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A yield stress is added to Taylor’s (1952, Proc. Royal Soc. A, 211, 225-239) model8

of a microscopic organism with a wavy cylindrical tail swimming through a viscous9

fluid. Viscoplastic slender-body theory is employed for the task, generalizing10

existing results for Bingham fluid to the Herschel-Bulkley constitutive model.11

Numerical solutions are provided over a range of the two key parameters of12

the problem: the wave amplitude relative to the wavelength, and a Bingham13

number which describes the strength of the yield stress. Numerical solutions14

are supplemented with discussions of various limits of the problem in which15

analytical progress is possible. If the wave amplitude is sufficiently small, the16

yield stress of the material inevitably dominates the flow; the resulting ‘plastic17

locomotion’ results in swimming speeds that depend strongly on the swimming18

gait, and can, in some cases, even be negative. Conversely, when the yield stress19

is large, swimming becomes possible at the wave speed, with the swimmer sliding20

or burrowing along its centreline.21

1. Introduction22

The fluid mechanics of locomotion through viscous fluids was pioneered by Taylor23

and Lighthill over half a century ago. Taylor’s (1952) model of locomotion driven24

by the waving of a cylindrical filament, in particular, lay the foundation for25

biofluid mechanics of flagellar motion. Taylor’s theory applied for low-amplitude26

motions, such that the swimming stroke constituted a small perturbation of27

the boundary corresponding to the swimmer’s surface. Later developments by28

Hancock (1953) and Lighthill (1975) exploited the machinery of Stokes flow theory29

to advance beyond this regime. Lauga & Powers (2009) provide a review of later30

developments.31

More recently it has become popular to consider locomotion through complex32

fluids, motivated mostly by the settings of many problems in physiology and the33

environment. Viscoelastic fluid models have been the most popular idealization34

used in theoretical and experimental explorations to date. However, locomotion35

through or above viscoplastic fluids (Denny 1980, 1981; Chan et al. 2005; Pegler36

& Balmforth 2013; Hewitt & Balmforth 2017, 2018; Supekar et al. 2020) and both37

wet and dry granular media (Hosoi & Goldman 2015; Maladen et al. 2009; Jung38



2 D. R. Hewitt & N. J. Balmforth

2010; Juarez et al. 2010; Dorgan et al. 2013; Kudrolli & Ramirez 2019) have also39

been of interest.40

For waving cylindrical filaments in viscous fluid, an awkward drawback in41

theoretical explorations is that long-range effects characteristic of Stokes flow42

plague analytical advances even when the filament is relatively thin (Cox 1970;43

Keller & Rubinow 1976; Lighthill 1975; Lauga & Powers 2009). In particular,44

Lighthill’s resistive force theory, the simplest theory based on the slenderness45

of the filament, converges only logarithmically in terms of aspect ration. By46

contrast, the localization of flow around the filament by a yield stress ensures47

that the viscoplastic analogue of this theory is more accurate than its Newtonian48

cousin, as also noted in the context of granular media (Zhang & Goldman 2014;49

Hosoi & Goldman 2015). We exploited this feature in a previous article (Hewitt &50

Balmforth (2018)) to develop viscoplastic slender-body theory. We further applied51

the theory to models of swimming driven by the motion of a helical filament (a52

model also popularized by Taylor and Hancock).53

In the current theory we use the viscoplastic slender-body theory to attack Tay-54

lor’s problem of locomotion by a wavy cylindrical filament. For this task, we first55

generalize our previous results by considering the ambient fluid to be described56

by the Herschel-Bulkley model. In our previous work (Hewitt & Balmforth 2018),57

we considered only the Bingham model, for which the plastic viscosity beyond58

the yield point is constant. Most real materials, however, possess a nonlinear59

(and typically shear-thinning) viscosity, leading us to use the Herschel-Bulkley60

model (even though the behaviour of those materials is invariably richer than this61

idealization; Balmforth et al. (2014)). Discussions of the effect of shear thinning62

on locomotion have appeared previously (e.g. (Vélez-Cordero & Lauga 2013; Li63

& Ardekani 2015; Riley & Lauga 2017)), although these have mostly focussed64

on power-law fluids and the like, whereas our main thrust is to understand the65

impact of a yield stress. From the perspective of complex fluids, the inclusion66

of a yield stress is typically dramatic, qualitatively changing the dynamics, and67

permits one to access the “plastic limit” where the medium behaves more like a68

perfectly plastic, cohesive solid (Prager & Hodge 1951).69

A notable detail of the current problem is that one might expect that the70

localization of flow by the yield stress should continue all the way to the plastic71

limit, thereby restricting motion to narrow boundary layers around the swimmer72

(Balmforth et al. 2017). However, it turns out that this only becomes true when73

the filament can translate nearly along its length. Otherwise, regions of almost74

perfectly plastic deformation persists over distances of order the radius driven by75

transverse motion. The transverse and axial forces acting on the filament are then76

of similar size, unless the motion is closely aligned with its axis. We explored some77

consequences of the strong force anisotropy that is experienced only in nearly axial78

motion in Hewitt & Balmforth (2018) for some other problems of viscoplastic79

flows around slender filaments. Here, we examine the possibility whether it can80

lead to style of locomotion in which in which the swimmer “burrows” through81

the fluid, moving purely in the direction of its centreline. Such a style of motion82

is, in fact, often observed for real organisms (Gidmark et al. 2011; Dorgan et al.83

2013; Kudrolli & Ramirez 2019).84
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Figure 1: Sketches of (a) the swimmer geometry, and (b) the local coordinates
(x, z) aligned with a segment of the cylindrical body that lies at an angle Φ(Z)
to the Z axis. The segment moves with speed U at a direction δ to its axis; the

associated force F is directed at an angle δf to its axis.

2. Formulation85

Consider a cylindrical filament of radius R moving without inertia through a86

viscoplastic fluid described by the Herschel-Bulkley constitutive law, with yield87

stress τ
Y

, consistency K and power-law index n. The filament is propelled by88

waves generated along its length, with wavepeed c and wavelength λ. A sketch of89

the geometry is shown in figure 1; the waves are assumed to deform the filament90

in the (X,Z)−plane, with the Z−axis pointing in the direction of motion. The91

instantaneous centreline of the filament is given by the curve X = X (Z + ct),92

which we assume is inextensible. As a canonical example, we follow Taylor and93

consider the sinusoidal waveform,94

X = X (Z + ct) = aλ sin

[
2π(Z + ct)

λ

]
, (2.1)95

with (dimensionless) peak amplitude a. In fact, we also open up the possibility96

of locomotion driven by more general waveforms, although we restrict attention97

to cases that are symmetric with X (Z) = −X (−Z) and X (Z) = X ( 1
4
λ− Z) (for98

0 < X < 1
2
λ), such that the waveform has the extrema X (± 1

4
λ) = ±a and zeros99

X (0) = X (± 1
2
λ) = 0.100

2.1. Viscoplastic slender-body theory101

When the filament is long and thin, the localization of motion by the yield stress102

implies that the flow is locally equivalent to that around a straight cylinder. This103

approximation is expected to remain accurate as long as variations along the axis104

of the filament are much smaller that the radius (so R � λ), and the yield stress105

is sufficiently large that the fluid plugs up beyond a distance of order the filament106

radius (that is, the Bingham number, to be defined presently, is order unity or107

larger).108

In this situation, the inertia-free problem breaks down into the computation109

of the force generated locally by the translation of the cylinder with respect to110

the fluid. The ensuing fluid motion is most naturally described in terms of a111

local (x, z)−coordinate system attached to the centerline of the filament, with z112

pointing along the length (see figure 1). If the cylinder translates with velocity113

U(x̂ sin δ + ẑ cos δ) at an angle δ to its axis (figure 1b), the resulting force per114
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unit length can be represented as115

KUn
Rn−1 [x̂Fx(δ, n,Bi) + ẑFz(δ, n,Bi)] , (2.2)116

where the local Bingham number, which measures the relative importance of the117

yield stress and the characteristic viscous stresses, is118

Bi =
τ
Y
Rn

KUn , (2.3)119

and x̂ and ẑ denote unit vectors in the local x and z directions, respectively. A120

fuller statement of the problem can be found in Appendix A.1.121

The nonlinearity of the constitutive law forbids any simple breakdown of the122

dependence of the force components Fx and Fz on the angle δ and Bi, although123

analytical results are available in certain limits (see Hewitt & Balmforth (2018)).124

The key to solving the locomotion problem more generally, however, is to tabulate125

these components for a given n, and then use an interpolation to integrate over126

the length of the wavy filament, accounting for the relevant orientation of each127

local cylindrical cross-section.128

Before performing this operation, we briefly revisit and generalise the results129

reported by Hewitt & Balmforth (2018). In that paper, force components (Fx, Fz)130

were computed numerically over a wide range of values for Bi and δ (there written131

alternatively in terms of an angle φ ≡ 1
2
π − δ) for a Bingham fluid (n = 1). We132

repeat this exercise here, but for more values of n, using a simple adaptation133

of the numerical scheme in Hewitt & Balmforth (2018) (see Appendix A.1).134

Figure 2(a,b) shows how the force direction, δf = tan−1(Fz/Fx), and magnitude,135

F ≡
√
F 2
x + F 2

z , vary with δ and Bi for three values of n. The main variation of136

the force magnitude is with Bi; to extract this dominant dependence, the plots137

show F/〈F 〉, where 〈F 〉 denotes the average over 0 6 δ 6 1
2
π, which reduces the138

variation to a factor of about three. The angular averages themselves are also139

shown against Bi in figure 2(c).140

Considering first the case of low Bingham number, Bi � 1, one might expect141

that the force components converge to those for a power-law fluid. However, for142

the Newtonian case, the Stokes paradox ensures that the low deformation rates143

in the far-field always impact the result. This leads to a persistent, logarithmic144

dependence on Bi that reflects how the yield stress must inevitably bring fluid145

to rest and resolve the paradox. Explicitly (for n = 1), we have146

(Fx, Fz)→ −
2π

logBi−1
(2 sin δ, cos δ), (2.4)147

as Bi→ 0 (Hewitt & Balmforth 2018). On the other hand, shear-thinning avoids148

the Stokes paradox for n < 1, as pointed out by Tanner (1993), leading to a finite149

drag force for Bi → 0, as illustrated in figure 2(c). While there is no general150

analytic solution for arbitrary δ in this limit, an exact solution can be computed151

for pure axial motion,152

Fz(
1
2
π, n, 0) = 2π(n−1 − 1)n, (2.5)153

if n < 1. The convergence of the drag components to their power-law limits154

for n = 1
2

and Bi � 1 is illustrated further in figure 2(d). This plot shows155

|Fx|/ sin δ and |Fz|/ cos δ; this scaling, motivated by the form of the Newtonian156

limit (2.4), takes care of most of the δ-dependence of Fz, but works less well for157
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Figure 2: Slender-body-theory results for motion of a cylinder in a
Herschel–Bulkley fluid with index n. Colour maps of (a) force direction δf and

(b) F/〈F 〉, for n = 0.5 (left), n = 1 (centre) and n = 2 (right), where
F =

√
F 2
x + F 2

z and 〈F 〉 is the angular average shown in (c). The dashed lines in

(a)-(b) show δ = (β/αn)Bi−2/(1+n), where αn is defined in (2.7), and that in (c)
shows (2.4). Panel (d) plots the scaled force components |Fx|/ sin δ and

|Fz|/ cos δ, for n = 1
2

and Bi = 4−j with j = 2, 3, 4, 5 (as indicated by the blue

dots in (c), with colours from red at Bi = 4−2 to blue at Bi = 4−5); the star
shows the analytical result in (2.5), and the triangle indicates an approximate

solution from Tanner (1993) (Fx ≈ 12.1).

Fx. Thus, an empirical collapse of the form suggested by Chhabra et al. (2001)158

for Carreau fluids (and which was exploited for locomotion problems by Riley159

& Lauga (2017)), which implies Fx(δ, n, 0)/Fz(δ, n, 0) = Fx(δ, 1, 0)/Fz(δ, 1, 0) =160

2 tan δ, does not apply accurately in this power-law limit.161

For n > 1, the Stokes paradox persists and the drag again vanishes in the limit162

Bi → 0. In this case, the far-field solution for the streamfunction in the cross-163

sectional plane is expected to contain terms of the form ψ ∼ Cr2−
1
n sin θ (see164

Tanner (1993)). Demanding that such terms balance the term stemming from165

sideways translation ψ ∝ r sin θ for r = O(Bi−1) suggests that C = O(Bi1−
1
n )166
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which provides the scaling of the drag force for Bi� 1 (see Hewitt & Balmforth167

(2018); illustrated for n = 2 in figure 2c).168

For higher yield stress Bi � 1 and except over a narrow window of angles169

of motion with δ � 1, the force components converge to n−independent values170

with (Fx, Fz) ∝ Bi (see figure 2c). These values correspond to the perfectly plastic171

limit of the problem in which the viscous stresses operate only in thin viscoplastic172

boundary layers (Balmforth et al. 2017) to adjust the solution and ensure no slip,173

without consequence on the net drag. The perfectly plastic deformation outside174

these boundary layers span distances of order of the cylinder radius. Importantly,175

in this plastic limit the two force components Fx and Fz remain comparable.176

Further details of these plastic solutions can be found in Appendix A.3 and177

figure 8.178

However, as the cylinder approaches axial motion (δ → 0) there is a narrow179

window of angles δ � 1 across which the transverse force Fx drops to zero,180

as it must on symmetry grounds (Fx(δ = 0, n,Bi) = 0). The abrupt decrease181

in Fx arises without change in the axial force Fz, and so the force angle δf182

drops from O(1) to zero across this window (see figure 2a). The width of this183

‘reorientation’ window decreases with increasing Bi, and we previously showed184

that for a Bingham fluid (n = 1) the width of the window is δ = O(Bi−1) (Hewitt185

& Balmforth 2018). However, as illustrated in figure 2(a), the window is narrower186

for smaller n and wider for larger n. More specifically, we show in Appendix A.2187

that the narrow window for force reorientation for n 6= 1 is instead given by188

δ = O(Bi−2/(n+1)), with189

Fx ∼ −αnπBi
n+3
n+1 δ & Fz ∼ −2πBi, (2.6)190

where191

αn =
(2n+ 1)2(3n+ 1)

[n2(n+ 1)3n+1]
1

n+1

, (2.7)192

(see Appendix A.2). The chief consequence of the narrow reorientation window193

for large Bi is that the direction of the induced force (δf ) is highly sensitive to194

the direction of motion (δ) when this is shifted only slightly off-axis. Equivalently,195

substantial sideways forces can only be avoided if the translation of the cylinder196

is very closely aligned to its axis. As we will find below, this narrow reorienta-197

tion window, and indeed the plastic flow solution for larger δ, have important198

consequences for slender locomotion through a viscoplastic material.199

2.2. Superposition200

We now return to the original (X,Z)−coordinate system and calculate the net201

forces induced by the swimming motion. Before entering into the details, we first202

move into the frame of the wave (in which the motion is independent of time) and203

remove the dimensions from the problem by scaling lengths (i.e. X, Z and X )204

with the wavelength λ, speeds with the wavespeed c and stresses with K(c/R)n.205

The swimmer is then periodic over a translating coordinate 0 6 ζ = Z+ct/λ 6 1;206

the centreline lies along X = X (ζ), and a more natural Bingham number for the207

swimmer is208

Bs =
τ
Y

K(c/R)n
≡ V nBi, (2.8)209
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where V (ζ) = U/c is the dimensionless speed of each segment of the swimmer’s210

body. That speed is not known a priori (as it depends on the locomotion speed211

of the swimmer) and must be found as part of the solution of the problem.212

The constraint that the swimmer’s centerline is perfectly inextensible demands213

that, in the frame of the wave, the body must move in the direction of the214

centerline at the constant speed,215

Q =

∫ 1
2

− 1
2

dζ

cosΦ
, (2.9)216

which is the arc-length of the waveform relative to its undeformed length (Taylor217

1952), where218

tanΦ =
dX
dζ

(2.10)219

denotes the local slope of the centerline (see figure 1). In a stationary (i.e.220

laboratory) frame, the swimmer’s body therefore has velocity221

(U,W ) = Q sinΦX̂ + (Q cosΦ− 1 +Ws)Ẑ (2.11)222

where Ws is the constant translation speed of the swimmer in the ζ−direction; i.e.223

the dimensionless swimming speed (scaled by the wave speed; sometimes referred224

to as the ‘wave efficiency’). Hence,225

V cos δ = Q− (1−Ws) cosΦ,

V sin δ = (1−Ws) sinΦ,
(2.12)226

which allows determination of the speed227

V (ζ) =
√

(Ws − 1)2 + 2Q(Ws − 1) cosΦ+Q2, (2.13)228

and inclination229

tan δ = − (Ws − 1) sinΦ

(Ws − 1) cosΦ+Q
, (2.14)230

of each segment of the swimmer’s body.231

Given the slender-body results for the associated force components (Fx, Fz),232

we may compute the net axial force on the swimmer:233

λKcn

Rn−1
∫ 1

2

− 1
2

V n(Fz cosΦ− Fx sinΦ)
dζ

cosΦ
. (2.15)234

For steady swimming, this net force must vanish and so the integral constraint235 ∫ 1
2

− 1
2

V n(Fz − Fx tanΦ) dζ = 0, (2.16)236

determines the swimming speed Ws. Finally, the dimensionless net dissipation237

rate, which must equal the dimensionless power P expended by the swimmer,238

can also be computed as239

P =

∫ 1
2

− 1
2

V n [V cos δFz + V sin δFx]
dζ

cosΦ
= Q

∫ 1
2

− 1
2

V nFz
cosΦ

dζ. (2.17)240

Note that the specific waveform X of the swimmer only enters the problem241
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through the definition of Φ in (2.10); i.e. the slope of the centreline. In other242

words, for a given waveform, the amplitude and wavelength of the swimming gait243

are only relevant in how they combine to set Φ, which must remain sufficiently244

shallow for the slender-body theory to be applicable. More specifically, the radius245

of curvature of the centreline (which is O(a−1λ)) must remain much greater246

than the swimmer’s radius R. For the sample waveforms that we adopt, this247

restriction demands that the wave amplitude parameter a should not be too248

large (specifically, a � λ/R); this is a condition that we informally ignore in249

presenting model solutions, but is important to keep in mind.250

3. Results251

Figure 3 displays numerical results exploiting the construction of §2 for a swimmer252

propelled by the sinusoidal waveform X = a sin 2πζ. As indicated by the com-253

parison of panels (a–c), for n = 1
2
, 1 and 2, respectively, the results for different254

power-law exponents are qualitatively similar. More significant is the role of the255

yield stress, with an increase of Bs prompting a clear increase in locomotion speed256

towards the wave speed.257

The associated power expenditure, or dissipation rate, is shown in figure 4.258

Naturally, this measure increases with Bs as the swimmer has to break the yield259

stress to move; however, after compensating for this effect the figure shows a260

progressive decrease in the scaled power P/Bs for larger yield stress. The power261

steadily increases with wave amplitude, and approaches different high-Bi limits262

for small and large a, as discussed below.263

An impression of the yielded sheath around the swimmer is displayed in figure264

5, which shows the yield surfaces predicted in certain cross-sections through the265

swimmer for a range of values for a and Bs, and a particular choice of the266

dimensionless wavelength λ/R (which does not affect the wave speed or power).267

Not surprisingly, the yielded region becomes more localized as Bs is increased. On268

the other hand, as long as Bs is not small, variations in the wave amplitude can269

result in yield surfaces that lie at similar distances from the swimmer even while270

the the swimming speed increases by almost an order of magnitude (compare,271

for example, figure 5(c) and (f)). However, for smaller Bs and larger a, self-272

intersections of the yield surfaces can arise (e.g. figure 5g); the implied overlap of273

the yielded regions occurs when the span of the flow domain is no longer much274

smaller than the wavelength of the swimming stroke, and thus suggests a break275

down of the validity of the assumptions upon which the slender-body theory is276

based.277

The characteristics displayed by the numerical results in these figures motivate278

a discussion of a number of limits of the problem, which we discuss below.279

3.1. Newtonian limit280

When n = 1 and Bi� 1, the force components have the limits in (2.4), and the281

constraint (2.16) reduces to282

Ws = 1−Q
[∫ 1

2

− 1
2

(2 tan2 Φ+ 1) cosΦ dζ

]−1
. (3.1)283
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Figure 3: Locomotion speed Ws against wave amplitude a for a swimmer driven
by sinusoidal waves in Herschel-Bulkley fluid with (a) n = 1

2
, (b) n = 1 and (c)

n = 2. Examples with Bs = 10−3, 10−1, ... 103 are presented (colour coded by
Bs, from blue to red). The data are replotted logarithmically over a wider range

of a in (d), with n = 1
2
, 1 and 2 shown in red, blue and green (respectively).

The dashed line shows the result for Newtonian fluid (§3.1; eq. (3.2)), and the
low-amplitude, plastic solutions of §3.2 are shown by the stars. The inset in (d)

shows the data for a > 0.12, replotted as 1−Ws against the quantity
E(a, n,Bs) defined in (3.17); the solid (black) line shows the prediction

1−Ws = E from §3.3.

For a sinsoidal wave profile, we then recover a result derived by Hancock:284

Ws = 1−
∫ 1

2

− 1
2

√
1 + 4π2a2 cos2 2πζ dζ

[∫ 1
2

− 1
2

1 + 8π2a2 cos2 2πζ√
1 + 4π2a2 cos2 2πζ

dζ

]−1
, (3.2)285

which gives Ws ∼ 2π2a2 for small a. For a more general swimming wave, if286

X = O(a) with a � 1 we set Φ = aΦ1 ∼ aX ′1, Q = 1 + a2Q2 = 1 + 1
2
a2
∫ 1

0
Φ2

1dζ287

and Ws = a2W2. Then,288

W2 ∼
∫ 1

2

− 1
2

Φ2
1dζ. (3.3)289

3.2. Low-amplitude plastic swimming290

For low amplitudes, (X , Φ) = O(a) with a� 1, we once more assume that Ws =291

a2W2, which implies from (2.12)-(2.14) that V = O(a) and tan δ = O(a−1) � 1292

everywhere except close to the extrema of the waveform. Near these extrema,293

where Φ becomes O(a2), we instead find that V = O(a2) and δ runs through294

the entire range [− 1
2
π, 1

2
π]. Because V is always small, the low-amplitude limit295

corresponds to Bi = O(a−n)� 1 or larger, if Bs is fixed (see (2.8)). This implies296

that, provided Bs is non-zero, the relevant problem to consider for the force297
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components when a � 1 is the plastic limit Bi � 1, with δ not restricted to298

small values (i.e. beyond the reorientation window, which is considered below in299

§3.3 and Appendix A.2).300

As discussed further in Appendix A.3, the force components in this plastic limit
take the form

Fx(δ, n,Bi) ∼ −Bifx(|δ|) sgn(δ) Fz(δ, n,Bi) ∼ −Bifz(|δ|) sgn(cos δ)
(3.4a, b)

for some functions fx and fz. These can be extrapolated from numerical results301

for Bi� 1, as plotted in figure 8 in the Appendix. The important details for this302

analysis are the limiting value fx(
1
2
π) ≡ 4(π+2

√
2), which can be extracted from303

the perfectly plastic solution in that limit (Randolph & Houlsby 1984), and the304

fact that a linear relationship305

fz ≈ A( 1
2
π − |δ|), (3.5)306

provides a very good fit to the data across the whole range of δ, with A ≈ 4.4.307

In view of (3.4), the constraint of vanishing drag (2.16) becomes308

A

∫ 1
2

− 1
2

( 1
2
π − |δ|)dζ ∼ a

∫ 1
2

− 1
2

fx(|δ|)|X ′1|dζ, (3.6)309

which is independent of n. Here, we have again introducted Φ = aΦ1 ∼ aX ′1.310

The contributions to the integrals in (3.6) therefore arise from a “global” region,311

where312

Φ1 = X ′1 = O(1) (Φ = O(a)), δ ∼ 1
2
π sgn(Φ1)−

a

Φ1

(Q2 + 1
2
Φ2

1 +W2), (3.7)313

and from “local” regions around the waveform’s extrema, where314

Φ1 = X ′1 = O(a) (Φ = O(a2)), δ ∼ tan−1
Φ1

a(Q2 +W2)
, (3.8)315

with Q = 1+a2Q2 and Ws = a2W2 again, and we have assumed Q2+W2 > 0. For316

symmetrical waveforms, X (ζ) = −X (−ζ) and X (ζ) = X ( 1
4
− ζ), with extrema317

X (± 1
4
) = ±1, the leading-order global contributions to the left and right-hand318

sides of (3.6) are319

2aA+ 4aA(Q2 +W2)

∫ 1
4−ε

0

dζ

|X ′1|
and 4afx(

1
2
π) (3.9)320

respectively, where the splitting point ε is arbitrary but satisfies a� ε� 1. The321

left-hand side has two local contributions, each equal to322

2aA(Q2 +W2)

|X ′′1 ( 1
4
)|

∫ Y

0

( 1
2
π − tan−1 y)dy, Y =

ε|X ′′1 ( 1
4
)|

a(Q2 +W2)
. (3.10)323

The integrals in (3.9) and (3.10) diverge logarithmically for ε → 0. In writing324

the full constraint, we therefore reorganize accordingly to arrive at the implicit325

equation,326

(Q2 +W2)

{
J + log

[
|X ′′1 ( 1

4
)|

a(Q2 +W2)

]}
∼ fx(

1
2
π)− 1

2
A

A
|X ′′1 ( 1

4
)|, (3.11)327
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with328

J =

[
|X ′′1 ( 1

4
)|
∫ 1

4−ε

0

dζ

|X ′1|
− log ε−1

]
ε→0

+ 1. (3.12)329

For the sinusoidal waveform, J ≈ 1.24, and the predictions from (3.11) are330

included in figure 3(c). The results are surprisingly close to the corresponding331

Newtonian prediction (§3.1), at least over the range of amplitudes and rheological332

parameters used in the plot.333

Equation (3.11) implies the presence of a potentially non-asymptotic log a−1334

term, which demands that Ws → 1 − Q < 0 for sufficiently small a. That is,335

the swimmer must inevitably reverse direction at very low amplitudes. For the336

sinusoidal waveform, the other factors in (3.11) conspire to arrange the speed337

reversal to arise for a < 10−7, far less that the range of amplitudes used in figure338

3. Figure 6 shows results for different waveforms given either by the sawtooth-like339

profile,340

X =
16∑
j=1

(−1)j−1

8π2(2j − 1)2
sin[2π(2j − 1)z], (3.13)341

or the smoothed square wave342

X =
tanh(ς sin 2πζ)

tanh ς
, (3.14)343

where ς is a smoothing parameter. For the latter, the speed reversal is observed344

for higher amplitudes provided the wave is sufficiently sharp (i.e. ς large enough).345

The fact that such strokes lead to the body swimming backwards implies a far346

more significant rheological effect than noted for other complex fluids.347

The dissipation rate associated with this low-amplitude plastic swimming can348

be computed from (2.17), and reduces to the left-hand side of (3.6), up to a factor349

of Bs, in this limit. Thus the dissipation is P ∼ 4afx(
1
2
π)Bs ∼ 16(π + 2

√
2)aBs,350

which, unlike the swimming speed, is independent of the swimming gait (see351

figure 4) and scales linearly with the swimming amplitude a.352

3.3. Plastic sliding or burrowing353

The numerical results in figure 3 indicate that Ws approaches the wave speed354

for sufficiently strong amplitudes and yield stresses. Our rationalization of this355

observation is that at such parameter settings, the swimmer is able to exploit356

the strong drag anisotropy for small δ that is created by the narrow reorientation357

window (discussed §2.1), in order to ‘slide’ through the medium without appre-358

ciable drift. That is, each segment of the swimmer travels in essentially its local359

axial direction, while the associated force on that segment can be directed at a360

wide range of angles δf . Suppose the swimmer is in this limit, with swimming361

speed Ws = 1− ε and ε� 1. Then,362

V ∼ Q− ε cosΦ & δ ∼ tan−1
ε sinΦ

Q
=

ε

Q
sinΦ+ .... (3.15)363

Consequently,364

V n(Fx sinΦ− Fz cosΦ) ∼ πBs
[
2 cosΦ− εαnB

2/(n+1)
s

Q(3n+1)/(n+1)
sin2 Φ

]
, (3.16)365



Cylindrical yield-stress locomotion 13

0 0.01 0.02 0.03 0.04 0.05 0.06

-0.05

0

0.05

0.1

0.15

0.2

0.02 0.04 0.1 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Swimming speed Ws against amplitude a for n = 1 and waveforms
given by the sawtooth profile (3.13) (green) or smoothed square wave (3.14)

with ς = 0.01, 1, 1.5, 2, 2.75, 4 and 6 (from blue to red). In (a), the
low-amplitude range is shown, with the solid lines showing the solution of (3.11)
and the stars indicating numerical solutions, all with Bs = 103. In (b), higher
amplitudes are shown, together with more numerical solutions with Bs = 5

(dashed) and 50 (solid). The inset in (a) displays the waveforms.

and the force-balance condition (2.16) demands that366

ε ∼ E(a, n,Bs) ≡
2Q(3n+1)/(n+1)B−2/(n+1)

s

αnI
, I(a) =

∫ 1

0

sinΦ tanΦ dζ. (3.17)367

The convergence of 1−Ws to E(a, n,Bs) is confirmed by the numerical solutions,368

as displayed in the inset of figure 3(c).369

We expect this theory to hold as long as δ lies within the narrow reorientation370

window, which requires αnBi
2/(n+1)δ . β, for some number β that we compute371

to be approximately 5 (see Appendix A.2 and figure 7). That is,372

|δ| . β

αn
Bi−2/(n+1) =⇒ |sinΦ| . 1

2
βI(a) ≈ 5

2
I(a), (3.18)373

independent of n, at every point along the swimmer’s body. Given the specific si-374

nusoidal waveform in (2.1), this requirement reduces to a & 0.12. Simultaneously,375

however, the swimming stroke should also fall within the plastic limit Bi � 1,376

which restricts the range of possible values of Bs; see the inset in figure 3(c),377

which demonstrates that E(a, n,Bs) must be small.378

As discussed in Appendix A.2, the flow around the cylindrical body in the379

narrow reorientation window becomes restricted to a viscoplastic boundary layer.380

Consequently, in this form of burrowing locomotion the deformations are strongly381

localized, and the swimmer slides along a conduit that is only slightly bigger than382

its body. This feature is illustrated by the yield surfaces in the final column of383

figure 5.384

Note that the condition in (3.18) is relatively insensitive to the waveform, being385

a . 0.11− 0.12 for a variety of different profiles, including the sinusoid, sawtooth386

(3.13) and smoothed square waves (3.14). This feature can be seen in figure 6(b),387
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where the speed data for Bs = 50 and 103 approach the limit Ws ≈ 1 for such388

amplitudes, independently of the waveform.389

The dissipation rate or power output in this limit (2.17) reduces to P ∼390

2πQ2Bs, as was shown in figure 4. The factor of 2πBs follows from the need391

to exceed the yield stress around the unit radius of the swimmer in this limit;392

the dependence on Q, and thus on the swimming gait and amplitude, is simply393

geometric. While it is inevitable that the power must increase with Bs, because394

the swimmer needs to break the yield stress of the fluid to move, it is clear from the395

results in figure 4 that this plastic sliding motion is relatively efficient: the scaled396

power P/Bs is substantially lower than that for lower Bs, which presumably397

reflects the fact that the fluid must only be yielded in a narrow sheath around398

the swimmer in this limit.399

4. Conclusion400

In this paper, we have generalized a previous viscoplastic slender-body theory401

(Hewitt & Balmforth 2018) and applied it to the problem of locomotion in a402

complex fluid driven by a waving cylindrical filament. For low-amplitude waves,403

the stresses become dominated by the yield stress and the problem reduces to that404

for swimming through a perfectly plastic medium (more specifically, a rigid-plastic405

material with the von Mises yield condition, given our use of the Herschel-Bulkley406

viscoplastic constitutive law). A curious feature of this limit is that the swimming407

speed must become negative (i.e. the swimmer moves in the same direction as the408

wave) if the wave amplitude is sufficiently small relative to its wavelength. This409

phenomenon requires very small amplitudes and results in extremely small speeds410

when the swimmer employs a sinusoidal waveform, but is more pronounced with411

a square-wave-like swimming gait.412

When wave amplitudes are not so small and for larger yield stresses, a key413

feature of viscoplastic slender-body flow comes into play: unless the motion is414

very closely directed along the axis of each cylindrical filament of the body,415

significant sideways forces arise; only in almost axial motion does the drag force416

become closely aligned with the direction of motion. In the locomotion problem,417

the appreciable anisotropy in the drag that is set up across the narrow angular418

‘reorientation’ window allows the swimmer to ‘burrow’ through the medium by419

sliding along its axis at nearly the wave speed. An analysis of this limit of plastic420

sliding or burrowing indicates that the wave amplitude need not be particularly421

large (about one eighth of the wavelength), and this result is not particularly422

sensitive to the specific waveform of the swimmer.423

Burrowing of this kind has been observed experimentally for various worms424

that naturally inhabit wet sediments or soils (Dorgan et al. 2013; Kudrolli &425

Ramirez 2019): these worms are found to travel along their axis at a swimming426

speed essentially equal to the wave speed (that is, a dimensionless wave speed or427

‘wave efficiency’ of 1). Measurements on the polychaete worm Armandia brevis428

by Dorgan et al. (2013) revealed scaled amplitudes of a ≈ 0.18, consistent with429

our theoretical prediction for being in the burrowing limit. While the relevance430

of plasticity in the ambient material to enable this form of locomotion has long431

been recognised (Dorgan et al. 2013; Dorgan 2015), the present study provides432

the first theoretical framework in which to describe such slender motion through433

a viscoplastic ambient.434

The ability of a swimmer to exploit a sliding or burrowing mechanism to435
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locomote emphasizes how the swimmer’s body follows a conduit through the436

fluid. Although we have made no explicit inclusion of the ends of the slender437

body here, this style of locomotion clearly places extra focus on the dynamics438

of the head where the conduit is initiated. Opening mechanics of the conduits439

for worms in wet granular media and viscoelastic solids have previously been440

explored (Dorgan et al. 2005, 2007). Future biological application of the model441

presented here should pay closer attention to the dynamics at the head.442

Appendix A. Analysis443

A.1. Formulation444

In this appendix we quote the dimensionless governing equations used Hewitt &445

Balmforth (2018), in which lengths are scaled by cylinder radius R, velocities446

by the translation speed U of the cylinder and stresses by K(U/R)n. In the447

cylindrical polar coordinates system (r, θ, z) associated with the centreline,448

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
= 0, (A 1)449

∂p

∂r
=

1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
τrθ −

τθθ
r
,

1

r

∂p

∂θ
=

1

r2
∂

∂r
(r2τrθ) +

1

r

∂

∂θ
τθθ, (A 2a, b)

450

0 =
1

r

∂

∂r
(rτrz) +

1

r

∂

∂θ
τθz, (A 3)451

where τij is the deviatoric stress tensor, and subscripts indicate tensor compo-452

nents. The Herschel–Bulkley law relates the stress to the strain rate γ̇ij,453

τij =

(
γ̇n−1 +

Bi

γ̇

)
γ̇ij for τ > Bi, (A 4)454

and γ̇ij = 0 otherwise, where the strain rate is related to the velocity field by455

{γ̇ij} =

 2ur vr + (uθ − v)/r wr
vr + (uθ − v)/r 2(vθ + u)/r wθ/r

wr wθ/r 0

 , (A 5)456

subscripts of r and θ on the velocity components denote partial derivatives, and457

γ̇ =
√

1
2

∑
ij γijγij and τ =

√
1
2

∑
ij τijτij denote the tensor second invariants.458

With the scaling of the variables indicated in the main text, the cylinder459

translates in the (x, z)−plane with unit dimensionless speed at an angle δ to the460

z−axis (figure 1b). We therefore impose (u, v, w) = (cos θ sin δ,− sin θ sin δ, cos δ)461

at r = 1. In the far field, the stresses must eventually fall below the yield stress462

and the fluid must plug up, such that (u, v, w)→ (0, 0, 0).463

On the surface of the cylinder (r = 1), the fluid exerts the force (τrr, τrθ, τrz)|r=1,464

leading to a net drag per unit length of x̂Fx + ẑFz, with465 [
Fx
Fz

]
=

∮ [
(−p+ τrr) cos θ − τrθ sin θ

τrz

]
r=1

dθ =

∮ [
2τrr cos θ + (rτrθ)r sin θ

τrz

]
r=1

dθ,

(A 6)466

We solve these equations numerically using an Augmented Lagrangian finite-467

difference scheme, employing a Fourier transform in the azimuthal direction. This468
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scheme differs from that used in Hewitt & Balmforth (2018) only by the inclusion469

of a non-linear viscosity to capture shear thinning or thickening for n 6= 1, and470

so is not described in detail here.471

A.2. Axial and nearly axial motion: force reorientation472

For purely axial motion, we have473

rτrz = −rpBi & τrz = −Bi− (−wr)n, (A 7)474

where r = rp denotes the (axisymmetrical) yield surface for which τrz = −Bi475

(wr < 0), given that w = 1 on r = 1 and decreases to w = 0 with wr = 0 at476

r = rp. Hence,477

w = 1−
∫ r

1

[
(rp − r)

Bi

r

] 1
n

dr. (A 8)478

In the limit of a thin-gap limit, for Bi� 1, we have r = 1 +Bi−1/(1+n)ξ and479

wξ ∼ −(ξp − ξ)1/n, w ∼ n

n+ 1
(ξp − ξ)(n+1)/n & ξp =

(
1 +

1

n

) n
n+1

.

(A 9)480

where ξ = ξp denotes the rescaled yield surface. Because the axial shear stress481

τrz ∼ −Bi in this limit, the axial force is given by Fz ∼ −2πBi, corresponding482

to the perfectly plastic limit for a cylinder translating along its axis.483

If, instead, the motion is nearly, but not exactly, aligned with the axis, and484

Bi � 1, the sideways translation is largely contained within 1 < r < rp or485

0 < ξ < ξp, and the leading-order shear rate is γ̇ ∼ (ξp − ξ)1/n. The lateral force486

balances demand that487

∂p

∂ξ
∼ 0,

∂p

∂θ
∼ Bi 1

n+1
∂τrθ
∂ξ
∼ Bin+2

n+1
∂

∂ξ

[
vξ

(ξp − ξ)1/n
]
, (A 10)488

since489

τrθ ∼
Bi vr
|wr|

∼ Bi vξ
(ξp − ξ)1/n

. (A 11)490

But v = O(δ) at ξ = 0 and v(ξp, θ) = 0, and so491

v ∼ −nξ(ξp − ξ)
1+1/n

2n+ 1
Bi−

n+2
n+1

∂p

∂θ
, (A 12)492

as long as δ � O(Bi−
n+2
n+1 p), which turns out to be the case.493

The continuity relation implies a radial velocity u given by494

uξ ∼ Bi−
1

n+1 vθ ∼
nξ(ξp − ξ)1+1/n

2n+ 1
Bi−

n+3
n+1

∂2p

∂θ2
, (A 13)495

or496

u ∼ −n
2(ξp − ξ)2+1/n[nξp + (2n+ 1)ξ]

(2n+ 1)2(3n+ 1)
Bi−

n+3
n+1

∂2p

∂θ2
, (A 14)497

if u = 0 at ξ = ξp. But we also have that u = δ cos θ at ξ = 0, and so498

p ∼ (2n+ 1)2(3n+ 1)

n3ξ
3+1/n
p

Bi
n+3
n+1 δ cos θ (A 15)499
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Figure 7: The force direction δf against αnBi
2

n+1 δ for n = 1
2

(blue), n = 1

(black) and n = 2 (red), with Bi = 2j+n and j = 3, 4, ..., 10. The thick (green)

dashed lines shows the prediction δf ∼ tan−1( 1
2
αnBi

2
n+1 δ). The vertical dotted

line at αnBi
2

n+1 δ = 5 roughly locates the window of strong force anisotropy.

Finally,500

Fx ∼ −
∮
p cos θ dθ ∼ −αnπBi

n+3
n+1 δ, (A 16)501

where αn is defined in (2.7). The transverse force therefore becomes dominated502

by the axial force Fz = O(Bi) only when δ � O(Bi−2/(n+1)). The collapse of the503

force direction δF when plotted against αnBi
2

n+1 δ for different n (and large Bi)504

is illustrated in figure 7; also included is the prediction δf ∼ tan−1( 1
2
αnBi

2
n+1 δ)505

based on the preceding results.506

A.3. Plastic solutions outside the narrow window of force reorientation507

The nearly plastic solutions outside the narrow window where the force becomes508

reorientated are ilustrated in figure 8. These solutions are characterized by a509

region of almost plastic deformation surrounding the cylinder over distances of510

order the radius. The perfectly plastic flow is buffered by viscoplastic shear layers511

where the viscous stress remains important, and the two shear stress components512

τnz and τsn dominate the stress tensor. Here, s denotes the arc length along the513

centerline of the boundary layer and n is the transverse coordinate in the plane514

of the cylinder’s cross-section. Of key importance is the shear layer against the515

cylinder, which transmits the fluid drag.516

In the plastic limit, Bi → ∞, the boundary layers become infinitely thin and517

feature jumps in tangential velocity. The corresponding plastic solution satisfies518

the slip conditions,519 (
τnz
τsn

)
= − Bi√

V 2 +W 2

(
W
V

)
, (A 17)520

where V and W denote the jumps in the tangential velocity components, which521

can be extracted from a boundary-layer analysis like that used above. It does522

not seem possible to analytically find the limiting plastic solution for general δ523

(the method of sliplines, which proves useful in the purely two-dimensional flow524

problem, is not available here). For δ → 1
2
π, the transverse motion of the cylinder525

dominates the axial translation, which enters as a regular perturbation of the526

two-dimensional problem solved by Randolph & Houlsby (1984). In particular,527

one may calculate the transverse drag fx(
1
2
π) as quoted in §3.2. We also observe528
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Figure 8: Numerical solutions showing the deformation rate invariant γ̇ (as a
density over the (x, y)−plane) and flow pattern (which has vertical symmetry;
here showing streamlines of the planar velocity field ux̂ + vŷ in the upper half

plane (blue); and contours of constant axial speed w in the lower half plane
(green)) around a moving cylinder for Bi = 1024 and n = 1. The angle of

inclination, shown pictorially in blue at the centre of each cylinder, is (a)–(d)
2π−1δ = [ 3

4
, 1
2
, 0.1, 0.05]. Panels (e) and (f) show the scaled drag components

(|Fx|, |Fz|)/Bi and direction δf against
√

2π−1δ for n = 1
2

(dashed), n = 1

(solid) and n = 2 (dotted), with Bi = 2j+n and j = 3, 4, ..., 10. The thick (red)
dashed lines show the approximations fx(|δ|) (extrapolated from the numerical
results) and fz(|δ|) = A( 1

2
π − |δ|) with A = 4.4, as quoted in §3.2, and the stars

indicate the analytical results for pure axial or transverse motion. The (red)
points in (f) indicate the motion angles used for (a)-(d).

that the linear approximation (3.5) for fz works well nearly all the way up to the529

reorientation window.530

The limit Bi � 1 and Bi−2/(n+1) � δ � 1 is somewhat curious, as it531

corresponds to the sliding of a cylinder in the direction of its length through532

a perfectly plastic medium with an arbitrarily small (as long as Bi can be533

taken sufficiently large) but non-zero sideways translation. Associated with this534

motion is a finite transverse drag (the force angle approaches a value close to535
1
3
π) and a flow pattern like that in figure 8(d) (save for the viscoplastic boundary536

layers, which shrink to slip surfaces as Bi→∞). Of course, the transverse drag537

eventually declines, and the flow pattern is consumed by the boundary layer of the538

axial velocity, as the motion aligns with the axis within the reorientation window.539

However, this requires a viscous effect (i.e. finite Bi). The origin of this curious540

feature is in the perfectly plastic solution itself: for pure axial motion, there is no541

deformation of the fluid, with the translation of the cylinder permitted by slip542

along its surface. But sideways translation cannot be accommodated by this style543
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of motion, no matter how small, which instead demands plastic deformation over544

a finite region.545
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