 = 𝑌 (𝑡), defined by |𝜏| = 𝛬Bi, follows
the contour 𝜏 = 𝜏

𝐴
(𝛬 = 1) in regions where it advances into fully

structured fluid on the left side of each yielded region. The yield surface
then jumps over to the contour 𝜏 = 𝜏

𝐶
(𝛬 = 𝛬

𝐶
≡ 1∕

√

𝛤Bi) on
the right of those regions where 𝑦 = 𝑌 (𝑡) retreats into destructured
fluid, converting material rapidly back into the fully structured state.
Over the jump between these two contours, the yield surface holds
a fixed position. Note that the stress contours in Fig. 9(a) feature
some relatively fast, small amplitude oscillations. These fine scales are
triggered by the sudden destructuring of fluid at the base when the
yield condition is met and flow is initiated. A destructuring front then
ascends into the overlying structured fluid. However, the front migrates
unsteadily, with a decaying oscillation set by the relaxation time  .

For higher  , the relaxation of the microstructure obscures the �̇�−𝜏
plot, although pathways corresponding to the two bifurcations are still
evident (case (b)). Once again, for relatively large relaxation times (case
(c)), 𝛬 becomes nearly time-independent and given by (29). However,
the final state is now layered, with a spatial viscosity bifurcation arising
near the midway point. Again we observe that the surface speed is
relatively insensitive to  (Fig. 9d), despite significant spatio-temporal
evolution of 𝛬 (panels (a,b,c,e)).

In Fig. 10, we present response curves for the thixotropic model with
Bi = 1

2 at fixed 𝛤 = 5 and varying  , or fixed  = 0.01 and varying
𝛤 . Importantly, in none of these examples does the maximum surface
speed display a significant enhancement over the maximum speed of
the moving wall. This feature contrasts sharply with the predictions
shown in Fig. 5 for elasto-viscoplastic Stokes layers, a difference that we
return to in Section 6 when discussing previous experimental results.

4.4. Long relaxation

Note that the solutions shown in Figs. 8(c) and 9(c) portray the
final, periodic state. However, at such large relaxation times there is
a protracted transient from a general initial condition that spans many
oscillations of the moving wall (see also [4]). The transients arising
from two different initial conditions (completely unstructured, 𝛬(𝑦, 0) =
0, or fully structured, 𝛬(𝑦, 0) = 1) are shown in more detail in Fig. 11.
Because  ≫ 1, the structure function evolves relatively slowly in
9 
Fig. 11. (a) Density plots of 𝛬(𝑦, 𝑡), (b) time series of 𝛬(0, 𝑡) and 𝛬(𝐻, 𝑡), and (c)
phase portraits of (𝑢(𝐻, 𝑡), 𝜏(0, 𝑡)) after the first cycle; ( , 𝛤 ,𝐻,Bi) = (100, 10, 2, 1

2
). Two

solutions are shown, with the first beginning from the unstructured state (𝛬(𝑦, 0) = 0;
blue in (b,c)), and the second commencing fully structured (𝛬(𝑦, 0) = 1; red in (b,c)).
On the right of (a), the spatial profiles of the structure function at the later time of
𝑡 = 103 are displayed.

these solutions, participating little in the faster Stokes-layer oscillations
(which are better characterized by the shear stress or velocity; see the
phase portrait also plotted in (c)). In other words, at these relaxation
times, many cycles are required to evolve the microstructure away from
the state that is almost frozen in by the initial condition.

When coupled with a large destruction parameter 𝛤 ≫ 1, long
relaxation  ≫ 1 can also prompt persistent history dependence. In
this limit, the structure function evolves according to

𝛬𝑡 ∼ −𝛤

|�̇�|𝛬. (30)

That is, structure may be broken up by flow, but cannot recover owing
to an excessive healing time. This extreme form of thixotropy (slow
aging, but rapid destructuring) is thought to characterize a number
of physical problems (e.g. [22]). In the corresponding Stokes problem,
the continued attrition of the microstructure wherever fluid yields
eventually reduces the rheology to constant viscosity (𝛬 → 0 and
𝜏 → �̇� = 𝑢𝑦); only where fluid remains unyielded can the microstructure
survive. But because a plug invariably appears near the top free surface,
and its extent depends on the stress history of the fluid, different
solutions can emerge with varying plug thicknesses.

Such multiplicity is illustrated in Fig. 12, for three solutions with
(𝛤 ,  ) ≫ 1 and different initial conditions (𝛬(𝑦, 0) = 0, 0.79 and 1).
Because both 𝛤 and  are large but finite, the microstructure becomes
severely compromised over the yielded regions, but is still able to heal
over any persistent plugs. Consequently, the microstructure collapses
over the lower part of the layer, but builds up to, or remains at, 𝛬 = 1
within the overlying plug. The different initial conditions ensure that,
over long times, the top structured plugs have different thicknesses in
the three solutions. The varying plug thickness becomes reflected in the
different lengths of the ‘‘stem’’ of the instantaneous (�̇� , 𝜏) relation along
the 𝜏−axes in Fig. 12(g-i). The two solutions shown in Fig. 11 also have
plugs of different plug thickness (see panel (a)), although the difference
is much less pronounced because 𝛤 is smaller there.

The two-layer structure to the fluid implies that the lower part of
the Stokes layer evolves nearly as a viscous fluid, with a top boundary
condition set by an integral over the structured plug: i.e.

𝑢 = 𝑢 , 𝑢(0, 𝑡) = − cos 𝑡, (31)
𝑡 𝑦𝑦
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Fig. 12. Three thixotropic Stokes layers for 𝛤 = 200,  = 100, 𝐻 = 5 and Bi = 1
2
, computed from different initial conditions: (a,d,g) 𝛬(𝑦, 0) = 0, (b,e,h) 𝛬(𝑦, 0) = 0.79 and (c,f,i)

𝛬(𝑦, 0) = 1. (a)–(c) display time series of the surface speed 𝑢(𝐻, 𝑡) and density plots of the structure function 𝛬(𝑦, 𝑡), with superposed contours of constant speed 𝑢(𝑦, 𝑡) (green), and
yield surfaces (black-and-white dashed lines). (d,e,f) show snapshots of 𝑢(𝑦, 𝑡) at four instants, with the dot-dashed horizontal lines denoting the yield surfaces 𝑦 = 𝑌 . (g,h,i) display
scatter plots of the solutions on the (|�̇�|, |𝜏|)−plane. The dashed lines in (a–f) show the predictions from (31)–(32), adopting values of 𝑌 taken from the numerical solutions.
𝜏

and

(𝐻 − 𝑌 )𝑢𝑡(𝑌 , 𝑡) + 𝑢𝑦(𝑌 , 𝑇 ) = 0, (32)

where 𝑦 = 𝑌 denotes the yield surface. That level must be set inde-
pendently, and is dictated by the interplay between rheological and
dynamical evolution during an initial-value calculation from a specific
initial condition. Analytical solutions to (31)–(32) are compared with
numerical solutions to the full Stokes-layer problem in Fig. 12(a-f), after
adopting values for 𝑌 taken from the latter.

5. Discontinuous shear thickening

To model a discontinuously shear thickening material, we employ
a model based on that proposed by Wyart & Cates [12] and expanded
upon by others [13–15]. The model combines an evolution equation for
an order-parameter 𝛬,

𝜕𝛬
𝜕𝑡

= 𝛼| ̃̇𝛾|
[

exp
(

−
𝜏∗
|𝜏|

)

− 𝛬
]

+𝐾 𝜕2𝛬
𝜕�̃�2

, (33)

with the viscosity law,

𝜇(𝛬) =
𝜇
0

(𝛬
𝑂
− 𝛬)2

, (34)

with parameters 𝛼, 𝛬
𝑂

and 𝜏∗. In the model proposed by Wyart &
Cates, the parameter 𝛬

𝑂
is determined with reference to three other

parameters,

𝛬
𝑂
=

𝜙0 − 𝜙
𝜙0 − 𝜙1

, (35)

where 𝜙 is the particle volume fraction and 𝜙0 and 𝜙1 are jamming
fractions for suspensions of frictionless and frictional particles, respec-
tively. The variable 𝛬(𝑦, 𝑡), satisfying 0 ≤ 𝛬 ≤ 𝛬

𝑂
, describes the fraction

of frictional contacts, but for convenience and consistency with the pre-
vious section, we will continue to refer to 𝛬 as a ‘structure parameter’.
The formulation is built on the idea that short-range repulsion keeps
particles apart at low stress, maintaining a relatively low suspension
10 
viscosity. But frictional contact cannot be prevented at higher stresses
̃ and volume fractions 𝜙. Instead, particles jam together to abruptly
increase the viscosity.

Scaling using (4), we arrive at the dimensionless model,

�̇�𝑡 = 𝜏𝑦𝑦, 𝜏 = (𝛬
𝑂
− 𝛬)−2�̇� ,

 𝛬𝑡 = |�̇�|
[

exp
(

− 𝛤
|𝜏|

)

− 𝛬
]

+ 𝛽𝛬𝑦𝑦,
(36)

where 𝛽 = 𝐾∕(𝛼), and

 = 𝜔
 𝛼

& 𝛤 =
𝜏∗

𝜌𝜔
, (37)

play the role of a relaxation timescale and a dimensionless charac-
teristic stress. Again, we assume that the upper surface is stress free
(𝜏(𝑦, 𝑡) = 0; the no-slip case is briefly discussed in Appendix B) and no
flux conditions apply (𝛬𝑦(0, 𝑡) = 𝛬𝑦(𝐻, 𝑡) = 0). We once more focus on
the effect of rheological variations, and the impact of the parameters 
and 𝛤 , fixing 𝛽 = 10−6. We initialize the problem with �̇�(𝑦, 0) = 0 and
𝛬(𝑦, 0) = 0, and again focus on the final periodic states.

In steady uniform shear, we find the flow curve,

�̇� = 𝜏
(

𝛬
𝑂
− 𝑒−𝛤∕|𝜏|

)2
, (38)

as illustrated in Fig. 13. The parameter 𝛬
𝑂

(equivalent to the solid frac-
tion of the original model) controls whether the fluid thickens smoothly
and continuously, like the redder curves in Fig. 13, or switches discon-
tinuously because the steady-state flow curve bends back on itself at
higher stress (bluer curves).

Sample numerical Stokes-layer solutions are shown in Figs. 14–16.
In the first of these figures, a continuously shear thickening fluid is
presented, with 𝛬

𝑂
= 1.3 > 2𝑒−

1
2 . For short relaxation times, the local

fluid structure follows the steady flow curve (see panel (a)). Owing
to the form of the constitutive model, the structure almost completely
collapses during part of the cycle wherever stresses become sufficiently
small. As  increases, however, the structure cannot fully relax and a
time-dependent scatter plot of (�̇� , 𝜏) emerges with fluid remaining more



D.R. Hewitt and N.J. Balmforth

1

𝛽
i
t
c

d
n
r
t
P
t
b
w
e
c

Journal of Non-Newtonian Fluid Mechanics 334 (2024) 105328 
Fig. 13. Steady-state flow curves for 𝛤 = 1 and 𝛬
𝑂

= {0.6, 0.82, 0.95,
, 1.05, 1.12, 1.36, 1.6, 2} (solid, from blue to red). The shaded region shows where the

flow curve has negative slope and the dot-dashed curve with 𝛬
𝑂
= 2 exp

(

− 1
2

)

shows
the critical case at which discontinuous thickening begins.

structured at the base of the layer (Fig. 14c,d). As with the thixotropic
fluids, however, the surface speed is insensitive to these variations in
𝛬 (Fig. 14b).

Solutions for discontinuously thickening fluids are shown in Fig. 15.
In these examples, the structure functions develop a rich spatio-temp-
oral pattern. For the case with higher  (panels (a,c)), the lengthier
time required for relaxation exerts a stronger control on the dynamics,
to the degree that the local (�̇� , 𝜏) scatter plot remains close to the steady-
shear flow curve, even past its turn-around. For shorter relaxation
times, however, uncontrolled shear thickening ensues (panels (b,d)),
which builds up significant structure during brief periods of the cycle.
This sudden thickening becomes reflected in abrupt jumps in surface
speed.

For even lower relaxation times, the dynamics can become richer
still, as illustrated in Fig. 16. In these examples, increasingly many
events of abrupt shear thickening arise during the cycle as  is low-
ered. The surface speed reflects these events by developing a step-like
signature. Multiple solutions even appear to be possible at the lowest
relaxation times, characterized by different numbers of shear thicken-
ing events, as illustrated by the two solutions with  = 10−4 shown
in Fig. 16 for different initial conditions. We have not traced in any
detail how such multiple solutions come about or bifurcate from one
another, and note only that the solutions are less straightforward to
compute owing to the relatively short relaxation time.

6. Discussion

In this paper we have presented an analysis of the dynamics of
Stokes layers of three different rheologically complex model fluids:
a elasto-viscoplastic fluid, a thixotropic material, and a discontinu-
ously shear-thickening fluid. For the first of these, we provided a
more systematic exploration, allowing the layer to have either a free
surface, or be bordered above by a stationary wall. When the layer
is relatively thin, the latter upper boundary condition reproduces a
simple, rheometric-type, oscillatory shear flow; the former allows for
more novel dynamics by enabling thinner layers to plug up. When the
layer is deeper, the spatio-temporal dynamics becomes rather richer
than simple uniform shear for both boundary conditions. The novelties
associated with a Stokes layer with a free surface led us to focus on that
setting for the other two model fluids.

A theory for viscoplastic Stokes layers was presented previously by
Balmforth et al. [2], partly with the aim of examining what rheological
inferences might be made by harnessing such flows. Indeed, a main goal
of that work was to compare theoretical predictions with observations
11 
from experiments with layers of kaolin slurry in a motorized tray. The
comparison had mixed successes: whilst the onset of relative surface
motion coincided with the predicted threshold, 𝐻 = Bi or 𝜌𝜔 =
𝜏
𝑃

, the amplitude of the fluid motions showed discrepancies. Some
quick calculations based on the degree of elastic deformation of the
slurries recorded rheometrically suggested at the time that elasticity
was unlikely to be responsible for this disagreement. Instead, it was
suggested that the thixotropic nature of kaolin slurries was the culprit.

The experiments reported in [2] were conducted with different slur-
ries, depths, forcing frequencies and tray speeds, implying a spectrum
of different values for the dimensionless groups of the problem. In ad-
dition, the steady-shear flow curves found for the kaolin slurries (from
cone-and-plate rheometry) suggested convenient Herschel–Bulkley fits
with a power-law index of 𝑛 ≈ 1

3 (in contrast to the Bingham law to
which our elasto-viscoplastic model limits for De = 0). The current the-
ory is therefore not matched to these experiments. To bring our analysis
closer, we may make use of the Herschel–Bulkley generalization of the
elasto-viscoplastic model proposed in [23]. With this generalization,
the factor max(0, |𝜏| − Bi) in the evolution equations in (14) becomes
raised to the power 𝑛−1. The Stokes length must also now be defined
by

 =
(

𝐾 𝑛−1

𝜌𝜔

)
1

𝑛+1
, (39)

where 𝜇
𝑂

= 𝐾( ∕)𝑛−1 is an effective viscosity (beware of a typo in
the corresponding formula provided in [2]). Finally, Balmforth et al.
quote an elastic (Young’s) modulus of 𝐸 = 104 Pa for the kaolin slurries,
suggesting a characteristic relaxation rate 𝜆 = 𝐸∕𝜇

𝑂
for use in the

Deborah number of the elasto-viscoplastic model.
A selection of the data taken from [2] are plotted in Fig. 17. The first

three panels display the range of estimated values for the dimensionless
parameters, 𝐻 , Bi and De . Measurements of the maximum relative
surface speed are then plotted in Fig. 17(d,e) against 𝐻∕Bi. In the
first of these plots, the symbols are coloured according to Bingham
number; for the second plot, the symbols are coloured by De . Included
in Fig. 17(d) are theoretical predictions of the revised model, assuming
relatively a small elasticity parameter (De = 10−4 and 𝛽 = 0), and
taking 𝑛 = 1

3 and Bi = 1
2 , 1 or 2 (which punctuate the range seen

in Fig. 17(b)). As concluded by Balmforth et al. [2], the threshold for
relative motion is somewhat well predicted by 𝐻∕Bi = 1, but the pre-
dicted trends with varying Bi without elasticity cannot reproduce the
experimental observations. Instead, in Fig. 17(e), we include theoretical
results that incorporate elasticity, for Deborah numbers that appear to
be typical of the experimental range (and taking Bi = 1, 𝑛 = 1

3 amd
= 0). The elevated response of surface velocity due to elastic recoil

n these theoretical predictions certainly seems capable of rationalizing
he experimental observations, even though parameters have not been
arefully matched.

Similar conclusions were reached by Lacaze et al. [11], who con-
ucted experiments with a Carbopol suspension contained in the an-
ular gap between two cylinders, driving motion by the oscillatory
otation of the inner cylinder. They found that the observed mo-
ions could be explained by a similar theory to that discussed in §3.
rominent in both the modelling by [11] and the current work is
he impact of elastic deformation below the yield stress, which can
ecome especially significantly if the Stokes-layer oscillations resonate
ith elastic waves. Indeed, we have seen that one can resonantly drive
lastic waves to high amplitudes and yield, even if the plastic yield
ondition 𝐻 > Bi is not met (cf. Fig. 4). In other words, elasticity

can significantly impact the behaviour of viscoplastic fluids even in
situations where a basic scaling estimate suggests its impact should be
weak, predominantly owing to this sub-yield-stress elastic deformation.
Overall, the surface speed provides a useful diagnostic of rheology for
Stokes layers of elasto-viscoplastic fluids with a free surface.

By contrast, and counter to the conclusions reached in [2], it looks
more challenging to explain the experimental results in Fig. 17 using
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Fig. 14. Steady-state periodic solutions for (𝛬
𝑂
, 𝛤 ,𝐻) = (1.3, 1, 2) and the two relaxation times  = 0.01 and 1

4
. In (a), the flow curve (solid line) is compared with scatter plots of

(�̇� , 𝜏) (darker dots:  = 0.01; lighter dots: 1
4
). Time series of the surface speed 𝑢(𝐻, 𝑡) and basal structure function 𝛬(0, 𝑡) are plotted in (b,c). Density maps of 𝛬(𝑦, 𝑡) with superposed

contours of constant 𝑢(𝑦, 𝑡) (green) are shown in (d), with the solution for  = 0.01 shown in the top panel and that for 1
4

in the bottom panel.
Fig. 15. Steady-state periodic solutions for (a,c)  = 10−2 and (b,d)  = 3 × 10−3, with (𝛬
𝑂
, 𝛤 ,𝐻) = (1.05, 1, 2). Flow curves (dashed) are compared with scatter plots of (�̇� , 𝜏) in

(a,b). Time series of 𝑢(𝐻, 𝑡) and 𝛬(0, 𝑡) are shown in (c,d). Density maps of 𝛬(𝑦, 𝑡) with superposed contours of constant 𝑢(𝑦, 𝑡) (green) are shown in (e) (top panel:  = 10−2; bottom
panel:  = 3 × 10−3). The dashed contours indicate where 𝜏 reaches the turn-around of the flow curve.
Fig. 16. Steady-state periodic solutions for varying  (as indicated) with (𝛬
𝑂
, 𝛤 ,𝐻) = (1, 1, 2). Two solutions are shown for  = 10−4: the case shown in blue has initial condition

𝛬(𝑦, 0) = 0; the case plotted in red uses an initial condition given by the final solution with  = 10−3. Time series of 𝑢(𝐻, 𝑡) and 𝛬(0, 𝑡) are plotted in the main panels on the left
(with the solutions for lower  offset for clarity; the stars on the 𝑦−axes indicate the offsets); the corresponding density maps of 𝑢(𝑦, 𝑡) and 𝛬(𝑦, 𝑡) are shown on the right. Dashed
contours again indicate where 𝜏 reaches the turn-around of the flow curve.
the version of our model that incorporates thixotropy: in none of the
solutions of that model variant does the maximum relative surface
speed significantly exceed that of the wall (i.e. max(𝑢|𝑦=𝐻 + cos 𝑡) > 1).
Indeed, as we have seen, the imprint of thixotropic rheology on surface
flow speeds is relatively weak, and the fluid response looks much like
that for an ideal viscoplastic fluid with a suitably defined yield stress.
Nevertheless, thixotropic viscosity bifurcations, should they occur, are
not inconsequential because they prompt internal layering between
structured or destructured fluid. Moreover, many cycles of the Stokes
12 
layer may be needed for structure to adjust if relaxation times are
long, and when the healing of the microstructure becomes too slow,
the thicknesses of fully structured regions can depend sensitively on
the history of flow.

As a counterpoint to the Stokes layer of fluids with a yield stress,
we have also briefly explored the dynamics of Stokes layers of dis-
continuously shear thickening fluid. With such material, Stokes-layer
oscillations can prompt abrupt thickening events that introduce sudden
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Fig. 17. Experimental results from [2]. These tests were performed using kaolin slurries of different depths in a tray moving at different speeds and frequencies. The range of the
resulting values for 𝐻 , Bi and De are shown in (a), (b) and (c). The maximum relative surface motion (i.e. max(𝑢𝑦=𝐻 + cos 𝑡)) recorded in all the experiments is plotted in (d,e).
For (d), the points are coloured according to the Bingham number (the colour scale is shown in (b)), and theoretical curves for De = 10−4 and Bi = 1

2
, 1 and 2 are plotted as the

solid lines (all with 𝑛 = 1
3

and 𝛽 = 0). For (e), the points are coloured according to De (see (c)), and the solid lines show theoretical curves for De = 0.00316, 0.01, 0.0316 and
0.1 (with Bi = 1, 𝑛 = 1

3
and 𝛽 = 0).
jumps in surface speed. In other words, fluid rheology becomes more
obviously encoded into the surface-speed signal.

We close by noting that we have assumed that the flow always
remains one-dimensional and never develops spatial structure in the
direction of flow. In fact, such one-dimensional motion may well suf-
fer instabilities to spatially varying perturbations in the flow direc-
tion, as seen in rheometers or rheometric flows [24–27]. We leave
such possibilities, and any two-dimensional stability theory of the
one-dimensional base states that we have presented, to future work.
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Appendix A. Numerical details

To solve the various model equations numerically, we replace par-
tial derivatives in space with centred finite differences on a uniform
grid of 1000 or more points. The resulting set of ordinary differential
equations are then solved as an initial-value problem using the solver
DASSL [28]. To ease each computation, we smooth out the switches
present in each system: for the purely viscoplastic model (Eq. (14) with
De = 0), we eliminate �̇�(𝑦, 𝑡) and write 𝜏𝑡𝛩(|𝜏| − Bi) = 𝜏𝑦𝑦, then replace
the step function by

𝛩(|𝜏| − Bi) → 1
2

⎡

⎢

⎢

⎢

⎣

1 + 𝜏2 − Bi2
√

(𝜏2 − Bi2)2 + 𝜀2

⎤

⎥

⎥

⎥

⎦

, (A.1)

where the regularization parameter 𝜀 is taken to be 10−4 or less. With
De > 0, we use no regularization and solve (14) directly. For the
thixotropic model, we solve (24) with the replacements |�̇�| →

√

𝜀21 + �̇�2

and 𝜇 → 𝛬
𝑂
∕[(1−𝛬) max(𝜀2, 𝛬𝑂

−𝛬)], taking 𝜀1 = 𝜀2 = 10−8. Finally, for
the discontinuous shear thickening model, we replace |𝜏| and |�̇�| with
√

𝜏2 + 𝜀2 and
√

�̇�2 + 𝜀2 (respectively), with 𝜀 = 10−4.
For the latter two models, we adopt values for 𝛽 that are relatively

small. In all cases, the adequacy of spatial resolution was confirmed by
performing more computations with different numbers of grid points
and varying 𝛽. For no cases did the value of 𝛽, and microstructural
diffusion, play a significant role.

Appendix B. No-slip Stokes layers

For a comparison of thixotropic Stokes layers with either a free
or no-slip top surface, we show solutions in Fig. B.18 equivalent to
those in Figs. 8 and 9 of the main text. The no-slip solutions in
Fig. B.18 differ mainly in how the shear stress over the upper part of the
layer is no longer demanded to become small and fluid here therefore
remains sheared. As a consequence, structure cannot build up against
the top surface to the degree that it does with free slip. Similarly,
when the relaxation time becomes long, the spatial variation of the
time-independent profile of the structure function remains relatively
weak. Aside from such details, the dynamics of thixotropic Stokes
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Fig. B.18. Thixotropic Stokes layers with a no-slip top surface for (a) 𝛤 = 1 (corresponding to the free-surface solutions in Fig. 8) and (b) 𝛤 = 10 (corresponding to solutions in
Fig. 9). The top panels show the surface shear stress 𝜏(𝐻, 𝑡); the space–time density plots below display 𝛬(𝑦, 𝑡) along with superposed contours of constant speed (solid green) and
the yield surfaces (black-and-white dashed). In each case, solutions with  = 10−2, 1

3
and 100 are displayed (solid, dashed and dot-dashed, respectively, in the top panels). For the

solution with (𝛤 ,  ) = (10, 10−2), the additional speckled contours indicate the stress contours 𝜏 = 𝜏
𝐴

and 𝜏 = 𝜏
𝐶
.

Fig. B.19. A discontinuous shear-thickening Stokes layer with a no-slip top surface for ( , 𝛬
𝑂
, 𝛤 ,𝐻) = (10−2 , 1.05, 1, 2) (corresponding to the free-surface solution in Fig. 15(a)).

In (a), the flow curve (dashed line) is compared with scatter plots of (�̇� , 𝜏). Panel (b) displays a time series of 𝜏(𝐻, 𝑡) and a density map of 𝛬(𝑦, 𝑡), with superposed contours of
constant 𝑢(𝑦, 𝑡) (green) The dashed contour indicates where 𝜏 reaches the turn-around of the flow curve.
layers with a no-slip top surface largely follows that of layers with a
free surface. Although the space–time pattern of the solutions for 𝛬
remains somewhat complicated for sufficiently low relaxation time 
in Fig. B.18, the corresponding patterns of the stress are again not so
different from their Bingham counterpart (in Fig. 1(b), for De = 0).

A Stokes-layer solution with a no-slip top surface for the discon-
tinuous shear-thickening model of §5 is presented in Fig. B.19, which
corresponds to the free-surface solution shown in Fig. 15(a). Because
the shear stress is again no longer forced to become small over the
upper part of the layer, the dynamics in this case is more similar
to that of a controlled-shear-rate rheometer. Consequently, when the
relaxation time is small, the local stress-shear-rate relation attempts
to follow the stable branches of the S-shaped flow curve. Sudden
stress jumps then emerge at the turn-arounds of the flow curve, cor-
responding to abrupt shear-thickening events that span the fluid layer.
As a result, stress signals take the form of large-amplitude relaxation
oscillations. Note that the upper branch of the S-shaped flow curve
is relatively uncertain in discontinuously shear-thickening rheological
models (cf. [15]). Stokes-layer studies might therefore help to shed
some light on how reliable these models might be.
14 
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