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The theory of slow viscous flow around a slender body is generalized to the situation7

where the ambient fluid has a yield stress. The local flow around a cylinder that is8

moving along or perpendicular to its axis, and rotating, provides a first step in this9

theory. Unlike for a Newtonian fluid, the nonlinearity associated with the viscoplastic10

constitutive law precludes one from linearly superposing solutions corresponding11

to each independent component of motion, and instead demands a full numerical12

approach to the problem. This is accomplished for the case of a Bingham fluid,13

along with a consideration of some asymptotic limits in which analytical progress is14

possible. Since the yield stress of the fluid strongly localizes the flow around the body,15

the leading-order slender-body approximation is rendered significantly more accurate16

than the equivalent Newtonian problem. The theory is applied to the sedimentation17

of inclined cylinders, bent rods and helices, and compared with some experimental18

data. Finally, the theory is applied to the locomotion of a cylindrical filament driven19

by helical waves through a viscoplastic fluid.20

Key words: biological fluid dynamics, low-Reynolds-number flows, non-Newtonian flows, plastic21

materials, propulsion, slender-body theory22
Q3

1. Introduction23

Slow viscous flow past a cylinder is a classical problem in fluid mechanics and is24

associated with Stokes’ observation that there is no solution for a Newtonian fluid with25

zero Reynolds number in an infinite domain. The resolution of the Stokes paradox,26

which partly laid the foundation for the modern theory of matched asymptotic27

expansions (Hinch 1991), is that inertia must play a role sufficiently far from the28

cylinder (Lamb 1932). The viscoplastic version of the problem has been considered29

since the 1950s, with detailed numerical computations conducted by, for example,30

Roquet & Saramito (2003) and Tokpavi, Magnin & Jay (2008). The key feature of31

a viscoplastic fluid is its yield stress: material only flows like a fluid if the stresses32

exceed a critical yield threshold. The consequence for a cylinder moving through a33

viscoplastic fluid is that there is no motion if the force on the object is insufficient34

to yield the fluid. In a related manner, viscoplasticity is also expected to resolve the35

Stokes paradox without the need for inertia, since the stress decays away from the36

cylinder, and so sufficiently distant material must eventually become rigid.37

† Email address for correspondence: drh39@cam.ac.uk
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Previous studies of a cylinder moving through viscoplastic fluid have considered 38

motion perpendicular to the axes. In the plastic limit (when the yield stress dominates 39

the viscous stress, as must be the case close to the initiation of motion), this problem 40

reduces to determining the critical load on a cylindrical pile embedded in cohesive soil, 41

which was solved by Randolph & Houlsby (1984) using the method of sliplines. Our 42

first aim in this current paper is to consider the more general situation of creeping 43

viscoplastic flow around an infinitely long cylinder that translates at an arbitrary 44

angle to its axis and can also rotate at an arbitrary rate. We achieve this by exploring 45

analytically various asymptotic limits, and by providing full numerical solutions for 46

the motion of a cylinder through a Bingham fluid inclined at an arbitrary angle. 47

Note that, unlike for a Newtonian fluid, the
∧
nonlinearity inherent in the viscoplastic 48

rheology prohibits the simple linear superposition of the independent cylinder motions 49

to construct general solutions. 50

More broadly, our goal in this paper is to provide the viscoplastic analogue of 51

slender-body theory for slow viscous flow (e.g. Keller & Rubinow 1976), for which 52

the local flow around a cylinder provides a crucial stepping stone. The viscous 53

theory underscores analyses of elongated particles or fibres in suspension (Tornberg 54

& Shelley 2004) and the propulsion of micro-organisms by flagella (Taylor 1952; 55

Hancock 1953; Lighthill 1975; Lauga & Powers 2009), the latter of which has also 56

enjoyed generalization to motion through
∧
granular media (Hosoi & Goldman 2015). 57

From a theoretical standpoint, the great advantage of a viscoplastic fluid is that flow 58

past an object becomes
∧
localized to the vicinity of that object. Indeed, under the 59

assumption that the
∧
localization around a cylindrical filament is sufficiently strong 60

(i.e. the yield surfaces lie at distances of the order of the object’s radius), and that 61

it is sufficiently slender (i.e. its radii of curvature are much larger than its radius), 62

the dynamics of the filament locally reduce to that of flow around a relatively long 63

and straight cylinder. This reduction is equivalent to classical
∧
resistive force theory 64

(Hancock 1953; Lighthill 1975; Gray & Hancock 1979), but is made much more 65

effective here by the flow-localizing effect of the yield stress. 66

We apply the results of our analysis to two sets of problems. First, we consider 67

the inertialess sedimentation of rods, that are either straight and inclined, or bent 68

symmetrically into v-shapes. We extract the threshold for motion, together with the 69

speed and direction of motion, for a given inclination angle and ratio of driving force 70

and yield stress. We compare these theoretical predictions with the results of some 71

simple experiments of sedimenting cylinders in
∧
Carbopol gel. We also compare with 72

previous experimental studies of viscoplastic sedimentation and fractionation (Jossic & 73

Magnin 2001; Madani et al. 2010). 74

Second, we explore the motion of a cylindrical filament that is twisted into a helix. 75

We again examine how such an object falls under the action of a force, this time 76

directed along the helix axis, and extract the fall speed and rotation rate for different 77

helical pitch angles. Qualitative comparison is again made with a simple experiment 78

of a sedimenting helix in
∧
Carbopol gel. We then apply our results to describe 79

locomotion of a swimming helix, as in classical studies of biological locomotion 80

through a Newtonian fluid (Taylor 1952; Hancock 1953). In this model, the helix is 81

propelled forwards when it exerts a torque around its axis, forcing it to turn. 82

2. Slender-body formulation 83

2.1. Governing equations 84

Consider an infinitely long cylindrical filament moving through an incompressible 85

Bingham fluid. We neglect gravity and inertia, and attach a local cylindrical polar 86
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Sketch of the geometry: (a) the local cylindrical configuration.
(b) A slender curved filament with circular cross-section wrapped around another cylinder
to form a helix.

coordinate system (r, θ, z) to the body, as illustrated in figure 1(a). The cylinder87

translates at velocity Ux̂ + W ẑ and rotates around its axis with angular velocity88

Ω̃ . Under the assumption that axial variation in the flow field is weak and can be89

ignored, the dimensionless governing equations for the fluid velocity in cylindrical90

polar coordinates (u(r, θ), v(r, θ),w(r, θ)) and pressure p(r, θ) are91

1
r
∂

∂r
(ru)+ 1

r
∂v

∂θ
= 0, (2.1)92

93 ∂p
∂r
= 1

r
∂

∂r
(rτrr)+ 1

r
∂

∂θ
τrθ − τθθr ,

1
r
∂p
∂θ
= 1

r2

∂

∂r
(r2τrθ)+ 1

r
∂

∂θ
τθθ , (2.2a,b)94

95

0= 1
r
∂

∂r
(rτrz)+ 1

r
∂

∂θ
τθz, (2.3)96

where τij is the deviatoric stress tensor, and subscripts indicate tensor components. The97

Bingham law relates the stress to the strain rate γ̇ij,98

τij =
(

1+ Bi
γ̇

)
γ̇ij for τ > Bi, (2.4)99

and γ̇ij = 0 otherwise. Here, the strain rate is related to the velocity field by100

{γ̇ij} =
 2ur vr + (uθ − v)/r wr
vr + (uθ − v)/r 2(vθ + u)/r wθ/r

wr wθ/r 0

 , (2.5)101

where subscripts of r and θ on the velocity components denote partial derivatives,102

and γ̇ =
√
(
∑

ij γijγij)/2 and τ =
√
(
∑

ij τijτij)/2 denote the tensor second invariants.103

We incorporate the incompressibility condition directly by defining a streamfunction104

ψ(r, θ) such that u= r−1∂ψ/∂θ and v =−∂ψ/∂r.105
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To arrive at this dimensionless system, we use the radius of the filament, R, and 106

the translation speed of the cylinder, U = √U2 +W2, to remove the dimensions of 107

length and velocity, respectively, while the stresses and pressure are scaled by µU/R, 108

where µ is the (plastic) viscosity. These scalings introduce the Bingham number, 109

Bi= τYR
µU

, (2.6) 110

where τY is the yield stress. 111

With this scaling of the variables, the cylinder translates in the (x, z)-plane with 112

unit dimensionless speed at an angle φ to the x axis; the Cartesian translation velocity 113

is cos φx̂+ sin φẑ (see figure 1a). The cylinder also rotates around its axis with the 114

dimensionless rotation rate Ω ≡ Ω̃R/U . Consequently, we impose 115

(u, v,w)= (cos θ cos φ, Ω − sin θ cos φ, sin φ) at r= 1. (2.7) 116

In the far field, the stresses must eventually fall below the yield stress and the fluid 117

must plug up, such that (u, v, w)→ (0, 0, 0). We exploit this fact to introduce a 118

finite computational domain in which we set (u, v, w) = (0, 0, 0) at an outer radius 119

r = Ro. Provided this boundary lies well beyond the yield surface, we expect that 120

its precise location has no effect. Importantly, when Bi=O(1) the yield surfaces are 121

expected to occur at radii of order one, underscoring the strong localizing effect of the 122

yield stress on the flow around the cylinder and rendering accurate the leading-order 123

approximation of slender-body theory. 124

2.2. Forces and torque 125

On the surface of the cylinder (r= 1), the fluid exerts the force (τrr, τrθ , τrz)|r=1. This 126

leads to a net drag per unit length of x̂Fx + ẑFz, with 127[
Fx
Fz

]
=
∮ [

(−p+ τrr) cos θ − τrθ sin θ
τrz

]
r=1

dθ =
∮ [

2τrr cos θ + (rτrθ)r sin θ
τrz

]
r=1

dθ, 128

(2.8) 129

where the latter expression follows from an integration by parts, and provides a 130

convenient form for calculation of the forces without first calculating the pressure 131

field. If the cylinder rotates (Ω 6= 0), there is also a torque given by 132

T = r2
∮
τrθ(r, z) dθ. (2.9) 133

The force balance (and, in particular, the integral of (2.2b) in θ ) demands that T is 134

independent of r. 135

The two drag components, Fx(φ, Ω, Bi) and Fz(φ, Ω, Bi), and torque, T(φ, Ω, Bi), 136

are the key ingredients when fully formulating slender-body theory. For the 137

applications in § 4, we consider straight or bent rods, or a helix, and the net force 138

and torque on these objects follow immediately from Fx(φ, Ω, Bi), Fz(φ, Ω, Bi) and 139

T(φ,Ω,Bi). The remaining step in applying the slender-body theory is to ensure that 140

the object is either
∧
force free in a certain direction or

∧
torque free, which ultimately 141

prescribes either the translation direction, rotation rate or swimming speed. 142
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For a slender body with a twisted
∧
centreline, the drag force and torque vary143

with position along the
∧
centreline. Integrating these quantities over the arc length144

then provides an estimate for the total force and torque acting on the body. This145

leading-order calculation corresponds to the resistive force theory of viscous fluid146

mechanics, which is often considered to be a poor approximation in view of
∧
non-local147

logarithmic corrections to the viscous-flow solution due to the finite aspect ratio of148

the body (e.g. Lauga & Powers 2009). Here, no such logarithmic corrections are149

expected because of the localization of the flow by the yield stress, provided that150

Bi is not small and there are no significant effects stemming from the ends of the151

object.152

2.3. Some numerical details153

We solve the equations numerically using an extension of the augmented Lagrangian154

scheme described by Hewitt & Balmforth (2017). The key extension here is to155

combine the Stokes-like solver used there for the streamfunction with a similar156

(but lower-order) scheme for the axial velocity w. These equations reduce in the157

Newtonian limit to a biharmonic equation for ψ and Laplace’s equation for w; for158

non-zero Bingham number, the equations are instead solved iteratively. We omit159

further details of the augmented Lagrangian scheme, which have been described in160

numerous previous studies (e.g. Saramito & Wachs 2017).161

Given Bi, φ and Ω , the equations are solved by adopting truncated Fourier series162

for the angular dependences and using standard second-order finite differences in163

the radial direction, giving a band-diagonal matrix problem. When Ω = 0, solutions164

can be computed directly by matrix inversion. When Ω 6= 0, however, and as a165

consequence of working with a streamfunction rather than with pressure, we cannot166

directly impose the constraint that the torque T is independent of radius (see (2.9)).167

Instead, we enforce the constraint by iterating the net azimuthal flux around the168

cylinder until the radial variation in the calculated torque falls below a tolerance of169

0.5 %. The resultant nested iterative scheme is qualitatively similar to that employed170

by Hewitt & Balmforth (2017) to enforce a condition of zero net force in a related171

problem.172

3. Breaking the problem down173

The problem outlined in § 2 can be broken down into pieces to understand its174

constituents in more detail, although the nonlinearity of the viscoplastic flow law175

forbids us from simply superposing these pieces to build general solutions. These176

pieces correspond to some idealized examples that have received attention in the177

existing literature, as well as some that have not, and lead to some special limits in178

which analytical progress is possible to build asymptotic or exact solutions.179

3.1. Newtonian limit180

In the limit Bi→ 0, the yield stress becomes unimportant over the regions near the181

cylinder where the viscous stresses remain high. Only further away do those stresses182

decline to permit viscoplasticity to affect the flow. Thus, the solution is composed183

of a near-field Newtonian region and a far-field viscoplastic one. Despite this, the184

Newtonian solution is controlled by the far-field conditions, owing to the presence of185

logarithmically diverging corrections. In this manner, the problem is directly analogous186
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to the removal of the classical Stokes paradox, with viscoplasticity here taking the role 187

of inertia. 188

Over the Newtonian region we may compute a solution perturbatively by adopting 189

asymptotic solutions in the sequence 1, (log Bi−1)−1, . . . , as in the classical problem 190

of Stokes flow past a cylinder (e.g. Hinch 1991). The leading two orders, ψ ∼ψ0 + 191

(log Bi−1)−1ψ1 and w∼ w0 + (log Bi−1)−1w1 satisfy the Newtonian problems, ∇4ψ0 = 192

∇4ψ1 = ∇2w0 = ∇2w1 = 0, subject to the no-slip conditions on the cylinder. The 193

remaining arbitrary constants in the solutions are fixed by demanding a match to the 194

far-field solution where r=O(Bi−1) and (u,w)→ 0. We thus find 195

ψ ∼ sin θ cos φ
[

r− 2r log r− r+ r−1

2 log Bi−1

]
−Ω log r, (3.1a) 196

w∼ sin φ
(

1− log r
log Bi−1

)
, (3.1b) 197

without any need to calculate explicitly the viscoplastic far-field structure. Given (3.1), 198

the drag force and torque can be computed from (2.8)–(2.9) to be 199[
Fx
Fz

]
∼− 2π

log Bi−1

[
2 cos φ
sin φ

]
and T ∼−4πΩ. (3.2a,b) 200

Note that the drag force and torque are decoupled in this limit: the drag is independent 201

of the rotation rate Ω and the torque is independent of translation. 202

3.2. No transverse motion 203

If the cylinder moves with only axial translation (i.e. φ = π/2) and rotation, some 204

analytical progress is possible because the flow is independent of the polar angle θ . 205

Integration of the force-balance equations (2.2b) and (2.3), together with the condition 206

τ = Bi at the yield surface, gives expressions for the non-zero stress components, 207

(τrz, τrθ)=−rp

r
Bi
(

C, S
rp

r

)
=
(

1+ Bi
γ̇

)
(wr, vr − v/r), (3.3) 208

where γ̇ 2 = w2
r + (vr − v/r)2 in this limit, and (C, S) = (cos Υ , sin Υ ), with Υ a 209

parameter defined such that the yield surface is the circle r= rp. The drag and torque 210

are thus 211

Fx = 0, Fz =−2πrpCBi, T =−2πr2
pSBi, (3.4a−c) 212

from (2.8) and (2.9). Given that w = v = 0 at r = rp, the integral of (3.3) gives the 213

velocity components, 214

w= rpBi
C

[
C2 log

(rp

r

)
− 1+

√
S2 +C2(r/rp)2

]
(3.5) 215

and 216

v = rBi
2

{
S

(
r2

p

r2
− 1

)
+ ln

[
(1+ S)(

√
C2 + S2(r/rp)2 − S)

(1− S)(
√

C2 + S2(r/rp)2 + S)

]}
. (3.6) 217
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Finally, the parameter Υ and location of the yield surface r = rp follow from the218

implicit relations implied by the boundary conditions in this limit, w= 1 and v =Ω219

at r= 1.220

For large yield stress, Bi � 1, the yield surface approaches the surface of the221

cylinder and we arrive at the relations,222

(w, v)∼ (1, Ω)
(

rp − r
rp − 1

)2

and (Fz, T)∼−2πBi(C, S), (3.7a,b)223

with224

Ω ∼ tanΥ and rp ∼ 1+√2[(1+ S2)CBi]−1/2. (3.8a,b)225

Thus the region of flow around the cylinder is
∧
localized to a narrow layer of width226

O(Bi−1/2) when Bi� 1. If also Ω� 1, the thickness of that yielded annulus increases227

like O(Ω1/2), while the axial drag force decreases like O(Ω−1) and the torque228

approaches T ∼ −2πBi. That is, unlike in the Newtonian limit discussed above,229

rotating the cylinder in the plastic limit reduces the drag.230

Conversely, for small yield stress, Bi � 1, the location of the yield surface rp231

becomes large and the parameter Υ becomes small:232

rp ∼ 1
Bi log Bi−1 and S∼ 2ΩBi(log Bi−1)2. (3.9a,b)233

This leads to the force Fz and torque T quoted in (3.2) with φ =π/2.234

In the absence of rotation (Ω = 0), the solution is more explicit:235

w= 1+ Bi(r− 1− rp log r) and Bi−1 = 1− rp + rp log rp, (3.10a,b)236

which, for Bi� 1,
∧
gives rp→ 1 + √2Bi−1/2, w→ (1 − ξ)2 and Fz ∼ −2πBi, where237

ξ = (r− 1)Bi1/2/
√

2.238

3.3. No axial motion239

3.3.1. Pure transverse motion240

In the absence of axial motion (φ = 0), the problem reduces to two-dimensional241

flow around a circle. This limit without rotation was discussed at length by Tokpavi242

et al. (2008). In general, the two-dimensional structure of the flow field in this limit243

precludes analytical progress except in the limits of small or large Bi.244

Sample numerical solutions with no rotation (Ω = 0) are shown in figure 2,245

together with a collection of data that highlight how certain flow features vary with246

the Bingham number. The density plots in the figure show log10 γ̇ , with the
∧
plug247

regions in black and superposed streamlines (i.e. ψ = constant) in the frame of the248

ambient fluid. As Bi is increased, flow becomes more localized to the cylinder, but249

unlike in the problem without translation, the fluid remains yielded over a region250

of O(1)-extent, even as Bi→∞ (figure 2d). Over the bulk of those regions, shear251

rates are low but finite and the fluid deforms in the manner of ideal plasticity:252

two triangular plugs remain attached to the front and back of the cylinder, and253

rigidly rotating cells survive at the centre of the plastic zones. The plastic zones are254

buffered from the cylinder and plugs by high-shear boundary layers within which255

viscous stresses remain important. As illustrated in figure 2(e), the width of these256



8 D. R. Hewitt and N. J. Balmforth

-20 -10 0
0

10
y

20
(a) (b) (c)

x
10 -5 0

x
5 -2 0

x
520

0
2
4
6
8

0

1

2

3 1

0

-1

-2

104102100

Bi
104102

¡B-1/2

¡B-1/3

100

Bi
100

Bi
10-2

100

|F
x|

102

104

10-2

100

Bo
un

da
ry

-la
ye

r
w

id
th

s

Pl
ug

 d
ist

an
ce

106

100

101

102(d) (e) (f)

FIGURE 2. (Colour online)
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(a–c) Density plots of the logarithmic strain rate log10(γ̇ ) in
the (x, y)-plane (showing only y> 0), for a cylinder translating in the x direction (φ= 0),
with (a) Bi = 0.0625, (b) Bi = 1 and (c) Bi = 1024 (note the different axis scales). The
(blue) curves show streamlines, ψ = constant, in the frame of the ambient fluid. (d) The
distance from the centre of the cylinder to the furthest yield surface along the x (red
circles) and y (blue crosses) axes; the slipline predictions (

√
2 and 2+ (π/4)) are shown

by dashed lines. (e) The widths of the boundary layer against the cylinder (red circles) and
the outer free shear layer (blue crosses), both along x= 0. ( f ) The force |Fx(Bi)|, together
with the Newtonian (blue dots; (3.2a)) and plastic (red dashed; (3.11)) predictions.

boundary layers
∧
decreases with the Bingham number, in agreement with viscoplastic 257

boundary-layer theory (appendix A; see also Balmforth et al. (2017)). 258

The solution for the plastic zones can be constructed using the method of 259

characteristics, or slipline theory; see Randolph & Houlsby (1984). In this construction, 260

there are two families of orthogonal characteristic curves, the sliplines, whose local 261

tangents make angles of ϑ and (π/2)+ ϑ with the x-axis. The curves are normally 262

referred to as either α or β lines, and have the Riemann invariants, p ± 2Biϑ . As 263

illustrated in figure 3(a), Randolph and Houlsby’s slipline construction proceeds 264

by placing centred semicircular fans of the characteristics of radius 1 + (π/4) at 265

the points (0, ±1). These fans are then extended immediately below or above by 266

continuing the circular arcs as the involutes of other circles and adding new straight 267

sliplines that meet the cylinder tangentially (i.e. the fans become non-centred and 268

follow the cylinder surface). The plastic regions are terminated by straight sliplines 269

of unit slope that meet at (x, y)= (±√2, 0). 270

The slipline stress solution predicts that 271

Fx =−4(π+ 2
√

2)Bi, (3.11) 272

as Bi→∞ (Randolph & Houlsby 1984). The drag force Fx for general Bi is plotted 273

in figure 2( f ), and recovers the slipline prediction for Bi> 10 or so. 274

3.3.2. Transverse motion and rotation 275

Sample solutions with both transverse motion and rotation are shown in figure 4; 276

corresponding results for the drag force and torque are presented in figure 5. The 277
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Slipline solutions for (a) Ω = 0 and (b) Ω = 1.6. The two
families of sliplines are shown with different colours (α-lines are red; β-lines are blue).
Plugs are shaded light grey.
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Density plots of log10 γ̇ on the (x, y)-plane, overlain by
streamlines, for a cylinder translating with unit velocity in the x direction (φ = 0) and
rotating with angular velocity (a,e) Ω = 0.4, (b, f ) Ω = 0.8, (c,g) Ω = 1.6 and (d,h)
Ω = 12.8. The upper row (a–d) is for Bi= 1; the lower row (e–h) is for Bi= 2048.

inclusion of rotation desymmetrizes the velocity field about the x-axis, strengthening278

the recirculating cell above the cylinder (for anti-clockwise rotation) and weakening279

that below. Eventually, for sufficiently large Ω , the lower cell disappears, which, for280

Bi� 1, leaves a thin boundary layer coating the cylinder.281
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(a) Force and (b,c) torque for a cylinder translating with unit
velocity in the x direction (φ = 0) and rotating with angular velocity Ω . The data are
scaled as indicated. The vertical dashed lines mark Ω=1. Other lines show predictions for
Bi� 1: the horizontal dashed line in (a) shows the force for pure translation (3.11), and
the red solid lines show the force and torque for solutions with a rigidly rotating upper
plug (3.12). The different colours/symbols indicate data for Bi = 2n with n = 8 (black
cross), n = 9 (blue circle), n = 10 (red star), n = 11 (green square) and n = 12 (grey
diamond).

In the limit Bi � 1, it is again possible to construct slipline solutions bordered 282

by viscoplastic boundary layers. For sufficiently small Ω the rotation of the 283

cylinder has no effect on the stress field, leaving a slipline pattern equivalent to 284

the non-rotating case, but with an asymmetrical velocity field; see figure 4(a). An 285

immediate consequence is that, to leading order in Bi−1, the drag force remains as in 286

(3.11) and, because the torque vanishes for Ω = 0, T�O(Bi). In fact, the numerical 287

results indicate that T = O(Bi1/3) over this range of Ω (see figure 5b), highlighting 288

its origin within the viscoplastic boundary layers. 289

For large Bi, the Ω=0 stress solution is eventually replaced by a second, alternative 290

stress pattern for higher Ω in which a rigidly rotating plug attached to the cylinder 291

takes the place of the upper fan. The alternative pattern is feasible because the no-slip 292

condition on the cylinder, with velocity field x̂+Ω(yx̂+ xŷ), can be accommodated by 293

rigid rotation about a centre (0, y0), with y0=Ω−1. The rigidly rotating plug demands 294

a circular arc of failure, which broadens into a viscoplastic shear layer in the Bingham 295

computation of figure 4(g). The broadened arc merges with the viscoplastic boundary 296

layer underneath the cylinder, leaving intact an underlying plastic zone. The stress 297

solution makes the transition between the two patterns over a window of rotation rates 298

around Ω= 1 (see e.g. figure 4f,g), with the second stress pattern becoming accessible 299

once the centre of rotation y0 =Ω−1 lies close to or inside the cylinder. 300

The slipline solution corresponding to the alternative stress-field pattern is illustrated 301

in figure 3(b). The upper circular failure arc must correspond to a slipline in ideal 302

plasticity, and therefore continues one of the straight sliplines that leave tangentially 303

from the lower half of the cylinder. This in turn is met by other sliplines to join the 304

fan underneath the cylinder, which persists in the re-organization of the plastic flow. 305

The requirement that there is no net pressure drop around the sliplines that border the 306

region of deformation (i.e. the union of the circular failure arc and the outer periphery 307

of the fan) demands that the fan and circular failure arc intersect along sliplines that 308

make angles of ±(π/4) with the x-axis (BC and DE in figure 3b). It follows from 309

geometrical considerations that the radius of the rigidly rotating plug is R= 1+ y0/
√

2. 310

Further details of this slipline construction can be found in appendix B. Moreover, a 311

calculation using the resultant slipline stress-field solution, also outlined in appendix B, 312
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gives313

Fx =−Bi
[

2π+ 4
√

2+ (2+ 3π)

Ω

]
, T =−1

2
Bi
[

4π− (3π+ 2)
Ω2

]
(3.12a,b)314

and Fz = 0, for Bi� 1.315

As Ω is increased still further, the rigidly rotating slipline pattern persists until the316

circular failure arc approaches the cylinder and the plug becomes consumed by the317

adjacent viscoplastic boundary layer (figure 4h). At this stage, the torque approaches318

the limit −2πBi expected for pure rotation. Simultaneously, the drag force abruptly319

falls off, see figure 5(a), for Ω . 20. The residual drag stems from a ‘squeeze’ flow320

driven by the translation of the cylinder inside the rotationally induced boundary layer:321

continuity demands that the radial velocity of the cylinder forces an O((rp − 1)−1)322

correction to the angular velocity with an associated shear stress of O((rp − 1)−2).323

The radial derivative of this stress must be balanced by an angular pressure gradient,324

giving p∼ O((rp − 1)−3). Finally, because the boundary layer has thickness rp − 1∼325

O(Bi−1/2Ω1/2) (see § 3.2), and in view of (2.8), we find Fx∼O(Ω−3/2Bi3/2) for Ω� 1.326

4. Cylinders, rods and helices327

4.1. Angled motion of a cylinder328

A collection of numerical solutions for viscoplastic flow around a cylinder for329

varying B and φ are shown in figure 6. In these non-rotating solutions, the yield330

stress increases from left to right, and the orientation of motion with respect to331

the cylinder axis (φ) from top to bottom. The plots show density maps of log10 γ̇ ,332

overlain by streamlines in the (x, y)-plane (upper half) and contours of axial velocity333

w (lower half). The location of the yield surfaces for these and other solutions are334

shown in figure 7, while figure 8 shows results for the drag forces on the cylinder.335

Figure 6(a,h)
∧
shows that solutions are relatively insensitive to the flow angle over336

a large range of φ. Indeed, the stress pattern of the solutions broadly mirrors that for337

pure transverse motion (φ = 0; § 3.3.1). This behaviour is clearest for Bi� 1, where338

the outer yield surface remains close to the transverse limit over most of the range of339

φ (figure 7c), and only decreases towards the for the much smaller axial limit when φ340

becomes close to π/2. The persistence of this stress pattern reflects how the addition341

of axial motion for φ� 1 constitutes a regular perturbation of the transverse-motion342

problem: the axial velocity w and associated axial drag Fz scale with φ in this limit,343

but the feedback on the transverse flow and transverse drag Fx (which occurs through344

the constitutive law and γ̇ ) is O(φ2).345

For φ closer to π/2, however, the flow pattern adjusts more noticeably, and rather346

abruptly for (π/2)− φ = O(Bi−1) in the plastic limit Bi� 1. In this limit, the axial347

flow becomes restricted to a boundary layer against the cylinder, surrounded by a348

delocalized transverse flow with much weaker deformation rates characteristic of an349

almost perfectly plastic region (see figure 6i). The outer plastic flow persists very350

close to φ = π/2, supporting a finite transverse drag Fx that exceeds the axial drag351

Fz even when the cylinder’s motion is almost aligned with its axis (figure 8c). Only352

for (π/2)− φ = O(Bi−1) does Fx eventually drop to zero (figure 8d). Some analysis353

of this limit is provided in appendix C.354

The disparity between Fx and Fz for (π/2)−φ�O(Bi−1) leads to a drag anisotropy355

that becomes embedded in the variation of the orientation angle α of the force356

(figure 8b). This angle remains small (less than ∼π/7) over most of the range of φ,357
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Density plots of logarithmic strain rate log10(γ̇ ) for flow
around non-rotating cylinders moving at an angle φ, together with streamlines in the (x, y)
plane (i.e. ψ = constant; blue, shown for y>0) and contours of the axial velocity w (green,
shown for y< 0). From left to right, the yield stresses are (a–c) B= 0.0625, (d–f ) B= 1
and (g–i) B = 256. From top to bottom, the angle of motion is (a,d,g) φ = π/8, (b,e,h)
φ =π/4, and (c, f,i) φ = 19π/40.
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The outermost yield surface for (a) Bi=1, (b) Bi=256 and (c)
Bi= 2048. The surfaces correspond to inclination angles of φ= 0 (black, circles), φ=π/4
(blue, stars), φ = 3π/8 (green, squares), φ = 19π/40 (grey, diamonds) and φ = π/2 (red,
triangles).
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The drag force on a cylinder moving at an angle φ to the
x-axis. (a) The magnitude of the force, scaled by the Bingham number, |F|/Bi. (b) The
orientation of the force relative to the x-axis α= tan−1(Fz/Fx). Note the that larger values
of α are confined to an increasingly narrow boundary layer for Bi�1. (c) The components
of the drag Fx/Bi (black) and Fz/Bi (blue) for 1 6 Bi 6 210. (d) A magnification of the
same data (showing 26 6 Bi 6 210), for φ → π/2. The red dashed line shows |Fx| =
9π(π/2− φ)Bi2 (see appendix C).

but increases sharply near φ = π/2 where the transverse force Fx drops sharply.358

Consequently, in situations where the angle of the force is prescribed rather that the359

direction of motion, as in the examples that will be described presently, any variation360

in α must be accommodated by a sensitive tuning of φ near π/2: it is only when361

α .π/7 that φ can vary over its full range.362

4.2. Sedimentation of rods363

4.2.1. An inclined straight rod364

Consider a straight rod falling under the action of a force such as gravity. The force365

makes an angle of (π/2)−α with the cylinder axis (i.e. the z-direction; see figure 1a).366

The drag F = Fxx̂ + Fzẑ must therefore also point in this direction to balance the367

applied force. Thus the angle α= tan−1(Fz/Fx) and magnitude |F̃| are specified in this368

problem, rather than the angle φ and speed U of the resulting motion. It is therefore369

more natural to define a yield-stress parameter based on the dimensional applied line370

force |F̃| (e.g. the weight per unit length), rather than our previously defined Bingham371

number Bi= τYR/(µU). More specifically, we define an Oldroyd number372

Od= Bi
|F| =

τYR
|F̃| . (4.1)373

Then, given the switch in the specified physical parameters, we must translate our374

results by a suitable two-dimensional interpolation from the (φ, Bi)-parameter plane375
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Numerical solutions for a cylinder whose axis is inclined at
an angle of (π/2)− α to an applied force, with strength gauged by the Oldroyd number
Od: (a) the fall speed V; (b) the angle of motion Ψ = φ− α relative to the applied force;
and (c) the angle of motion π/2− φ relative to its own axis. For Od>Odc(α), the force
on the cylinder is not sufficient to yield the fluid and there is no motion, leading to the
white areas at the top of the plots. The critical value Odc(α) is shown in (d), together with
the limits of transverse (short blue dashed) and axial (long red dashed) orientation, and a
set of experimental data for headless machine screws sedimenting through a Carbopol gel
(see appendix D). Stationary rods are indicated by open circles and moving rods by filled
circles, and the shading represents

√
V (in

√
cm s−1), according to the colour scheme

indicated.

to the new parameters, (α, Od)≡ (tan−1(Fz/Fx), Bi/
√

F2
x + F2

z ). We thereby arrive at 376

the dimensionless fall speed V and angle Ψ to the force direction: 377

V(α,Od)= µU|F̃| ≡
Od

Bi(α,Od)
and Ψ (α,Od)= φ(α,Od)− α. (4.2a,b) 378

These quantities are plotted in figure 9(a,b). As Od→ 0, the weight of the cylinder 379

becomes much larger than the yield strength of the material and solutions approach 380

the Newtonian limit, with limiting drag components (Fx, Fz) = |F|(cos α, sin α) ∼ 381

2π(2 cos φ, sin φ)/ log Bi−1 (see (3.2)). The fall speed and angle thus approach 382

V ∼ log Od−1

4π

√
1+ 3 sin2 α and Ψ ∼ tan−1(2 tan α)− α, (4.3a,b) 383

for Od→ 0. 384

Conversely, above a critical threshold value Odc (figure 9d) the cylinder cannot exert 385

sufficient stress on the material to move, and so remains stationary. This threshold 386

value increases with orientation angle α, and lies between two limiting values for 387

transverse (α = 0) and axial (α = π/2) sedimentation. These can be calculated for 388

Bi� 1 from the asymptotic values of the force components in (3.7) and (3.11), 389

Odc = Bi
|F| →

{
(4π+ 8

√
2)−1 α→ 0

(2π)−1 α→π/2.
(4.4) 390
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Comparison of experimental data from Madani et al. (2010)
(points) with theory (lines) for the critical dimensionless force 1/Od at which cylinders
of aspect ratio (length/radius) L/R start to move. (a) Straight cylinders with axis aligned
with the force (black circles) or side on to the force (blue squares) together with
our corresponding predictions for an infinite cylinder (dashed lines). The corresponding
experimental results of Jossic & Magnin (2001) are also shown by stars. (b) Bent
cylinders, in the orientations shown, where the force acts in the direction of the arrows,
for different ratios of the shortest distance between ends S to the length L, together with
the corresponding predictions (lines). The data are for cylinders with aspect ratios between
L/R= 20 and L/R= 40. All of the experimental data of Madani et al. (2010) have been
divided by a factor of two.

The angle Ψ of motion relative to the force (figure 9b) does not provide a clear391

sense of how the cylinder moves. Figure 9(c) instead shows the angle of motion392

relative to the cylinder’s own axis ((π/2)−φ; see figure 1a), which reveals that, close393

to the initiation of motion (Od→ Odc) the cylinder slides almost along its axis for394

any inclination angle α greater than
∧
approximately π/7. Conversely, if the cylinder395

is oriented closer to the perpendicular (α . π/7), it can drift in a wide range of396

directions. Both of these features are a consequence of the drag anisotropy for Bi� 1397

discussed in the previous section: the resistance to motion in the transverse direction398

is larger than that in the axial direction over almost the entire range of angles φ of399

motion relative to the axis.400

Sedimentation of cylindrical rods was studied experimentally by Madani et al.401

(2010) in centrifuge experiments using Carbopol gel. They measured the critical force402

(i.e. 1/Odc) for the initiation of motion. Figure 10(a) shows their data for straight403

rods orientated either parallel (α=π/2) or perpendicular (α= 0) to the force against404

the aspect ratio of the rods, L/R, where L is the rod length; our slender-body theory405

applies for L�R. Like the theoretical predictions in (4.4), the two orientations lead406

to critical values of Od that are different by a factor of order unity (the factor is407

∧
approximately 5 in the experimental data, and predicted theoretically to be close to 4).408

Curiously, however, both sets of experimental data are different from the theory by409

a factor of
∧
approximately two (this has been scaled out in the data in figure 10; see410

caption). We are not sure of the origin of this discrepancy, particularly since Tokpavi411

et al. (2009) report far better agreement with theory for their own experiments in the412

perpendicular orientation (α = 0). Indeed, a separate set of experiments by Jossic &413

Magnin (2001) also measured the critical forces on cylinders in both the perpendicular414

and parallel orientation; their data are also shown (as stars) in figure 10(a), and
∧
are415

more consistent with the theoretical results.416

We also performed our own simple experiments of the sedimentation of inclined417

rods, and the data are presented in figure 9(d). The experiments are conducted using418
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headless machine screws immersed in an
∧
aqueous Carbopol gel, as described in more 419

detail in appendix D. The figure reports the sedimentation speed observed for screws 420

of different size for varying orientation, distinguishing between rods that did or did 421

not move over the duration of the experiments. This distinction picks out an estimate 422

of the critical threshold Odc, which compares well with the theoretical predictions. 423

The screws in these experiments had aspect ratios L/R lying between 13 and 33. 424

Despite their simplicity, the experiments provide some other qualitative agreement 425

with the predictions of the theory regarding the fall direction, although they also 426

exhibit some potential sources of disagreement with the theory, as discussed in more 427

detail in appendix D. 428

4.2.2. A bent rod 429

For a simple model of a bent rod, we assume that the axis is straight except for an 430

abrupt corner at the midpoint, the effect of which on the flow dynamics is negligible. 431

We further orientate the object so that the centreline is contained in a vertical plane 432

and is symmetrical about the horizontal; i.e. we consider the two v-shaped orientations 433

illustrated in figure 10(b). Thus, over half of the length of the rod the centreline makes 434

an angle α with respect to the force, while over the other half the angle is equal and 435

opposite. Such configurations were also examined by Madani et al. (2010) in their 436

experimental study. 437

Figure 10(b) shows this experimental data together with the theoretical prediction 438

for bent rods, with the degree of the bend measured in terms of the shortest distance 439

between the ends of the rod S, divided by its original length L. As indicated in the 440

plot, two symmetrical orientations are possible: a ‘scallop’ and a ‘v’ arrangement. 441

When S→ L the rods are straight, whereas for S/L→ 0 the rods become bent into 442

two, potentially violating the slender-body assumptions (which leads us to truncate 443

the plot at S/L = 0.2). Theoretically, the critical force depends only on the angle α, 444

as was shown in figure 9(d). However, the two orientations differ in their definition 445

of that angle, leading to the two curves in the figure: for the ‘scallop’ arrangement, 446

α = sin−1(S/L), whereas α = cos−1(S/L) for the ‘v’ orientation. Once again, there is 447

rough agreement between theory and experiment in terms of the dependence of Odc 448

on S/L, notwithstanding the same disconcerting factor of two. 449

4.3. Helices 450

For the flow around a turning and translating helix, we must again translate our 451

computational results for the velocity field and drag relative to the local orientation 452

of the filament. As illustrated in figure 1(b), we embed the helix inside a virtual 453

cylindrical surface of radius RH , and let (s, t) denote axes that lie along and tangential 454

to it. We further let Φ denote the pitch angle of the helix (i.e. the angle between 455

the centre line of the filament and the t-axis). We first consider both sedimentation 456

and locomotion of helices with arbitrary pitch angle (§§ 4.3.1 and 4.3.2), in which 457

case the slender-body theory is valid when RH � R. Then, in § 4.3.3, we consider 458

locomotion driven by relatively long spiral waves with Φ → π/2; in this case the 459

theory applies for RH/R=O(1). 460

The dimensional velocity U(cos φ, sin φ) associated with axes aligned with the 461

filament corresponds to a translation speed Ṽs in the s-direction and a turning rate 462

ω̃ in the t-direction that are given by 463

Ṽs =−U cos(φ +Φ), ω̃= U
RH

sin(φ +Φ). (4.5a,b) 464
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The dimensionless force on the helix is also resolved into the (s, t)-directions as465 [
Ft
Fs

]
=
[

Fz(φ, Bi) cosΦ + Fx(φ, Bi) sinΦ
Fz(φ, Bi) sinΦ − Fx(φ, Bi) cosΦ

]
. (4.6)466

4.3.1. The spiral of a sedimenting helix467

When the helix is subjected to an axial force (in the s-direction), the helix drifts in468

that direction along a spiral path. The force Ft is unbalanced and must therefore be469

eliminated, which demands that470

Φ =−tan−1

(
Fz

Fx

)
=π− α, (4.7)471

where the last equality follows from noting that both φ and α must lie in the range472

[π/2, π] in this scenario. As for the sedimenting rod, the dynamics is naturally473

described in terms of the Oldroyd number (4.1). Hence we must transform the input474

parameters from (φ, Bi) to (Φ, Od) ≡ (−tan−1(Fz/Fx), Bi/
√

F2
x + F2

z ). The output475

quantities are then the dimensionless fall speed and turn rate,476

Vs = µṼs

|F̃| =
Od cos[φ(Φ,Od)+Φ]

Bi(Φ,Od)
, ω= µRHω̃

|F̃| =
Od sin[φ(Φ,Od)+Φ]

Bi(Φ,Od)
,477

(4.8a,b)478

shown in figure 11(a,b).479

In the Newtonian limit Bi→ 0 (§ 3.1), the limiting drag components imply480

(Vs, ω)∼ log Od−1

4π
(1+ sin2 Φ, sinΦ cosΦ). (4.9)481

Conversely, for higher Od (weaker force) we again encounter a critical yield stress482

Odc above which there is no motion. Indeed, the critical stress Odc(Φ) as a function483

of pitch angle is the same as the critical stress Odc(α) in terms of the inclination of484

straight cylinders. Furthermore, the motion of the helix is affected by exactly the same485

drag anisotropy as straight cylinders for Od→Odc (see figure 11c). That is, for pitch486

angles that are close to π/2 (i.e. for long loosely wound helices), the angle of motion487

φ spans almost its full range, and so the spiral taken by any filament of the helix is488

different from the curve itself. But for helices with Φ<π/2, φ→π/2: the helix turns489

such that each filament moves almost axially, and the helix falls via a corkscrewing490

motion.491

We performed a simple experiment of a sedimenting helix in Carbopol gel to492

confirm the latter prediction, as shown in figure 12. The upper image shows the493

helical corkscrew used, while the lower shows successive snapshots of the centreline494

as the helix spirals vertically downwards (plotted to the right in the figure). As495

illustrated by the near perfect alignment of the snapshots, the helix falls in almost the496

direction of the filament axis to perform a corkscrew motion. Note that we are unable497

to make any further quantitative comparison with theory as the Carbopol is better498

modelled as a Herschel–Bulkley fluid rather than using the Bingham law (precluding499

a direct comparison of the fall speed, for example). Nevertheless, the relatively slow500

sedimentation speed (less than 1 cm min−1), suggests that the helix is close to the501

onset of motion. The Oldroyd number, however, is Od = τYR/(Mg) ≈ 0.095, which502
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(a) The velocity Vs and (b) the angular rotation ω for helix
with pitch Φ sedimenting along its axis. (c) The angle of motion φ−π/2 of each filament
of the helix to its own axial direction. Small angles indicate a nearly corkscrewing motion.
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An image of a helix falling through Carbopol, and a plot
showing successive snapshots of the centreline. The helix has mass M ≈ 10.6 g, axial
length 14 cm, radii R ≈ 1.2 mm and RH ≈ 3.4 mm, pitch angle Φ ≈ 32◦, and falls
vertically (to the right in the plots) with a speed of 0.83 cm min−1.

is greater that the critical threshold of 0.083 for motion at the pitch angle of the 503

corkscrew, Φ ≈ 32◦ = 0.18π rad. Given that the corkscrew is made of smooth steel, 504

this discrepancy might point to a reduction of Odc due to effective slip on its boundary 505

(cf. Jossic & Magnin 2001). Alternatively, the radius of the helix RH ≈ 3.4 mm is 506

not that much larger than the filament radius R ≈ 1.2 mm, which suggests that the 507

slender-body limit may be inaccurate. 508

4.3.2. Swimming with helical waves 509

In Taylor and Hancock’s model of the locomotion of a micro-organism driven by 510

helical waves propagating down a cylindrical flagellum (Taylor 1952; Hancock 1953), 511

the filament spirals around the cylinder surface under the action of an imposed turning 512

moment with Ft 6= 0, driving a swimming speed Vs. Force balance along the surface, 513

however, now demands that the axial force Fs vanishes, or, given (4.6), 514

Φ(φ, Bi)= tan−1

(
Fx

Fz

)
≡ π

2
− α. (4.10) 515

In this situation, the imposed turning velocity RHω̃ provides a characteristic velocity 516

scale. We therefore introduce a modified Bingham number, 517

Bi∗ = τYR
µRHω̃

= Bi
sin(φ +Φ), (4.11) 518
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Calculations for a swimming cylindrical filaments propelled
by helical waves. (a) The pitch angle Φ(φ,Bi), calculated from (4.10). (b) The swimming
speed Vs(Φ,Bi∗). (c) The swimming speed for different Bingham numbers between Bi∗=
0.003 and Bi∗= 1995, together with the Newtonian (red, long dashed) limit, the speed for
perfect ‘corkscrewing’ (blue dashed) and the prediction for Φ→π/2 given in § 4.3.3 (for
Ω→ 0; green, short dashed).

given (4.5b), and write the dimensionless velocity along the cylindrical surface as519 [
Vt
Vs

]
= 1

RHω̃

[
Ṽt

Ṽs

]
=
[

1
−cot(φ +Φ)

]
. (4.12)520

We now map the input parameters from (φ, Bi) to (Φ, Bi∗), and then determine521

the swimming speed Vs(Φ, Bi∗) from (4.12). Figure 13 shows the results of this522

computation.523

In the Newtonian limit (Bi→ 0 or Bi∗→ 0), we find that tan α= (tan φ)/2= cotΦ,524

given the limits in § 3.1. Hence525

Vs→ sinΦ cosΦ
1+ cos2 Φ

, (4.13)526

which is equivalent to the result quoted by Hancock (1953).527

For higher Bi∗, the swimming speed increases and, at a particular pitch angle,528

attains a maximum that can exceed the turning velocity of the helix (i.e. Vs > 1; see529

figure 13b,c). For pitch angles that are sufficiently below π/2, the speed converges530

to the curve531

Vs = tanΦ, (4.14)532

in the plastic limit Bi∗ � 1 (figure 13c). This limit corresponds to a perfect533

‘corkscrewing’ motion, and follows from (4.12) with filaments of the helix moving534

along their axis (φ =π/2). The corkscrewing behaviour is once again a consequence535

of the drag anisotropy Fx>Fz outlined in § 4.1. When Bi� 1 (and hence Bi∗� 1), the536

force angle α is small over most of the range of φ, and so, given (4.10), the pitch Φ537

must be close to π/2. Hence variation in Φ away from π/2 must be accommodated538

by a sensitive tuning of φ very near π/2. In other words, over much of the range of539

pitch angles, φ is very close to π/2 and the filament translates almost along its axis540

in a corkscrewing motion.541

With a perfect corkscrewing motion, the swimming speed could in principle diverge542

for pitch angles approaching π/2. As illustrated in figure 13(c), this is not achieved543

for our model swimmer because, as Φ becomes closer to π/2, the angle φ is544
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redirected away from π/2. The swimming speed Vs thus deviates off the corkscrew 545

curve (4.14) and decreases as Φ approaches π/2. The descent of the swimming speed 546

corresponds to the main range of φ in the plots of the drag components (figure 8b,c), 547

where 0<α.π/7. Given this range of α, an optimal speed for Bi� 1 of Vs ≈ 2.14 548

results from (4.14), at a pitch angle of Φ ≈ 1.12. 549

4.3.3. Long helical waves 550

When locomotion is driven by relatively long helical waves, the pitch of the helix is 551

close to π/2 and the z-axis of the filament almost aligns with the s-axis of the helix. 552

In this setting, we may assume that RH/R=O(1). In the local Cartesian coordinates 553

of the filament, the rigid turning and translation of the helix driven by angular rotation 554

ω̃ then provides the dimensional surface velocity field, 555

(RH −R sin θ)ω̃ x̂+R cos θω̃ ŷ+W ẑ≡ U(cos θ cos φ, Ω − sin θ cos φ, sin φ), (4.15) 556

where W = Ṽs is the dimensional locomotion speed. The latter expression in (4.15) is 557

simply a dimensional version of the generic boundary condition in (2.7), where U = 558√
U2 +W2 as before but now 559

U =RHω̃ and Ω = Rω̃
U
. (4.16a,b) 560

In this long wave limit, the condition Φ→π/2 is expected to demand that φ� 1 (cf. 561

figure 13), and so the surface velocity (4.15) is 562

U(cos θ, Ω − sin θ, φ), (4.17) 563

with 564

W
U
= Vs ≈ φ, U ≈RHω̃ and Ω ≈ R

RH
. (4.18a−c) 565

Solutions in this limit can therefore be calculated by computing the motion of a 566

cylinder at small φ, but with arbitrary rotation rate Ω , to determine the drag force, 567

Fx(φ, Ω, Bi)x̂+ Fz(φ, Ω, Bi)ẑ≈ Fx(0, Ω, Bi)x̂+ φF′z(Ω, Bi)ẑ, (4.19) 568

with 569

F′z(Ω, Bi)≡
[
∂

∂φ
Fz

]
φ=0

. (4.20) 570

But, as before, α = (π/2)−Φ, and so 571

φ(Ω, Bi)≈
(

1
2
π−Φ

)
Fx(0, Ω, Bi)

F′z(Ω, Bi)
, (4.21) 572

which is the dimensionless swimming speed. Note that, in the Newtonian limit, the 573

results in (3.1) imply that φ ∼ 2((π/2) − Φ), which is equivalent to the Φ → π/2 574

limit of (4.13). 575

Figure 14(a) shows computations of the speed coefficient Fx(0, Ω, Bi)/F′z(Ω, Bi) for 576

varying radius ratio Ω and different yield stresses. For Ω→ 0, the helix is loosely 577
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(a) Computations of the speed coefficient
Fx(0, Ω, Bi)/F′z(Ω, Bi) in (4.21) for varying Ω and Bi = 4 (black circles), Bi = 16
(blue stars), Bi = 64 (red crosses), Bi = 256 (green squares) and Bi = 1024 (grey
diamonds), together with the high-Bi limit for Ω = 0 from the data in figure 8 (red
dashed). (b) The (interpolated) maximum speed coefficient (Fx/F′z)max (blue squares) and
corresponding Bingham number at which it is attained Bimax (black stars).

wound and (4.21) reduces to the Φ→π/2 limit of the analysis in § 4.3.2. The speed578

increases towards a maximum value when the helix is more tightly wound (larger Ω),579

before decreasing again towards zero as Ω→∞.580

In the loosely wound limit, the swimming speed is insensitive to the radius ratio581

and approaches a finite value for large yield stress. One expects this result for Bi� 1582

because the stress fields of the underlying plasticity solutions are independent of Ω583

until the rotation rate becomes sufficiently large to force a change in the slipline584

pattern (see § 3.3.2). In addition, when the flow pattern contains a significant nearly585

perfectly plastic region, the stresses, and therefore the drag components, are all586

expected to scale with Bi, such that the speed is independent of Bi in the plastic587

limit. Only when the plastic flow outside the cylinder is replaced by a boundary-layer588

flow for larger Ω (see § 3.3.2 and figure 4) does the speed becomes more strongly589

dependent on the yield stress. In this very tightly wound limit, the transverse drag590

is Fx ∼ Bi3/2Ω−3/2 (see § 3.3.2), while the axial drag scales with Fz ∼ φBiΩ−1,591

because τrz ∼ Bi wr/|vr| ∼O(φBi/Ω). Hence, φ ∼ Bi1/2Ω−1/2, which captures the final592

decay of the swimming speed for Ω � 1 in figure 14(a). A maximum value of the593

speed is attained between these two limits, for O(1) <Ω <O(Bi1/3), where the axial594

drag decays like Fz ∼ φBiΩ−1 but the stress state is still given by the modified595

slipline solution in § 3.3.2 and the transverse drag remains O(Bi). The speed grows596

over this intermediate range, and attains a maximum value (Fx/F′z)max ∼ Bi1/3 when597

Ω =Ωmax ∼ Bi1/3 (figure 14b).598

5. Summary599

In this paper we have formulated viscoplastic slender-body theory to describe the600

slow (inertialess) flow of a yield-stress fluid around a thin cylindrical filament. For601

Newtonian Stokes flow, the linearity of the problem means that a general solution602

can be found by breaking things down into the constituent components of motion603

(transverse and axial motion plus rotation) and then suitably superposing the results.604

The nonlinearity of the constitutive law means that such a superposition is not possible605

here, forcing us to consider all the possible combinations independently. The theory606

does, however, simplify matters by exploiting the slenderness of the filament to reduce607

the problem to that of the local flow around a cylinder, which is inclined relative608
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to its direction of motion and rotates. We solved this problem numerically using a 609

specially designed technique to deal with the yield stress (an
∧
augmented Lagrangian 610

scheme). We also provided some exact or asymptotic solutions in different analytically 611

accessible limits. 612

We applied the theory to the sedimentation of a straight or bent rod, and compared 613

the results with both existing experiments (Jossic & Magnin 2001; Tokpavi et al. 614

2009; Madani et al. 2010) and some simple experiments of our own. We further 615

considered flow around a helix, by exploring both the spiral fall of a vertical helix 616

and the locomotion of a cylindrical filament driven by helical waves. The latter 617

makes a non-Newtonian generalization of the model of Taylor (1952) and Hancock 618

(1953) for a swimming microscopic organism with a flagellum. We found that, as the 619

strength of the yield stress increases, an optimal swimming speed arises for a certain 620

pitch angle of the helix, which is connected to a near corkscrewing motion of the 621

helix. This results because the drag opposing transverse motion is typically higher 622

than that opposing axial motion, and may have application to biological organisms 623

such as spirochetes that are observed to perform a corkscrewing motion in gel-like 624

materials (Wolgemuth et al. 2006). 625
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Appendix A. Two-dimensional viscoplastic boundary-layer theory 628

As suggested by Piau (2002) and confirmed by Tokpavi et al. (2008), the boundary 629

layers against the solid surface of the cylinder in the limit of transverse motion have 630

a thickness of O(Bi−1/2). As predicted by Oldroyd (1947) and shown by Balmforth 631

et al. (2017), on the other hand, the free viscoplastic shear layers have a thickness 632

of O(Bi−1/3) and a structure with self-similar form. For a shear layer with a curving 633

∧
centreline, however, the theory outlined by Balmforth et al. (2017) is strictly only 634

valid when the curvature κ � O(1) (despite an erroneous statement to the contrary 635

contained in that paper). In this appendix, we briefly outline the correct generalization 636

to order-one curvatures. 637

We resolve the boundary layer in terms of a local coordinate system (s, n = εη) 638

based on arc length s and a stretched transverse coordinate η, and introduce the 639

velocity field (U , εV), where ε =Bi−1/3. The force balance can then be expressed as 640

ε
∂τss

∂s
+ (1− εκη)∂τsn

∂η
− 2εκτsn = ε ∂p

∂s
, (A 1) 641

ε
∂τsn

∂s
+ (1− εκη)∂τnn

∂η
+ εκ(τss − τnn)= ∂p

∂η
. (A 2) 642

The components of the deformation rate tensor scale as 643

γ̇ss = 2
1− εκη

(
∂U
∂s
− εκV

)
, γ̇nn = 2

∂V
∂η
, γ̇sn = 1

1− εκη
(
ε
∂V
∂s
+ κU

)
+ 1
ε

∂U
∂η
, 644

(A 3a−c) 645

which, in view of the constitutive law, τij = γ̇ij(1+ ε−3γ̇ −1), guide the stress scalings, 646

τsn = ε−3 sgn(Uη)+ ε−1τ̌sn(s, η) and (τss, τnn)= O(ε−2). To account for the third term 647
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on the left of (A 1) and maintain a consistent balance in that equation at O(ε−1), we648

now introduce the pressure scaling,649

p=∓ 2
ε3
ϑ + 1

ε2
P(s, η), (A 4)650

where ϑ(s) is the angle that the
∧
centreline of the boundary layer makes with the651

x-axis, so that κ = ∂ϑ/∂s. The first term in the pressure solution (A 4), which is652

missing in Balmforth et al. (2017), reflects how p± 2Biϑ is, to leading order, constant653

along the boundary layer. But that centreline must be equivalent to a slipline, and654

p± 2Biϑ is simply the corresponding Riemann invariant. With this correction to the655

pressure solution, the remainder of the
∧
boundary-layer theory proceeds as outlined by656

Balmforth et al. (2017).657

Appendix B. Sliplines for rotating and translating cylinders658

The notation in this appendix refers to figure 3(b). Let Θ denote the angle of the659

line BC, and p0 the pressure at the base of the fan. Since the circles of the fan are660

β-lines, and ϑ = −π/2 along the α-line x = 0, the pressure within the fan is p =661

p0 + 2Biϑ + πBi. It follows that the pressure along BC is p= p0 + (π+ 2Θ)Bi. The662

circular failure arc CD is an α-line with pressure p= p0 + (π+ 4Θ − 2ϑ)Bi. Along663

CD (with ϑ = 2π − Θ) we therefore have p = p0 − (3π − 6Θ)Bi, implying that the664

pressure in the fan must be p= p0+ 2Biϑ − (7π− 8Θ)Bi. On returning to the α-line665

x = 0 cutting through the base of the fan (now with ϑ = 2π + (π/2)), we therefore666

find the pressure p= p0 − 2(π− 4Θ)Bi. Eliminating the pressure drop then demands667

that Θ =π/4.668

In x> 0, the involutes of circles that extend the β-lines from the centred fan above669

y = −1 can be taken to have the parametric form, x = sin ϑ + (a − ϑ) cos ϑ and670

y= (a−ϑ) sinϑ − cosϑ , where a is the horizontal location of the curve along y=−1671

(with ϑ = 0), which also determines the polar angle θ = (π/2)− a at the intersection672

with the cylinder (where ϑ = a). Given that the α-line BC has ϑ =π/4, the geometry673

demands that the radius of the rigidly rotating plug is R= 1+ (y0

√
2/2), and that of674

the centred fan is (π/4)+ (y0

√
2/2).675

We now quote the local force and torque along the closed contour ABCDEA, whose676

integrals set the total force and torque upon the cylinder (without inertia, there can be677

no net force or torque on the rigid plug attached to the cylinder). A key feature of678

this computation is that along the sliplines the normal force is given by the pressure p679

and the tangential (anti-clockwise) force is the shear stress −Bi. Thus, the local force680

and torque in a line element of length ds are Q4681

f =
(−Bi cos ϑ − p sin ϑ
−Bi sin ϑ + p cos ϑ

)
ds and r× f , (B 1a,b)682

where the position vector r, pressure p and line element ds break down into683

AB: r=
(

sin ϑ
−cosϑ

)
,

p= p0 + (π+ 2ϑ)Bi,
ds= dϑ, 0<ϑ < 1

4π;
(B 2)684

685

BC: r= 1√
2

(
s+ 1
s− 1

)
,

p= p0 + 3
2πBi ϑ = 1

4π,

0< s< 1
2 y0
√
(2); (B 3)686
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687

CD: r=
(

R sin ϑ
y0 − R cos ϑ

)
,

p= p0 + 2(π− ϑ)Bi,
ds= R dϑ, 1

4π<ϑ <
7
4π;

(B 4) 688

689

DE: r= 1√
2

(
s− 1
−s− 1

)
,

p= p0 − 3
2πBi ϑ = 7

4π,− 1
2 y0
√
(2) < s< 0; (B 5) 690

691

EA: r=
(

sin ϑ
−cosϑ

)
,

p= p0 − (5π− 2ϑ)Bi,
ds= dϑ, 7

4π<ϑ < 2π.
(B 6) 692

These furnish the net force and torque quoted in the main text. 693

Appendix C. Translation inside the axial yield surface 694

When flow is contained within the yielded region generated by axial motion, for 695

(π/2)− φ= δ� 1, we have the axial velocity field given in § 3.2: w∼ 1+Bi(r− 1− 696

rp log r). Let (φ − (π/2), u, v)= δ(1, u1, v1)+ · · · , w= w0(r)+ δ2w2 and (u1, v1)= 697

(ψθ/r,−ψr). Then, 698

τrz ∼−Bi
rp

r
+ δ2

(
w2r + Biγ̇ 2

⊥
2w2

0r

)
, τθz ∼ δ2rpw2θ

r(rp − r)
, (C 1a,b) 699

700
(
τrr
τrθ

)
∼ rp

rp − r

(
2(ψθ/r)r

ψr/r−ψrr +ψθθ/r2

)
(C 2) 701

and 702

γ̇ 2 ∼ (w0r + δ2w2r)
2 + δ2γ̇ 2

⊥, γ̇ 2
⊥ ≡ 4(ψθ/r)2r + (ψrr −ψr/r−ψθθ/r2)2. (C 3a,b) 703

The boundary conditions at r= 1 still imply w2 = 0 and (ψθ ,−ψr)= (cos θ,− sin θ), 704

but the corrections perturb the position of the plug to r = rp + δ2rp2. Given that u= 705

v =w= 0 and γ̇ = 0 on this boundary, an expansion about r= rp furnishes 706

w2 =w2r + rp2w0rr =ψ =ψr = γ̇ 2
⊥ = 0 at r= rp. (C 4) 707

After eliminating the pressure from the planar
∧
force-balance equations, we find 708[

∂

∂r
1
r
∂

∂r
r2

(rp − r)
∂

∂r
− 4

r
∂

∂r
1

(rp − r)
+ 1

r(rp − r)
∂

∂r

]
r
∂

∂r

(
Ψ

r

)
= 0, (C 5) 709

given that a separable solution is possible with ψ =Ψ (r) sin θ , Ψ (1)=Ψr(1)= 1 and 710

Ψ (rp)=Ψr(rp)= 0. At the following order, the axial problem gives 711

(rw2r)r + rp

r(rp − r)
w2θθ =−

[
r3γ̇ 2
⊥

2Bi(rp − r)2

]
r

, (C 6) 712

with w2(1, θ) = w2(rp, θ) = 0 and rp2 = −rpw2r(rp, θ)/Bi, illustrating how the lateral 713

translation perturbs the axial flow and yield surface. 714

For Bi� 1, the solution is more directly obtained and explicit: the axial velocity 715

is 716

w∼ (1− ξ)2, r= 1+ Bi−1/2ξ
√

2. (C 7a,b) 717
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Continuity, planar force balance and the constitutive law demand that, at leading718

order,719

Bi1/2

√
2

uξ + vθ ∼ 0,
∂p
∂ξ
∼ 0 and

∂p
∂θ
∼ Bi1/2

√
2

∂

∂ξ
τrθ ∼ Bi3/2

2
√

2

(
vξ

1− ξ
)
ξ

, (C 8a−c)720

with boundary conditions, u= δ cos θ and v∼ 0 at ξ = 0, and (u, v)= (0, 0) at ξ = 1.721

Various integrals therefore give722

u= (1− ξ)3(1+ 3ξ)δ cos θ and v = 6
√

2Bi1/2ξ(1− ξ)2δ sin θ. (C 9a,b)723

It follows that the pressure is p∼ 9Bi2δ cos θ , and the drag force is724

Fx ∼ Bi1/2

√
2

∮ [
∂τrθ

∂ξ

]
ξ=0

dθ ∼−
∮

p cos θ dθ ∼−9πBi2δ (C 10)725

(see figure 8d). The δ2w2 correction (C 7) now satisfies726

w2ξξ ∼−9
√

2B3/2[(1− 3ξ)2]ξ sin2 θ. (C 11)727

Hence, given w2 = 0 at ξ = 0 and 1,728

w∼ (1− ξ)2 + 27
√

2δ2Bi3/2ξ 2(1− ξ) sin2 θ, (C 12)729

which implies a shift in the yield surface of730

rp ∼ 1+ Bi−1/2(
√

2+ 27δ2Bi3/2 sin2 θ). (C 13)731

Note that the pressure solution p ∼ 9Bi2δ cos θ is only much less than O(Bi)732

when δ� Bi−1. For δ > O(Bi−1), the continuity of the axially varying pressure into733

the region outside the boundary layer and the force balance suggest that the stress734

components cannot remain below the yield stress, regardless of the indeterminacy of735

the stress state if τ < Bi. In other words, once the angle φ becomes further from736

π/2, the stress exerted by the boundary-layer flow must force the fluid to yield over737

an order-one region beyond.738

The flow pattern which then emerges combines the boundary layer around the739

cylinder in which the axial velocity mostly remains localized, with an almost perfectly740

plastic region beyond, as seen in figure 6(i). As r→ 1, the outer plastic flow satisfies741

the stress conditions τrz →−Bi with all other τij → 0, and is forced purely by the742

radial velocity of the cylinder u→ δ cos θ , tolerating an arbitrary slip in v and w.743

The plastic flow speeds are therefore O(δ), with O(Bi) deviatoric stress components744

and pressure.745

Although the boundary layer retains the O(Bi−1/2) thickness of the planar746

viscoplastic boundary-layer problem (appendix A), it is dominated by the axial747

shear stress τrz ∼−Bi rather than the planar component τrθ . It follows that, to O(δ),748

the axial velocity profile is again given by (C 7). Moreover, the planar boundary-layer749

equations in (C 8)
∧
remain valid, but with continuity with the outer plastic flow750

demanding that p= O(Bi). Thus, τrz ∼ Bivξ/|wξ | = O(Bi1/2), and the angular velocity751

is v = O(Bi−1/2), which greatly exceeds O(δ) cylinder motion for δ � O(Bi−1/2).752

However, the contribution of the boundary-layer flow to the radial velocity is O(Bi−1)753

and cannot correct the leading-order term u ∼ δ cos θ due to the cylinder motion754

if δ � O(Bi−1). Thus, for 1� δ � O(Bi−1), Fz ∼ −2πBi and Fx is dictated by the755

O(Bi) pressure distribution stemming from the outer O(δ) plastic flow (cf. figure 8c).756

Evidently, when δ = O(Bi−1) the boundary-layer flow adjusts the radial velocity and757

consumes the outer plastic flow.758
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Appendix D. Sedimentation experiments 759

For a laboratory study of the fall of inclined rods, we conducted experiments using 760

headless machine screws immersed in an
∧
aqueous solution of Carbopol Ultrez 21 761

(concentration of
∧
approximately 0.5 % by weight, neutralized with sodium hydroxide). 762

The screws had lengths of L≈ 4.9 cm and varying maximum radius R, ranging from 763

1.5 to 3.9 mm. A
∧
Herschel–Bulkley fit to the flow curve measured in a rheometer 764

(MCR501, Anton Paar, with roughened parallel plates) suggested a yield stress of 765

∧
approximately 38 Pa. The Carbopol was placed in a small tank (length 33 cm, depth 766

12 cm and width 5 cm), the screws introduced at varying orientations, and the fluid 767

surface levelled with a scraper. A camera took photographs of the fall of the screws, 768

and the time-dependent position of the centre was extracted from the images. 769

In experiments of this kind, one practical concern is that effective slip may occur 770

over the surface of a smooth rod (e.g. Poumaere et al. 2014; Jalaal, Balmforth & 771

Stoeber 2015) and thereby change the sedimentation dynamics. This motivated our 772

use of steel screws for which the grooved surface, though complicating the detailed 773

geometry, likely clogs up with Carbopol. A no-slip condition is thereby introduced 774

at a position close to the maximum radius of the screw R. The clogged Carbopol 775

slightly modifies the effective mass of the rod: if the screw originally has mass M, 776

and assuming that the grooves are fully clogged, the effective mass can be estimated 777

as 778

M∗ =M
(

1− ρc

ρs

)
+πρcR2L, (D 1) 779

where ρc and ρs are the density of Carbopol and steel, respectively (1 and 8 g cm−3). 780

The adjusted Oldroyd number is Od= τYRL/(M∗g). 781

If the screw had not noticeably fallen over a time of
∧
approximately 103 s, that 782

inclination of the rod was noted as being below the critical value Odc. Otherwise, 783

the fall speed was measured as a function of orientation angle from consecutive 784

images. There are a number of potential issues with these measurements: although the 785

geometry of the screw may eliminate slip, the object is not truly cylindrical and small 786

bubbles can become trapped on the surface. The screws also have finite length, which 787

potentially introduces additional dynamical effect from the ends. More awkwardly, 788

Carbopol is known to have a non-ideal rheology that may affect sedimentation 789

(Tabuteau, Coussot & de Bruyn 2007; Putz et al. 2008). Finally, the flow curve 790

measured in the rheometer may not provide a particularly accurate estimate of the 791

yield stress (even were there a unique value for this property). These issues potentially 792

explain a significant amount of scatter in the measurements of fall speed. They may 793

also contribute to another observed effect: the gradual tilting of the screws towards 794

the vertical as they fall. This effect, which is illustrated in figure 15, is not expected 795

in our Re→ 0 theory, and may well have an inertial origin: the slower, lighter rods 796

re-orientate less than the faster, heavier ones. From an experimental perspective, 797

the tilt is convenient, allowing multiple speed values for different inclinations to be 798

extracted during a single fall. Aside from this effect, and in agreement with theoretical 799

predictions, rods with appreciable inclinations fall nearly along their axes, whereas 800

almost horizontal rods fall in a wider range of directions. 801
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FIGURE 15. (Colour online)
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Snapshots (unequally spaced in time) of the centrelines of
the four heaviest screws during sample falls. The spacing in time was roughly inversely
proportional to the fall speed (cf. figure 9d), and ranged from a few hundred seconds for
the less tilted screws to a few seconds at higher inclinations.
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