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a b s t r a c t

A theoretical and experimental study is presented of the viscoplastic version of the Stokes problem, in
which a oscillating wall sets an overlying fluid layer into one-dimensional motion. For the theory, the
fluid is taken to be described by the Herschel–Bulkley constitutive law, and the flow problem is analogous
to an unusual type of Stefan problem. In the theory, when the driving oscillations are relatively weak,
the overlying viscoplastic layer moves rigidly with the plate. For sufficiently strong oscillations, the fluid
eywords:
iscoplastic fluids
tokes layers
ield stress

yields and numerical solutions illustrate how localized plug regions coexist with sheared regions and
migrate vertically through the fluid layer. For the experiments, a layer of kaolin slurry in a rectangular
tank is driven sinusoidally back and forth. The experiments confirm the threshold for shearing flow,
equivalent to a balance between inertia and yield-stress. However, although kaolin is well described by a
Herschel–Bulkley rheology, the layer dynamics notably differs between theory and experiments, revealing
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. Introduction

The Stokes layer (the development of motion in a viscous fluid
djacent to an oscillating wall) is a classical problem in fluid
echanics, and appears in most textbooks on the subject (e.g. [1];

he oscillating plate problem is sometimes referred to as Stokes’
econd problem). The fluid dynamics is simplified significantly in
his problem by virtue of the one-dimensionality of the flow, and
eneral solutions can be given for viscous fluids even when the
all motion is arbitrary (although the solution takes an integral

orm). The most recent literature on the Stokes problem is directed
owards the flow instabilities that occur at higher Reynolds num-
er [2], applications in microfluidics [3] or to its extensions for
iscoelastic fluids [4,5].

For a viscous layer of thickness, h, adjacent to an oscillating wall
ith frequency, ω, and speed, −U cos ωt, the surface speed of the
uid in the laboratory frame, V(t), can be shown to satisfy (over
imes sufficiently long that the solution converges to a periodic
ignal)
Please cite this article in press as: N.J. Balmforth, et al., The vi
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red by the steady flow rule.
© 2008 Elsevier B.V. All rights reserved.

here H = h/�, � =
√

�/�ω is the Stokes penetration depth, � is the
ynamic viscosity and � is the density. When the thickness of the
uid layer is small compared with the Stokes length (small thick-
ess, low frequency or high viscosity), the surface speed reduces
o the base speed, whereas for H → ∞ the surface speed becomes
xponentially small. For arbitrary H, the velocity profile oscillates
cross the layer as sketched in Fig. 1 (left).

The purpose of the present article is to explore the viscoplastic
ersion of the Stokes layer. The existence of a yield stress introduces
strong nonlinearity into the problem that, for most flow problems,
ignificantly affects the dynamics. The most obvious difference with
viscous fluid is that for sufficiently gentle oscillations, the shear

tress developed across the layer never reaches the yield stress and
ne expects the material to move rigidly with the base. On the other
and, there should also be a critical acceleration above which the
hear stress at the base exceeds the yield stress, resulting in internal
hearing and flow. This behaviour is reminiscent of the motion of
rigid block sliding frictionally over a moving plate. For such a

ystem, the block is frictionally locked to the plate if

sin ωt| <
�g

ωU
→ V = −U cos ωt; (2)

therwise the block slides according to the equation of motion
scoplastic Stokes layer, J. Non-Newtonian Fluid Mech. (2008),

dV

dt
= −�g sgn(V + U cos ωt), (3)

here � is the solid friction coefficient between the block and the
ase (no distinction is made between static and dynamic friction)

dx.doi.org/10.1016/j.jnnfm.2008.07.008
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ig. 1. The set-up of the problem. On the left we sketch the flow field expected for
he Newtonian problem (with the spatial oscillations emphasized); the picture to
he right suggests how this flow field might be modified by the introduction of a
ield stress.

nd g is gravity. For �g > ωU, friction is always sufficient to hold
he block in place throughout the oscillation of the plate. When
g < ωU, however, friction cannot hold the block in place for at least
art of the cycle. Two types of behaviour then result. For higher
riction, the block slides for only part of the cycle, and there is period
f locking. At lower friction, the block slides for the whole cycle and
xecutes an orbit with a sawtooth oscillation in V(t), as illustrated
n Fig. 2.

Although a viscoplastic fluid may behave like a sliding block
lose to the threshold, the dynamics is enriched by the ability of the
aterial to yield and shear within the bulk and not just at the base.

n particular, within the viscoplastic Stokes layer there may be a
omplicated structure to the yield surfaces that divide sheared flow
rom unyielded plugs. Notably, the dynamics of Newtonian Stokes
ayers corresponds to viscous diffusion, and the steady response
o an oscillating wall takes the form of a velocity field that decays
xponentially and oscillates in space as one ascends through the
uid (Fig. 1, left). The oscillatory signal emphasizes how the shear
ate passes periodically through zero, a situation that leads one to
uspect that a yield stress will generate a sequence of localized
lugs over the low-shear-rate regions. The sketch on the right of
ig. 1 illustrates the notion.

Our goal in the present article is to bring out these features of the
iscoplastic Stokes layer. A main aim is to explore whether the con-
guration can actually be used as a useful rheometer, much as has
een suggested for granular layers [6]. This unconventional forcing

n rheometry, which couples oscillating motion and inertia, could
erve as a test for rheological models of complex fluids. To this
nd, we explore the problem both theoretically and experimen-
Please cite this article in press as: N.J. Balmforth, et al., The vi
doi:10.1016/j.jnnfm.2008.07.008

ally. The theory solves the one-dimensional flow problem, using
he Herschel–Bulkley model to represent the viscoplastic rheology
Section 2). The experiment involves driving back and forth a tank
lled with an aqueous concentrated suspension of kaolin (Section
).

ig. 2. Periodic solutions to the sliding block model with �g/(ωU) = 2/3 (dashed
ine) or 1/4 (dotted line). The solid line is the dimensionless plate speed, −cos ωt.
he stars show the moments of the �g/(ωU) = 2/3 cycle where the block locks onto
r unlocks from the plate. The circles show the instants of acceleration reversal for
he �g/(ωU) = 1/4 cycle as the relative speed of the plate and block switches sign.
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. Theory

.1. Governing equations

We solve the unsteady, one-dimensional flow problem sketched
n Fig. 1: a plate lying along the x-axis of a two-dimensional coor-
inate system oscillates sinusoidally with speed, −U cos ωt, and
requency, ω. For solutions invariant in the x-direction, mass bal-
nce requires that the only non-zero velocity component is along
. The flow field induced in the fluid, u(y,t), then satisfies

∂u

∂t
= ∂�

∂y
, (4)

here � is density and � is the shear stress, which is related to the
hear rate uy by a viscoplastic constitutive law

uy = 0, |�| < �Y,
� = �uy + �Y sgn(uy), |�| ≥ �Y,

(5)

ith � the viscosity and �Y the yield stress. We consider the
erschel–Bulkley model for illustration: � = K|uy|n−1, where K and
represent material constants.

The upper surface of the fluid, located at y = h, is free, implying
hat �(h,t) = 0, and no-slip on the plate demands u(0,t) = −U cos ωt.
he initial condition has the fluid moving rigidly with the plate,
(y,0) = −U.

.2. Dimensional considerations

The preceding formulation contains five dimensional quantities
ith dimensions involving space and time: U, ω, h, �y/� and a char-

cteristic kinematic viscosity, �*/� (where �* is the usual viscosity
or the Bingham model with n = 1; when n /= 1, an analogous char-
cteristic viscosity can be built from K and the other constants). At
rst sight, one might imagine that this would imply that there are
hree dimensionless groups, plus n, which control the flow dynam-
cs. In particular, since �*/� and ω can be used to construct the
tokes length

=
√

�∗
�ω

≡
(

K

�ω

)2/(n+1)
U(n−1)/(n+1) (6)

with a suitable definition of �*), there is a length ratio and “Bing-
am number”

= h

l
and B = �Y

�ω�U
. (7)

The third dimensional grouping can be taken to be the speed
atio, ω�/U. However, in the one-dimensional problem under con-
ideration, this last dimensionless number can be dropped using
he following dimensionless variables:

= ωt, ŷ = y

l
, H = h

l
, û = u

U
, �̂ = �

�ωU�
, (8)

n this choice of dimensionless variables, the velocity scale U is
ot equal to the time scale 1/ω times the length scale �, which is
ossible because the horizontal dimension x does not appear in Eq.
4). Consequently, the flow dynamics depends only on H, B and n.

With these choices, using the shear stress as the main dependent
scoplastic Stokes layer, J. Non-Newtonian Fluid Mech. (2008),

ariable, and after dropping the hat decoration, we arrive at

∂

∂t
	̇(�) = �yy, �y(0, t) = sin t, �(H, t) = 0, �(y, 0) = 0,

(9)

dx.doi.org/10.1016/j.jnnfm.2008.07.008
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here 	̇(�) is the shear rate written in terms of �; i.e. the inverse of
he constitutive law

y = 	̇(�) = [Max(0, |�| − B)]1/n sgn(�). (10)

A formulation using � has the advantage of expressing the shear
ate unambiguously in terms of a single-valued function of the
hear stress, and comprises a generalized type of Stefan problem
7]. We solve (9) and (10) numerically using the methods outlined
n Appendix A.

.3. The superficial plug and the shear-flow threshold

The stress-free surface boundary condition, �(H,t) = 0, implies
hat the stresses within the viscoplastic Stokes layer must always
all below the yield value sufficiently close to the surface. If we
enote y = Y(t) as the yield level immediately beneath the surface,
hen the momentum equation, ut = �y, integrated over the superfi-
ial plug implies that

H − Y)
dV

dt
= [�]y=H

y=Y ≡ −B sgn[�(Y, t)], (11)

here u(y,t) ≡ V(t) is the surface and plug speed. Eq. (11) also
mplies the conditions

�(Y, t)| = B, �y(Y, t) = −B sgn[�(Y, t)]
H − Y

; (12)

bove z = Y, the stress solution takes the relatively simple form

= B
(

1 − y

H

)
sgn[�(Y, t)]. (13)

Eq. (13) implies that the stress increases linearly with depth
ntil it reaches the yield value at y = Y. In fact, the basal shear stress
ust exceed the yield stress at some moment during the cycle in
Please cite this article in press as: N.J. Balmforth, et al., The vi
doi:10.1016/j.jnnfm.2008.07.008

rder that the fluid yield at all. When the whole layer is rigid, the
tress distribution is � = (1 − y/H)sin t, which is always below the
ield stress if B > H, i.e. �hωU < �Y. In other words, the layer behaves
ike a rigid block if the inertial force on the entire layer is smaller
han the yield stress. Above this threshold, the fluid must yield for

a
t
y
w
l

ig. 4. The final periodic solution for H = 10, B = 1. Panels (a) and (b) show the speed, u, an
anel (c) shows 13 equally spaced snapshots of u(y,t) through half of its cycle. Panel (d)
tress, �(0,t).
f 0.1333 from −1 to 1), with the yielded zones shaded. Panel (b) displays the basal
nd surface speeds, u(0,t) and u(H,t), as well as the basal shear stress, �(0,t).

t least part of the cycle, and over at least part of its depth. How-
ver, without solving the equations we cannot gauge the degree of
ielding, or its spatial structure as there may be multiple interlaced
ielded zones and plugs.

Note that either of the relations in (12) can be used to reduce
he size of the computational domain: in principle, the first could
e used in conjunction with a front-tracking scheme to avoid com-
uting the overlying plug zone. The second allows one to place an
scoplastic Stokes layer, J. Non-Newtonian Fluid Mech. (2008),

rtificial boundary inside the plug at a level which is well below
he surface. The first approach must still cope with any other
ield surfaces and so we have not proceeded down that path-
ay; the second scheme proves useful when considering very deep

ayers.

d shear stress, �, as densities on the (t,y)-plane (with the yielded zone indicated).
displays the basal and surface speeds, u(0,t) and u(H,t), as well as the basal shear

dx.doi.org/10.1016/j.jnnfm.2008.07.008
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ig. 5. Surface speed, V(t), against time for B = 1 and five values of H (1/2, 2, 3, 4 and
). The dashed curve shows the sinusoidal oscillation of the base plate.

.4. Results for the Bingham fluid (n = 1)

A sample solution to the initial-value problem beginning with
he unstressed state (�(y,0) = 0) is shown in Fig. 3. The whole fluid
ayer initially moves rigidly with the plate, but soon afterwards the
ottom regions yield locally as the basal acceleration increases. The
ielded zone grows with time until shortly after the plate reverses
irection, whereafter it shrinks and eventually disappears near t = 5.
y that moment, however, a new yielded zone has spawned near
he plate which grows to continue the cycle. Eventually the solution
onverges to a periodic orbit, further details of which are shown in
ig. 4; the yielded zones are localized in both space and time, and
wo distinct plug regions coexist during part of the cycle. Note the
iscontinuous change in the shear stress at the moments that a
ielded zone collapses (as predicted in a related analysis [8]).

Convenient diagnostics of the dynamics can be extracted from
he surface speed, V(t) = u(H,t); see Fig. 5. For the smaller layer
epths, the fluid remains rigid throughout its depth for a significant
raction of the cycle, and the surface speed is frozen to the plate forc-
ng. For the larger values of H, the yielded regions expand such that
he fluid is yielded somewhere for each instant during the cycle, and
(t) is never locked to the plate. Instead, V(t) begins to resemble a
awtooth profile, despite the sinusoidal forcing, much like the slid-
ng block described in Section 1. This feature can be rationalized
rom (11) which implies that, if the plug zone is relatively deep,
� Y and

dV

dt
≈ B

H
→ V ≈ V0 ± tB

H
, (14)

or some integration constant, V0. Moreover, since the cycle period
ust be 2
, it immediately follows that the peak surface speed is

max ≈ 
B

2H
. (15)

Further details of the surface speed diagnostic for B = 1 and vary-
ng H are shown in Fig. 6. This picture displays how the maximum
Please cite this article in press as: N.J. Balmforth, et al., The vi
doi:10.1016/j.jnnfm.2008.07.008

alues of |V(t)| and |V(t) + cos t| (the basal-surface velocity differ-
nce) vary with H, and also indicates the phase of the cycle at which
he maxima occur. For lower H, the speed maximum occurs when
he layer is rigid, giving a maximum of unity at zero phase. For
arger H, the peak value converges to that expected for the saw-

i
e
a
d
e

able 1
ifferent experimental conditions used in the experiments

umber of run % of clay (in mass) �c (Pa) K

48 16 ± 2
48 16 ± 2
50 20 ± 3
54 40 ± 5 3

c, K and n are the parameters of the Herschel–Bulkley fit.
ig. 6. Plots of the maximum surface speed and the maximum of the departure
f that speed from the basal speed, Max(|V + cos t|), for B = 1. Also indicated is the
rediction (15) and the phases of the cycle at which the two maxima occur.

ooth, and the phase approaches 
/2. For the velocity difference,
he maximum occurs near 
/2 for small H − B, which is the phase
f the cycle where the acceleration is largest. As H becomes large,
he phase of the maximum velocity difference approaches 
, corre-
ponding to the phase of maximum basal speed, which dominates
he surface speed in this limit.

. Experiments

.1. Set-up and procedure

To compare with the theory, we perform experiments using
aolin slurries (natural clay) as model viscoplastic fluids. This mate-
ial is well-known to exhibit a yield stress and its rheological
roperties can be tuned by changing the concentration of kaolin
articles in water (e.g. [9]). Another advantage of kaolin slurry in our
scillating configuration is that it is relatively stiff compared with
ther, softer yield-stress fluids such as Carbopol or Laponite, and
o elastic effects are likely minimized. Three different fluid sam-
les were prepared by mixing 48%, 50% and 54% of kaolin (by mass)

nto distilled water at ambient temperature (T = 24 ◦C). The rheolog-
cal behaviour of each solution was measured in a cone-and-plate
eometry (Anton-Paar MCR 501) using slightly roughened surfaces
nd special care was taken in order to prevent evaporation dur-
ng the tests. Fig. 7 shows that, for each sample, the steady-state
ow curve can be approximated by a Herschel–Bulkley fit (see
able 1), suggesting that kaolin slurry is a good choice to compare
ith the theory. Nevertheless, deviations from the ideal viscoplas-

ic behaviour exist, particularly close to the flow threshold, where
reeping, aging and hysteresis are observed. We will return to this
oint below.

The experimental set-up is sketched in Fig. 8. It consists of
transparent rectangular box made of Plexiglass with a bottom

oughened with sandpaper (length 20 cm, width 8 cm, height 4 cm),
hich is partially filled with a uniform layer of kaolin slurry and

nclosed with a transparent film to prevent evaporation. The box
scoplastic Stokes layer, J. Non-Newtonian Fluid Mech. (2008),

s constrained to move horizontally and driven sinusoidally by an
lectromagnetic shaker with an amplitude, A (0.1 cm < A < 1 cm),
nd a frequency, ω (1 Hz < ω/2
 < 15 Hz). Efforts were made to pro-
uce a clean sinusoidal signal, as the dynamics of the mud layer is
ntirely controlled by the acceleration of the box, which in turn

(Pa sn) n � (g/cm3) h (cm)

15.5 0.32 1.4 ± 0.1 2.2 ± 0.1
15.5 0.32 1.4 ± 0.1 1.1 ± 0.1
17 0.3 1.4 ± 0.1 1.45 ± 0.1
6.4 0.35 1.6 ± 0.1 1 ± 0.1

dx.doi.org/10.1016/j.jnnfm.2008.07.008
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described by the Herschel–Bulkley fit. In particular, the time series
of the observed surface speeds shown in Fig. 11 are qualitatively
different in shape from their theoretical counterparts (included in
the same figure); at larger driving, theory predicts a sawtooth-like
ig. 7. Flow curves for the kaolin slurries ((©) 48%, (�) 50%, (×) 54% of kaolin parti-
les in mass) obtained by decreasing the shear rate after an initial preshear (log-ramp
n the range of 100–10−2 s−1, for waiting time in the range of 1–100 s). The lines
orrespond to the Herschel–Bulkley fit.

s sensitive to small imperfections in displacement. The motion
f the fluid surface, X(t), is measured by tracking with a high-
peed camera (1000 fps) the position of a 5 mm diameter tracer. The
otion of the box, Xb(t), is recorded simultaneously using a refer-

nce marker rigidly fixed to the box (Fig. 8). The positions of both
racers are obtained to within a precision of 50 �m. We checked
hat the motion of the free-surface is not affected by the side-walls,
xcept close to the edges where a thin boundary layer of order h
xisted. All measurements are made at the centre of the box.

.2. Results

We first studied the onset of motion of the mud layer. In the
heory, the threshold is controlled by a single dimensionless num-
er, H/B = �ωhU/�c = 1. As a first test, we consider a given slurry
ith one depth (run 1 in Table 1), and vary the amplitude of the

ox motion, A = U/ω, for different frequencies. Fig. 9 shows how the
mplitude of the relative surface displacement vary with H/B. The
nset also shows the phase lag that appears between the surface
isplacement and the base displacement. At low forcing ampli-
udes (or H/B), the fluid layer oscillates in solid motion with the
ox, and both displacements are equal and occur at the same phase.
t higher amplitudes, the free-surface displacement no longer fol-

ows the base and a phase lag arises, indicating that the fluid is
ow sheared. Although the critical driving amplitude for the flow
hreshold depends upon frequency, each threshold corresponds to
/B = 1, as shown by Fig. 9. The same result is obtained when both

he layer depth and the yield-stress are varied, as shown in Fig. 10.
n all cases, the mud layer is rigid below H/B = 1 and starts to flow
Please cite this article in press as: N.J. Balmforth, et al., The vi
doi:10.1016/j.jnnfm.2008.07.008

or H/B > 1.
Typical time series of the free-surface speed are displayed in

ig. 11 for different values of H/B. Close to the flow onset (Fig. 11a),
he fluid motion is characterized by a sticking phase where the fluid

Fig. 8. Sketch of the experimental set-up. F
X = 〈[X(t)−Xb(t) − 〈X(t) − Xb(t)〉] 〉 , over the Stokes length l, as a function
f H/B. Data obtained for run 1 by increasing A at different frequencies. Inset: phase
ifference between the free surface displacement X(t) and the base displacement
b(t), computed using the Fourier transform of both signals.

oves rigidly with the plate followed by a slip motion. This stick-
nd-slip behaviour can be highlighted on plotting the relative speed
etween the mud surface and the base (Fig. 12). As we move further
rom the threshold, the sticking phase disappears and a phase lag
rises between the two signals (Fig. 11b and c). Note that during the
ycle, the mud surface reaches speeds that are higher than the base
peeds. This effect occurs close to the flow threshold, but disap-
ears at larger driving amplitudes (Fig. 11d and e). The overshoot is
ystematically observed for all the flow conditions we have tested,
s shown by Fig. 13 where the ratio of the maximum surface speed
nd U is plotted versus H/B.

.3. Comparison

The experimental observations are in partial agreement with the
isco-plastic theory developed in Section 2. First, the flow threshold
s well reproduced by the criterion, H/B = 1, and the slurry behaves
ike a rigid block below this threshold. Second, just above the flow
hreshold, a stick-slip regime is observed in both experiment and
heory. Third, the observed surface speed decreases at large driving,
s predicted by the theory. Despite this, the theory fails to qual-
tatively capture the detailed dynamics observed experimentally,
ven though the flow curves measured in the rheometer are well
scoplastic Stokes layer, J. Non-Newtonian Fluid Mech. (2008),

ig. 10. A picture similar to Fig. 9, but including all the experimental runs of Table 1.

dx.doi.org/10.1016/j.jnnfm.2008.07.008
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Fig. 11. Examples of experimental (left) and theoretical (right) time evolution of the free surface speed (the reference base velocity is plotted in grey); (a) H = 2.49, B = 1.9,
H/B = 1.32; (b) H = 9.3, B = 6.5, H/B = 1.43; (c) H = 13.3, B = 6.3, H/B = 2; (d) H = 10.7, B = 2.6, H/B = 4.1; (e) H = 18.1, B = .86, H/B = 21. For the theory, n = 1/3.

Fig. 12. Same as Fig. 11 for the relative velocity.
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ig. 13. Maximum free surface speed, Vm = Max(V), normalized by U, as a function
f H/B. Symbols: experiments, the different flow conditions are given in Table 1. Solid

ines: theory for five values of B (1/10, 1/3, 1, 2 and 10), and n = 1/3.

ariation whereas the observations display more structure. More
trikingly, the theory always predicts that U > |V(t)|, whereas close
o the threshold, the mud surface speed is observed to be system-
tically larger than U (Fig. 13).

The fact that the surface speed overshoots the forcing close to
he flow threshold could suggest that some sort of resonance is tak-
ng place. Two possibilities present themselves: resonance with an
lastic standing wave or a gravity wave. An elastic origin, however,
oes not seem plausible in view of the fact that below the thresh-
ld, no relative motion between the free surface and the base is
etectable, indicating that elastic deformations are insignificant.
oreover, one can estimate a characteristic resonance frequency

ased on the time taken for an elastic wave to traverse a layer of
epth h: tel = h/

√
E/�, where E is Young’s modulus. With mea-

urements of E = 104 Pa, based on oscillatory tests in a rheometer,
e estimate tel = 4 ms, which is much smaller than any of the experi-
ental oscillation periods. Likewise, we can also dismiss resonance
ith a surface gravity wave since the dynamics is unaltered when
e used different depths, lengths and widths (which should change

he mode frequency).
We conclude that the origin of the discrepancy lies in the

nsteady rheological properties of the kaolin slurry. Thixotropy,
hich is known to occur in natural clays, could be the explana-

ion [10]. It is well known that dense colloidal suspensions exhibits
ging. The material does not becomes instantaneously rigid when
tress becomes less than the threshold but takes a finite time to
ecover its rigidity. In our configuration, the stress periodically
rosses the threshold value. The recovery time could then play an
mportant role. However, the forcing periods in the experiment are
elatively rapid in comparison to the relaxation times normally con-
idered to characterize thixotropy in slurries. A second source of
hixotropic effect could arise from a flow-induced orientation of
he microstructure [11]. In our experiment the stress not only peri-
dically crosses the threshold, but changes sign. The reorientation
f the microstructure when shear changes sign could transiently
often the material, which could explain the amplitude overshoot
bserved experimentally. Further investigation is necessary to dis-
riminate between these different hypothesis.

. Conclusions
Please cite this article in press as: N.J. Balmforth, et al., The vi
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We have presented a theoretical and experimental exploration
nto the effect of viscoplasticity on the dynamics of the Stokes layer.
heoretically, we find that the yield stress introduces a complicated
patio-temporal pattern of yielded zones and plugs within the fluid
ayer. However, overall, and as anticipated, the dynamics interpo-
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ates between the viscous Stokes layer and a sliding rigid block as
he effect of the yield stress is increased.

Rather surprisingly, although in the experiment we use a fluid
hat is seemingly well described by the Herschel–Bulkley flow rule,
e discover qualitative disagreement between theory and experi-
ent. More specifically, we have found that shaking a kaolin slurry

eads to an excitation of fluid activity that is both more pronounced
nd richer than expected. We suspect that this reflects some sig-
ificant relaxational dynamics in the fluid which is not captured
y the steady flow rule. Our flow is highly unsteady with a shear
ate that changes sign periodically; therefore its dynamics could
e highly coupled to internal relaxation modes, such as thixotropic
nd microstructure orientation effects [11].

We set out in this study with the hope that the viscoplas-
ic Stokes layer might prove to be a valuable rheological device.
lthough we leave the reader with an unsatisfying disagreement
etween theory and experiment, this hope seems to have been
orne out: unexpected dynamical features have been revealed by
he viscoplastic Stokes layer, that could serve as a test to probe more
laborated rheological models [12,13].
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ppendix A. Solution method

We solve (9) and (10) numerically using a standard implicit or a
impler semi-implicit scheme in time. Spatial derivatives are dealt
ith via either second-order-accurate finite differences on either
fixed or moving grid (the latter adapted from [14]). The implicit

ime integrators are based around the differential-algebraic solver
ASSL [15]. In principle, a fully implicit scheme can deal with a
ield surface moving across the grid. However, most state-of-the-
rt implicit solvers also require iteration to the solution, which is
roblematic in the current problem at the instants when spatially

ocalized yielded regions or plugs collapse (yield surfaces collide;
ee Section 2). At that instant, the stress solution is formally dis-
ontinuous, which can make an iterative scheme fail to converge.
n the other hand, a scheme that suspends the iteration or pro-
eeds explicitly will jump across the moment of discontinuity and
hereby incur error. We avoid the problem in the iterative schemes
y “regularizing” the problem and smoothing out the function, 	̇(�),
sing the convenient (but rather arbitrary) construction:

∂

∂t
	̇(�) = 	̇ ′(�)�t ≡ �t

[
1 + �2 − B2√

ε2 + (�2 − B2)2

]
, (A.1)

ith ε chosen to be as small as possible (typically less than 10−6,
nd no greater than 10−4 in the worst cases).

The simpler finite-difference, non-iterative, semi-implicit
cheme is formulated as follows (Pailha and Pouliquen, in prepara-
ion)

	̇n+1 − 	̇n �n + �n − 2�n+1
scoplastic Stokes layer, J. Non-Newtonian Fluid Mech. (2008),

˙ t ≈
dt

≈
dx2

(A.2)

here j refers to the jth grid point and n to the nth time step, and dt
nd dx are the time step and grid spacing (with appropriate modi-
cations to incorporate the end points). In other words, the second

dx.doi.org/10.1016/j.jnnfm.2008.07.008
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erivative is dealt with semi-implicity in such a way that we may
rite an equation for the evolved shear stress:

n+1
j

+ 2dx2

dt
	̇n+1

j
= 1

2
(�n

j+1 + �n
j−1) + 2dx2

dt
	̇n

j ≡ Jn
j . (A.3)

If |Jn
j
| < B or �1(1 − y/H), the jth grid point is unyielded and we

et �n+1
J = Jn

j
; otherwise we include 	̇n+1

j
and solve algebraically

or �n+1
j

. This solver needs no regularization. However, the semi-
mplicit fashion in which the second derivative is dealt with has the
isadvantage of additional smoothing, which acts much the same
s the regularization of the implicit schemes.

We verified that the various schemes gave identical results for
he computations reported in the main text. However, a better pro-
edure would be to integrate forwards upto and not beyond the
oment that the yielded zone disappears. The integration could

hen be restarted with the jump in � taken into account [8]. One
f the referees (Professor J. Billingham) also kindly confirmed the
esults with a specially designed implicit algorithm incorporating
o regularization.
Please cite this article in press as: N.J. Balmforth, et al., The vi
doi:10.1016/j.jnnfm.2008.07.008
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