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Granular and fluid washboards
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We investigate the dynamics of an object towed over the surface of an initially
flat, deformable layer. Using a combination of simple laboratory experiments and a
theoretical model, we demonstrate that an inclined plate, pivoted so as to move up
and down, may be towed steadily over a substrate at low speed, but become unstable
to vertical oscillations above a threshold speed. That threshold depends upon the
weight of the plate and the physical properties of the substrate, but arises whether
the substrate is a viscous fluid, a viscoplastic fluid, or a granular medium. For the
latter two materials, the unstable oscillations imprint a permanent rippled pattern on
the layer, suggesting that the phenomenon of the ‘washboard road’ can arise from
the passage of a single vehicle (i.e. the absolute instability of a flat bed). We argue
that the mechanism behind the instability originates from the mound of material
that is pushed forward ahead of the object: the extent of the mound determines the
resultant force, whereas its growth is controlled by the object’s height relative to the
undisturbed surface, allowing for an unstable coupling between the vertical motion and
the substrate deformation.
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1. Introduction
It is commonly believed that the washboard patterns that appear on gravel or sandy

roads arise due to the repeated passage of vehicles, with a critical role played by a
vehicle running over the wake imprinted on the granular bed by preceding vehicles.
With this image in mind, and following on from earlier work by Mather (1963),
a number of recent experiments have generated washboards in the laboratory by
continually circulating wheels or ploughs around the surface of sandy layers (either
by rotating the underlying table or moving the mounting holding the ploughing object
around a circular track; Taberlet, Morris & McElwaine 2007; Bitbol et al. 2009;
Percier et al. 2011). Discrete-element simulations also reproduce the phenomenon and
show that compaction and segregation are not critical factors in washboard dynamics.
Indeed, the primary controlling variables appear to be simply the paddle speed and
weight, and the density of the granular substrate. Other models for the washboard
phenomenon are presented by Mays & Faybishenko (2000) and Both, Hong & Kurtze
(2001).
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Experimental setup. A
motor pulls the trolley at fixed speed along a track above a channel (3 m long and 10 cm wide)
filled with either glass beads or a fluid. A rectangular paddle (5 cm wide) is pivoted 23 cm
from a vertical metal plate fitted on the trolley, making an angle of about α = 30◦ with the
surface of the substrate. The effective weight of the paddle is adjusted by adding weights to
the arm to alter the net gravitational moment.

The purpose of the present article is to show that a washboard pattern can develop
with only one pass of a plough, so that the wake from a previous passage is not
necessary. More specifically, we present experiments and a simple theoretical model
to demonstrate that an object towed horizontally over a flat granular surface can
leave behind a washboard. Moreover, the material composing the underlying substrate
need not be granular: we find that washboards can be permanently imprinted on
viscoplastic fluids or ephemerally generated on viscous fluids. Thus, we conclude that
the washboard effect is a ubiquitous phenomenon that should be expected whenever an
object is towed at sufficient speed along a fluid or granular surface. Indeed, our results
complement a rather different experiment (Hewitt, Balmforth & McElwaine 2011) that
we conducted to show that paddles pivoted above flowing water at high Reynolds
number could skip continually as a result of an intrinsic instability.

We argue that the origin of all these instabilities arises from the nonlinear
deformation of the granular or fluid surface: as the paddle ploughs into the material,
a raised mound is pushed forward. The extent of this wedge of material controls
the force exerted on the paddle, and potentially can allow the transmission of force
even when the paddle lies above the undisturbed bed surface. On the other hand, the
force on the paddle dictates its height, which, in turn, controls the amount of material
entering the mound. The resulting coupling of the paddle and the mound generates
a phase lag between the paddle’s vertical position and the reaction force, capable of
destabilising steady motion. The essence of this mechanism is largely independent of
the material structure, thus explaining the ubiquitous nature of the instability.

2. Experiments
2.1. The setup

The setup of our experiment is sketched in figure 1: a trolley placed on an open-
topped rectangular channel was attached to a string wound around a motorised spindle
so that the trolley could be towed along the channel at fixed speed, the sides of the
channel acting like the rails of a track. On the trolley a wooden ruler was pivoted,
such that the ruler could rotate freely in the vertical plane aligned with the towing
direction. A Plexiglas plate (the ‘paddle’) was attached to the end of the ruler and
counterbalancing weights added to control the net downward moment, M, acting on

http://journals.cambridge.org/flm
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Ballotini 1500 kg m−3 Internal friction angle φ : 24◦

Carbopol 1000 kg m−3 Yield stress τy: 30± 10 Pa
Consistency K: 7 Pa sn, exponent n: 0.7

Golden syrup 1470 kg m−3 Viscosity µ: 15 Pa s
1360 kg m−3 Viscosity µ: 2 Pa s

TABLE 1. Properties of the experimental substrates, including a Herschel–Bulkley fit
(Roberts & Barnes 2001) to the Carbopol rheology based on data from a parallel-plate

rheometer.

the paddle. These counterbalancing weights contributed insignificantly to the overall
moment of inertia, I , of the pivoted ruler and paddle. The channel was filled either
with 1 mm diameter glass ballotini (the granular bed) or a fluid, to a depth of 2.5 cm,
and the paddle towed along this substrate surface at different speeds. The towing speed
could be varied from 7 cm s−1 up to 53 cm s−1, and the net turning moment on the
paddle in its equilibrium position ranged from 0.002 to 0.06 N m. The channel was
10 cm wide, 6 cm deep and 3 m long, the paddle tip was 5 cm wide (centred in the
middle of the channel), a distance a= 23 cm from the pivot, and made an angle of 30◦

with the surface of the substrate.
Table 1 summarises some properties of the materials used as a substrate. We used

two different kinds of fluids: viscoplastic and viscous. The viscoplastic fluids (e.g.
Bird, Dai & Yarusso 1983) were an aqueous Carbopol solution (a synthetic polymeric
gel, produced by dissolving Carbopol Ultrez 21 in water to a concentration of 0.3 %
by weight and adjusting its pH to ∼6 using sodium hydroxide), which possesses a
significant yield stress and a shear-thinning nonlinear viscosity (Roberts & Barnes
2001), and ‘joint compound’ (a commercially available, kaolin-based suspension with
a little extra water mixed in). Using a parallel-plate rheometer, the yield stress of
the Carbopol was measured to be 30 ± 10 Pa and its rate-dependence was fitted to a
Herschel–Bulkley model (table 1; cf. Roberts & Barnes 2001). The joint compound
was estimated to have a similar yield stress but was difficult to characterise accurately
because of its tendency to dry out. For the viscous fluids we used golden syrup with
two different sugar concentrations; the corresponding viscosities are quoted in table 1.
To remove any surface undulations for the granular and viscoplastic substrates, before
each pass of the paddle the surface was carefully smoothed by dragging a rectangular
plate with the same width as the channel along the length.

2.2. Phenomenology

For all the materials placed in the channel, we were able to tune the imposed moment
so that the paddle did not remain steady as it was towed along the surface, but rocked
up and down once the towing speed exceeded a threshold. Below the threshold, the
paddle dug out a shallow, uniform furrow in the substrate, displacing a small amount
of the material to either side (which, in the case of syrup, slowly levelled out as the
substrate flowed back to equilibrium). Above the threshold, and when the paddle was
started off at the undisturbed surface of the substrate, the paddle oscillated vertically
with an amplitude that increased after a few wavelengths to a roughly steady level. If,
instead, the paddle was allowed to drop abruptly onto the surface as towing began, the
paddle bounced a number of times before settling into the same rhythm. Just beyond
the threshold, the paddle clearly remained in contact with the substrate during the
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FIGURE 2. (Colour online) Height of the paddle tip above the undisturbed surface (dots, left
axis), and wetted length of the paddle (circles, right axis). The error bars reflect the resolution
of the video. The paddle has moment 0.005 N m and horizontal velocity: (a) 22 cm s−1;
(b) 36 cm s−1.
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FIGURE 3. (a–d) Overhead photographs of the glass bead track after one pass of the paddle
(from bottom to top in these images). The paddle has moment 0.005 N m and horizontal
velocity (a) 14 cm s−1, (b) 22 cm s−1, (c) 36 cm s−1, (d) 53 cm s−1. On the right are average
light intensity measurements derived from the centre-line of these images. (e–h) A similar
picture for the joint compound when the paddle has moment 0.034 N m and horizontal
velocity (e) 10 cm s−1, (f ) 22 cm s−1, (g) 36 cm s−1, (h) 53 cm s−1.

rocking motion; once the towing speed was sufficiently in excess of the threshold,
however, the paddle actually took off from the surface during part of each oscillation.

These two variants of the rocking motion are illustrated in figure 2, which shows
data extracted from video footage taken with a high-speed camera (300 frames s−1).
The recording captures a small number of the oscillations of the paddle as it moves
through the field of view, and the figure plots the vertical position of the tip of the
paddle and the ‘wetted length’ (the length of the paddle in contact with the deforming
substrate). In the example on the left, the paddle remains in contact with the substrate,
whilst the paddle takes off in the other example and the wetted length vanishes over
the airborne section of the trajectory.

The oscillatory rocking of the paddle carved out a washboard pattern in the
substrate; photographs of sample patterns imprinted on substrates made from glass
beads and the joint compound are shown in figure 3. The patterns have a distinctive
shape in both the longitudinal (aligned with the towing direction) and transverse
directions, reflecting the three-dimensional deformation of the substrate. Nevertheless,
over the central sections of the pattern the structure was largely uniform in the
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transverse direction, and visual observations suggested that the lateral deflection of the
substrate was small everywhere except close to the sides of the paddle.

The elevation changes (of the order of 1 mm) in the free surface underlying the
patterns in photographs like those in figure 3 are not straightforward to measure
directly from the images. However, the light intensity variations provide an alternative
proxy that is more accurately measured. Such intensity profiles are obtained by
averaging the image brightness across the roughly two-dimensional central band of
the pattern (around 2 cm wide), and then dividing by a least-squares quadratic fit to
remove the background variation with the longitudinal direction; the results are seen
in figure 3. The peak-to-trough variations of this proxy provide a convenient measure
of the pattern’s ‘amplitude’ for a relatively large number of undulations (compared
with the number of oscillations accessible with the high-speed camera, from which we
obtain amplitude measurements of the paddle tip).

2.3. Trends
Figure 4 provides a summary of the observed trends in measurements from
experiments with varying towing speed and moment, using substrates of ballotini,
Carbopol, and syrup. Figure 4(a–c) shows peak-to-trough amplitudes of the vertical
position of the paddle tip, with the dotted segments in the lines distinguishing
experiments in which the paddle was always in contact with the surface from those
for which the paddle became airborne. Figure 4(d–f ) shows the wavelengths of the
imprinted patterns and the corresponding oscillation periods. The ‘intensity amplitudes’
of the patterns for ballotini and Carbopol are displayed in Figure 4(g–i). At low
towing speeds, there was no obvious oscillation of the paddle tip, nor a recognisable
pattern in the intensity variations (cf. figures 3a and 3e). From the video footage and
photographs, we therefore estimated the noise level for each material; this level is
shown by the dashed line on the figures.

For the syrup, the washboard pattern was only visible for a short time after the
passage of the paddle, and the surface was relatively rough because of finer filaments
of syrup drawn out from the surface as the paddle took off. This complex pattern
structure made it difficult to extract reliable data for that material, and coupled with
its messy adhesive nature and the need to avoid excessive evaporation from creating a
superficial skin layer, this led us to perform fewer experiments for the syrup.

Overall, the ballotini experiments display a sharp threshold for the onset of the
washboarding instability (figure 4a), that varies with the imposed moment. Once
airborne, the wavelength, period and amplitude show systematic variations with both
speed and moment. However, the strength of the imprinted pattern varies relatively
weakly with those parameters.

By contrast, the transition to washboarding is much smoother for the viscoplastic
materials (and also the syrup), and the wavelengths and periods are insensitive to the
imposed moment. In fact, a residual washboard pattern appeared to form even at low
speeds or high moments for these viscoplastic materials. This pattern was close to our
estimates of the noise level, and is illustrated further in figure 4(i), which shows a
series of experiments using Carbopol and covering a relatively wide range of moments
with fixed towing speed. Despite the low-amplitude oscillations at the higher moments
seen in this figure, there is a recognisable increase in amplitude for moments below
0.026 N m. We tentatively identify those moments as characterising the transition
to washboarding and interpret the residual oscillations at larger moments as due to
a different physical effect. Indeed, the low-level amplitudes and the corresponding
wavelengths appear to be largely independent of the towing speed, and visual
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FIGURE 4. Measurements of amplitude, wavelength and period for substrates composed of
ballotini (first column, a, d and g), Carbopol (second column, b, e and h, and the final panel i)
and syrup (c and f ), in suites of experiments varying the towing speed and imposed moment.
The data for each moment are connected by solid lines except for the segment shown dotted,
which distinguishes cases in which the paddle was always in contact with the surface (lower
speeds) from experiments in which the paddle became airborne (higher speeds). The top row
(a–c) shows the peak-to-trough amplitude of the oscillations in the vertical position of the
paddle tip. The middle row (d–f ) shows the wavelength of the imprinted pattern, with insets
showing the corresponding oscillation period in seconds. The bottom row (g–i) shows the
peak-to-trough amplitude of the intensity variations in overhead photographs, and the inset
in (i) shows the corresponding periods. The dashed lines in (a–c) and (g–i) indicate our
estimate for the noise level below which oscillations are unidentifiable. In (d–f ), the errors
are approximately ±5 mm.

observations suggested that the residual oscillations may have been driven by noise
from the towing mechanism. One possible explanation for the noise-driven oscillations
is viscoelastic deformation below the yield stress (damped elastic-like vibrations were
visible in high-speed footage for both viscoplastic fluids), implying a connection with
the troublesome phenomenon of ‘roaring rails’: short wavelength undulations on the
the surface of rail tracks that are thought to result from a natural frequency of the
elastic vibration of the rails pinned to their sleepers (Gassie, Edwards & Shepherd
2007).
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FIGURE 5. Scaled amplitude (A/Lj) and wavelength (λ/Lj) against scaled towing speed
(V/Vj) for (a,c) ballotini (j = 1) and (b,d) Carbopol (j = 2), where V1 = M/(I Wρga)1/2,
L1 = (M/Wρga)1/2, V2 =M/(I Wτy)

1/2 and L2 =M/Wτya. The grey curve in (a) is a best fit
of the form A/L1 ∝max (0,V/V1 − γ )1/2, expected beyond a Hopf bifurcation at V = γV1; in
(b) the grey line shows a linear fit.

2.4. Scaling
To elucidate the dependence on the moment for the ballotini and Carbopol, we have

attempted to non-dimensionalise the data to collapse them onto common curves. At
our disposal for this task, relevant dimensional parameters governing the motion of
the paddle include the towing speed, V , the moment, M, the moment of inertia, I ,
the distance from the paddle tip to the pivot, a, and the paddle’s width W (only the
speed and moment varied significantly between experiments). For the granular bed, the
only additional dimensional parameters are the density, ρ, and gravity, g. A satisfying
collapse of the ballotini data is achieved by scaling the towing speed with the velocity
scale V1 = M/(I Wρga)1/2, and the amplitude and wavelength with the length scale
L1 = (M/Wρga)1/2, as shown in figure 5. The scaled amplitude variation is suggestive
of a Hopf bifurcation, varying with the square root of V/V1 − γ , where γ is the
threshold value. Note that this scaling behaviour is different from that found by Bitbol
et al. (2009), who suggest that the threshold velocity for washboarding is proportional
to M1/4. However, their experiments studied repeated passes of a paddle or wheel,
corresponding to a potentially different threshold. In addition, in their experiments
weights were added directly to the towed object and were much larger than that of
the supporting arm so that I g ≈ aM, reducing the number of available dimensional
parameters.

For the Carbopol, we can also incorporate the yield stress, τy, into the scaling,
focusing on the plastic behaviour rather than the rate-dependent rheology of that
material. In this case, an important key to the best scaling is provided by the period
data in figure 4, which is largely independent of M, signifying that the scaling of time
must also be so. We find that the most suitable reduction of the data is furnished by
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FIGURE 6. (a) Intensity variations in overhead photographs of the glass bead track after each
repeat pass. (b) Examples of the photographs after 2, 4, 6, 8 and 10 passes of the paddle. (c)
Peak-to-trough amplitude of intensity variations after each pass. The moment was 0.008 N m
and horizontal velocity 22 cm s−1 for the first 26 passes, after which the velocity was reduced
to 10 cm s−1 (shown by the dashed line in (c)) and the pattern then decays back to a flat bed.

the velocity and length scales, V2 = M/(I Wτy)
1/2 and L2 = M/Wτya; see figure 5.

The same scaling is also found to work for the joint compound.
For all three materials, scaling the speed linearly with the moment collapses the

thresholds for both instability and take-off. However, the scalings required to collapse
the amplitude and wavelength data are quite different for the ballotini and viscoplastic
fluids. A different scaling still was found for our paddle-skipping experiments on
water, for which the threshold speed scales better with M1/2 (Hewitt et al. 2011). Thus,
although the washboarding phenomenon occurs on all the materials, the quantitative
details are different in each case, which we presume to arise from the differing way in
which the substrate transmits force to the paddle.

2.5. Repeat passes
The detection of a clear threshold for washboarding for the ballotini motivated us
to explore the dynamics a little further for this material. In particular, the earlier
experiments of Taberlet et al. (2007) led us to consider whether the onset of instability
was modified when the paddle was allowed to run over its own wake. To this end, we
performed a series of experiments in which the paddle was repeatedly run down the
channel, without flattening the substrate surface between each pass, and towed from
the same starting position (a horizontal launch pad held 3.5 cm above the ballotini).
As illustrated by the sequence of photographs in figure 6, although the towing speed
was set below threshold for the moment applied, after a few passes, a washboard
still emerged, with its amplitude growing with each pass. After about ten passes, the
growth largely stopped, leaving a pattern in which the individual undulations moved
down the channel a short distance with each passage of the paddle. In fact, as seen
in figure 6, the pattern moves with a well-defined positive phase displacement except
around the merging of dislocations in the pattern.

Thus, the onset of washboarding certainly depends upon whether the towed device is
able to run over its own wake. In this sense, we conclude that the instability described
earlier is a form of absolute instability, whereas that evident in figure 6 effectively has
periodic boundary conditions and is consequently convective (the boundary conditions
are not quite periodic, since the paddle always starts each pass at the same fixed
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FIGURE 7. (Colour online) (a) In the frame of the undisturbed bed the paddle is a rigid body
angled at approximately α to the horizontal, moving with velocity (Ẋ, Ż) ≈ (V − Ż tanα, Ż)
in the horizontal and vertical directions. In coordinates normal and tangential to the
paddle, the paddle’s velocity is (Un,Ut)≈ (Ẋ sinα − Ż cosα, Ẋ cosα + Ż sinα)≈ (V sinα −
Ż/ cosα,V cosα). F is the normal force on the paddle. (b) The area A represents material
displaced above the undisturbed surface, and ` is the wetted length.

position; there is an initial transient at the beginning of the run, observed to be a
few bounces that are below the field of view in the photographs in figure 6, as
the paddle adjusts to the pre-existing pattern). Furthermore, when we take the same
washboard pattern after 26 passes, and then continue the repeated runs but with a
slower towing speed, the paddle quickly obliterates the undulations and levels out the
substrate surface (the pattern noticeably propagates backwards, rather than forwards, at
this slower towing speed; see figure 6). In other words, a second threshold must exist,
at a lower speed than that found for the single-pass experiments in figure 4(a), above
which a purely convective instability appears and below which patterns do not form,
even with multiple passes.

3. A simple model
The washboard dynamics observed in the experiments can be rationalised using

a crude model, in which we piece together three components that describe in the
broadest terms the dynamics of the paddle and substrate: (i) an equation of motion
for the paddle, (ii) a mass conservation equation for the wedge of material displaced
ahead, and (iii) an estimate of the lift force. Our hypothesis is that this force, F,
depends on the position and velocity of the paddle, and on the size of the deformed
wedge; the latter dependence is ultimately responsible for destabilising steady motion.
We idealise the dynamics as two-dimensional, neglecting any flow in the transverse
direction (as described earlier, this is not completely true for the experiments, although
we do not believe that three-dimensional effects play a fundamental role).

3.1. Equation of motion of the paddle
Ignoring air resistance and friction in the hinge, the equation of motion of the paddle
is

I θ̈ = aF −M, (3.1)

where θ is the angle of the arm (defined clockwise from vertically down; see
figure 7a), I is the moment of inertia, M is the net gravitational moment, F is
the normal force on the paddle from the substrate, and a is the distance from the
pivot at which this force acts (approximated here by the distance from the pivot to the
paddle tip).
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Because the angular excursion of the paddle is small during the impact with the
substrate, it is convenient to rewrite this equation of motion in terms of the Cartesian
coordinates of the paddle’s tip: choosing a vertical origin based on the position
of the paddle when touching the undisturbed surface of the substrate, for which
θ = θ0 = π/2 − α, and remembering that the pivot moves with prescribed horizontal
velocity, denoted V , the coordinates of the paddle tip are

X(t)= Vt + a(sin θ0 − sin θ)≈ Vt − a(θ − θ0) sinα, (3.2)
Z(t)= a(cos θ0 − cos θ)≈ a(θ − θ0) cosα, (3.3)

implying

IZ̈ = F − mg and Ẋ = V − Ż tanα, (3.4)

where I = I /a2 cosα is the effective inertia of the paddle tip, and m = M/ag is
its effective mass. In the experiments, Ż was typically much smaller than V so that
Ẋ ≈ V .

3.2. The wedge
We consider the idealisation of the leading wedge shown in figure 7, with the
paddle’s motion broken down into components normal and tangential to the paddle,
(Un,Ut) ≈ (V sinα − Ż secα,V cosα). As is clear from figure 7(a), the paddle must
displace the substrate at a rate Un(−Z/ sinα) per unit width. If the displaced substrate
is all pushed forward into the wedge, which has area A(t), then mass conservation
demands that

dA

dt
=− UnZ

sinα
=−(V − 2Ż/ sin 2α)Z. (3.5)

The area, A(t), can also be related to the wetted length of the paddle, `, which
we use below as a key quantity when estimating the lift force. More specifically,
`= ˆ̀ − Z/ sinα, where ˆ̀ is the length of the wedge measured along the paddle. If we
assume that the overall shape of the wedge does not change as the paddle descends
into the substrate or ascends out of it, then ˆ̀(t) is related to A(t) immediately by the
geometry adopted for the wedge; for greatest simplicity, we ignore the inclination of
the free surface of the wedge and write A ≈ (1/2) ˆ̀2 sinα cosα. Equation (3.5) can
then be rewritten as

1
2 sin 2α (`+ Z/ sinα) ˙̀ = −(V − Ż tanα)Z − Ż` cosα. (3.6)

3.3. The lift force
The normal force, F, is equal and opposite to the force acting on the substrate due
to the paddle, and this force drives the substrate to flow and form the wedge. With
a detailed knowledge of the fluid or granular rheology and its surface and wetting
properties, the force could in principle be calculated explicitly as a function of time.
This is not an easy task, however, even for the case of the Newtonian fluid, so we
adopt a simpler approach by identifying a number of possible contributions to the
force that we believe are most relevant, and offering dimensional estimates of their
size. The basic premise of this model is that F can be expressed as a function
of Z, Ż, and `, in which case (3.4) and (3.6) combine to describe a third-order
system for the paddle’s elevation Z, as described below. The following expressions for
F(Z, Ż, `) are inevitably approximate, and one might also argue a case for different
characterisations; in the Appendix we show how, under the restrictive assumptions of a
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shallow viscous fluid layer, such an expression can be derived with a firmer grounding
on the underlying fluid dynamics.

Firstly, if the paddle’s speed is large, there can be an inertial force. Referring to
figure 7(a), the fluid ahead of the paddle must be accelerated to move at roughly the
same normal speed Un, and the resulting rate of change of momentum gives rise to a
force

Fi ≈ CiρWUn
dA

dt
=−Ci

ρWU2
nZ

sinα
≈−CiρW sinα Z (V − 2Ż/ sin 2α)

2
, (3.7)

where W is the paddle width and Ci is an order one dimensionless factor (cf. Clanet,
Hersen & Bocquet 2004; Rosellini et al. 2005).

Second, an Archimedean force is generated by hydrostatic pressure within the
substrate. This buoyancy force is approximately

Fb ≈ 1
2ρg`2W sinα, (3.8)

given our assumptions regarding the geometry of the wedge.
Third, there are plastic internal stresses generated by the material structure of

the substrate: friction for a granular material or the yield stress for a viscoplastic
one. Our estimate for the corresponding forces is based on the assumption that
the fluid in contact with the paddle must be moving with the same velocity,
(Un,Ut) ≈ (V sinα − Ż secα,V cosα) in the normal and tangential coordinates, and
that these velocities must decay to zero over a distance of order `. This implies
characteristic normal and total strain rates,

1
`
(Ż secα − V sinα) and

1
`

√
(Ż secα − V sinα)

2+V2cos2α. (3.9)

Ignoring rate-dependent contributions, the total normal force acting on the paddle due
to the plastic internal stresses can therefore be estimated to be

Fp ≈ Cp
τpW`(V sinα − Ż secα)√

(V sinα − Ż secα)
2+V2cos2α

, (3.10)

where Cp is another dimensionless constant, τp is the mean plastic stress, equal to
the yield stress, τy, for a viscoplastic material, or to the average pressure times
tanφ for the granular case, where φ is the internal friction angle. If the paddle
digs up a largely static mound of glass beads, the pressure is roughly hydrostatic,
and τp ≈ (1/2)ρg` sinα tanφ. For relatively fast pulling speeds, with V � Ż, the
contribution of granular friction is therefore much like the Archimedean force, and
could be combined with Fb (cf. Percier et al. 2011).

Lastly there are viscous forces. Somewhat similarly, given (3.9), our estimate of
these is

Fv ≈ CvµW(V sinα − Ż secα), (3.11)

where µ is the dynamic viscosity, and Cv a third dimensionless constant.
In summary, taking all these different contributions to F,

F ≈ Fb + Fp + Fv + Fi, (3.12)

with Fb ∝ `2, Fp ∝ `, Fv ∝ V and Fi ∝ ZV2. This approximation for the force can be
substituted into (3.4), which can then be solved together with (3.6) for the vertical
displacement Z(t) and wetted length `(t). The paddle leaves contact with the substrate
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if the wetted length decreases to zero, and in that case F = 0. The paddle then follows
a ballistic trajectory given by IZ̈ = −mg until contact is resumed with the surface,
when Z = 0.

3.4. A viscoplastic model
The preceding formulation applies to all the experimental substrates. To demonstrate
the general behaviour, however, we now focus on the viscoplastic case and set
F = Fi + Fp + Fb with τp = τy, omitting the viscous contribution. We place the model
system in a dimensionless form using the natural length scale L = mg/τyWCp (which
corresponds to the penetration depth if the weight of the paddle is supported by the
yield stress of the fluid, and which is the same as L2 used in § 2.4 but for the factor
Cp) and time scale T = L/V . The equations can then be written in the dimensionless
form

J Z̈ =−1−R (1− 2Ż/ sin 2α)
2

Z sinα + ` sinα(1− 2Ż/ sin 2α)√
(1− Ż tanα)

2+Ż2

+ 1
2
B`2 sinα,

1
2

sin 2α (`+ Z/ sinα) ˙̀ = −(1− Ż tanα)Z − Ż` cosα, (3.13)

where

R = ρV2Ci

τyCp
, J = IV2Ci

τyWL2Cp
, B = ρWL2

m
. (3.14)

The dimensionless parameters R and J estimate the importance of inertia in the
substrate and of the paddle; B measures the size of the buoyancy force. In the
corresponding scaling for the granular problem, the natural choice of length scale,
L1 = (m/ρW)1/2, makes B = 1 and replaces J and R by Ĵ = IV2/mgL1 and the
Froude number Fr2 = V2/gL1 (cf. Taberlet et al. 2007).

The system (3.13) has an equilibrium solution,

Z = 0, `= `0 ≡ 1
B

(√
1+ 2B

sinα
− 1

)
. (3.15)

Linear, normal-mode perturbations about the steady state with the form Z ∝ eλt =
e(Λ+iω)t satisfy a third-order ordinary differential equation with the dispersion relation

J λ3 + `0 cosα λ2 + (R sinα + 1+B`0) λ+ 1+B`0

`0 cosα
= 0, (3.16)

implying the marginal stability condition

J >Jc ≡ `2
0cos2α

(
1+ R sinα

1+B`0

)
. (3.17)

When J > Jc, the equilibrium is unstable towards oscillations. Physically, this
means that the planing paddle is unstable above a threshold velocity, dependent
upon the other parameters of the problem, as illustrated in figure 8. That figure
also shows saturated dimensional amplitudes of the oscillatory solutions to the full
nonlinear equations (3.13). For velocities just above the threshold there are periodic
oscillations that do not lose contact with the surface, but at faster speeds the paddle
becomes airborne (leading to the abrupt change in amplitude in figure 8b). Figure 9
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FIGURE 8. (a) Stability diagram for the viscoplastic model from (3.17), with τy = 30 Pa,
α = 30◦, I = 0.03 kg, W = 5 cm, ρ = 1000 kg m−3 and Cp = Ci = 1. The shaded region
is linearly unstable. (b) Amplitudes of periodic solutions to the nonlinear equations (3.13)
for varying velocity V at three different effective paddle masses m = 0.01 kg (solid),
m= 0.015 kg (dashed), m= 0.02 kg (dotted). The inset shows the corresponding periods.
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FIGURE 9. (Colour online) Some example trajectories of the viscoplastic model (3.13) (Z,
solid, left axis; `, dashed, right axis) plotted in terms of the dimensional variables appropriate
for the experiment on Carbopol for m = 0.01 kg, other parameters as in figure 8, and speeds
(a) V = 11 cm s−1, (b) V = 16.8 cm s−1 and (c) V = 30 cm s−1. The dotted line in (c) shows
the imprint left on the bed (assuming no flow after the paddle detaches). Initial conditions for
the first case are ` = 0, Z = 3.5 cm, Ż = 0, and in the other two cases, ` = `0, Z = 0 and
Ż =−0.5V; each of these solutions has reached a steady or regular-amplitude oscillating state
by the right-hand side of the figure.

shows sample trajectories for three different velocities V , starting in each case with a
perturbation about the steady planing state.

Unfortunately the stability criterion (3.17) does not suggest a straightforward scaling
for the critical velocity or moment, since it depends on all three of the dimensionless
parameters J , R and B. In the limit that B,R � 1 (that is, fluid buoyancy and
inertia are negligible), the criterion reduces to J > cot2α, and therefore predicts
that the threshold velocity scales linearly with moment, V ∝ m. This prediction is
consistent with the scaling of the experimental data for Carbopol in figure 5, even
though estimates of B and R with the relevant physical parameters suggest that
inertia and buoyancy are not negligible. In the same limit, from (3.16), the marginally
stable mode has a dimensionless frequency of J −1/2, which corresponds to a
dimensional period ∼ (I/τyW)

1/2 that is independent of velocity and moment, much
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like the experimental observations. For larger-amplitude oscillations the period is set
partly by the ballistic sections of the trajectory, which are controlled by the nonlinear
dynamics of the intervening bounces, and an analytical form for the period is not
available. Nevertheless, figure 8(b) suggests that the predicted periods remain relatively
insensitive to moment and speed. Thus, not only is the natural length scale for the
model, L, equivalent to that used to collapse the amplitude and wavelengths observed
in the experiments, L2, but the model also predicts the relatively weak dependence of
the threshold speed and oscillation period on moment. Nevertheless, other details of
the model do not match up with the experiment: the predicted amplitudes are larger
and the transition to instability is much sharper.

A more detailed comparison of the model and experiment is precluded by the
approximations inherent in parametrising the force. There are also a number of other
factors that make direct comparison problematic: the experiments involve a certain
amount of lateral flow around the paddle, which reduces the amount of substrate
entering the leading wedge; the moment of inertia, though treated as constant here,
varies slightly with the imposed moment; and we have ignored damping in the pivot
and drag from air resistance. Finally, the substrate was always much deeper than the
penetration of the imprinted pattern, and deformations appeared to be mostly localised
to the surface in the high-speed video footage. However, the depth of the layer may
also play a role, introducing an additional length scale (as in the lubrication theory in
the Appendix).

The granular and viscous versions of the model also furnish a stable planing state
at low towing speed that suffers a washboarding instability as towing becomes faster.
Again, a number of dimensionless parameters control the threshold, reflecting the
different forces at play, and no simple scaling of the critical towing speed with
imposed moment presents itself. For the granular bed, Bitbol et al. (2009) suggest that
the instability for convective washboarding can be characterised by the Froude number
Fr2 = V2/gL1, which measures the competition between the dynamic force and the
buoyancy and frictional forces. Indeed, in our model the equivalent stability criterion
to (3.17) is Ĵ ≡ (I/m)Fr2 > Ĵc, and if the inertia were equivalent to the mass of the
paddle, so I = m, this criterion reduces to a condition on Fr2 . In our experiments,
however, m varies while I stays roughly constant, and the model is unable to
explain the linear dependence of the threshold velocity on the moment suggested
by figure 5.

4. Discussion

The fact that the towed paddle becomes unstable at sufficiently high speeds
over all the materials in our experiments leads us to conclude that this is a
fundamental instability of objects towed over deformable media. The model outlined
above, although too simplistic to compare directly with the experiments, illustrates
a mechanism for this generic instability, namely the build-up of the leading wedge
ahead of the object. The essence of the model is that the lift force depends chiefly
on the size of the wedge through some power γ of its length, F ∼ c`γ , where c is
a proportionality factor, and the growth of that mound is dictated by the amount of
material diverted into it, ` ˙̀ ∼ −VZ (ignoring additional factors of order unity and
assuming V � Ż, as is typically the case). In combination with the equation of motion
of the paddle, IZ̈ = F−mg, those approximations lead to the third-order system for the
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paddle height,

I
d3Z

dt3
+ γ cV`γ−2Z = 0, (4.1)

which implies that the steady planing solution (Z = 0 and ` determined by F = mg)
is always unstable. Such a crude approximation to the dynamics is therefore not
sufficient to capture the threshold for instability; the theory in § 3 represents the more
elaborate version of this model, driven by the need to incorporate more of the physics
so that steady planing is stable at low towing speed. Although the details depend on
the particular form of the parametrised forces, the stabilising influence can be seen
to stem from the vertical velocity dependence of the reaction force. This effectively
introduces an additional factor (1− βŻ/V) to F above (β is a geometrical factor), and
hence a stabilising term βclγ Z̈/V in (4.1).

The specific form of the lift force in our model is not fundamental and alternative
parametrisations can result in the same generic behaviour, as illustrated by the
lubrication model in the Appendix. Indeed, we advocated essentially the same
mechanism for the instability of a paddle planing over shallow water (Hewitt et al.
2011). In that case, the lift force arises from the dynamic pressure in the water. In the
current model, our parametrisation of this particular force does not depend on `, and is
therefore unable to explain the instability by itself, which motivated the more detailed
description of the splash dynamics in our earlier work.

The instability mechanism can be viewed in a number of complimentary ways: on
one hand, the time taken for fluid to flow into the wedge and alter the wetted length `
introduces a destabilising lag between the paddle’s height Z and the resulting restoring
force. On another, the build-up of the wedge creates an asymmetry in the vertical
motion of the paddle, indicating that the paddle experiences a greater force as it leaves
the substrate than on its entrance, providing an extra kick. These effects are clear
from the experimental measurements (figure 2), in which the oscillations of the wetted
length noticeably lag behind those of the paddle, and in which the paddle ceases
contact with the substrate at a higher level than that at which it makes contact. The
same features are captured by the model (figure 9c).

The physical picture behind the instability also suggests that other details, such
as the geometry of the towed object, are unlikely to be critical. Indeed, although it
was clear that the geometry of the object impacted the threshold towing speed, we
found that the same behaviour arose when we replaced the inclined plate with either
a cylinder or a sphere (though we did not allow these objects to rotate by mounting
them on an axle; rotating objects likely have different dynamics since they inhibit the
formation of a wedge – see Bitbol et al. 2009). What is important, therefore, is simply
the shape of the deformation of the substrate.

This explanation does require the substrate to be able to ‘flow’, however, and
does not extend to rigid substrates. We did not attempt to perform experiments on
a deformable solid such as an elastic layer. It is possible that the same instability
resulting from nonlinear substrate deformation could occur in that case (cf. Louge
& Adams 2002), but interfacial friction and the resulting stick–slip behaviour could
also obscure the dynamics by prompting unsteady motion. As an aside, we also
experimented with paddles pivoted by a rod rather than a ruler, allowing for sideways
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FIGURE 10. (a) Geometry of the lubrication model. (b) The inclusion of gravity and surface
tension acts to smooth out the free surface ahead of and behind the paddle. The dashed
line shows a typical pressure distribution and the near-vertical lines show a typical velocity
profile.

tilting as well as vertical motions. In that case, the washboarding instability emerged
as a fluttering mode of the paddle, suggesting an interesting interplay with the rigid
body dynamics of the paddle.

Our objectives in the current study were to present exploratory experiments and
a conceptual model to demonstrate how the washboarding instability occurs for a
wide variety of different materials, with only a single passage of the ‘vehicle’, and
to highlight the critical role played by surface deformation. The experiments and
model could both be improved, as it is clear that many aspects of the washboarding
instability remain unexplained. A more detailed exploration could expose how the
threshold, oscillation amplitudes and washboard pattern depend on the splash dynamics
and material behaviour, and serve as a probe into fluid and granular rheology.
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Appendix. Lubrication model for a viscous fluid layer
In this appendix, we show how the normal force F can be calculated for a

Newtonian viscous fluid in the context of lubrication theory. This is appropriate if
the substrate is shallow and the paddle angle α is small. It is therefore not applicable
to the experiments but demonstrates how, with some simplifying assumptions, the lift
force can be calculated from a more detailed consideration of the fluid dynamics. For
the sake of simplicity we also ignore the effects of gravity and surface tension.

The undeformed substrate occupies 0 < z < H, and the paddle forms a rigid plate
at z = h(x, t) ≡ H + Z(t) + s(x − X(t)), where s = tanα is the slope (figure 10). We
consider only the fluid flow directly beneath the paddle; the wetted length is `(t), as in
the main text, and since the paddle angle is small we may take the contact region to
be X(t) < x < X(t) + `(t). Ahead of the paddle, the fluid is a stationary uniform layer,
and the wetted length (i.e. the size of the pushed forward wedge) is determined by
conserving mass at the leading edge x = X + `. In reality there is a transition region
where the flow adjusts to that beneath the paddle, which can be accounted for by
reintroducing gravity and surface tension.

The lubrication equations are

ux + wz = 0, −pz = 0, −px + µuzz = 0, (A 1)
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where u and w are the horizontal and vertical fluid velocities, p is the pressure and
µ is the dynamic viscosity. There is no slip at the bottom z = 0, so the fluid velocity
there has u= w= 0, and the fluid velocity at z= h(x, t) satisfies u= Ẋ, w= Ż.

Integrating the momentum equations gives the standard lubrication expression

u(x, z, t)= z

h
Ẋ − z(h− z)

2µ
px, (A 2)

and integrating the mass equation therefore gives the horizontal fluid flux

h

2
Ẋ − h3

12µ
px = (sẊ − Ż)(x− X)+ Q(t), (A 3)

where the constant of integration, Q(t), represents the flux at the trailing edge x = X.
As in other lubrication problems such as slider bearings and blade coating (Quintans
Carou et al. 2009), Q is determined by applying the condition that the pressure must
be atmospheric at both ends: an integral of (A 3) gives

Q=
∫ X+`

X

[
(Ż − sẊ)(x− X)− h

2
Ẋ

]
dx

h3

/∫ X+`

X

dx

h3

= (H + Z)[Ż`− Ẋ(H + Z)]
2(H + Z)+ s`

. (A 4)

The lift force can then be calculated from (A 3) as

F =
∫ X+`

X
p dx =−

∫ X+`

X
(x− X)px dx

= 12µ(Ẋ − 2Ż/s)

s2

[
1
2

log
(

1+ s`

H + Z

)
− s`

2(H + Z)+ s`

]
. (A 5)

The condition of mass conservation at the leading edge is

(Z + s`) ˙̀ = Q− ẊZ − Ż`

=−(H + Z + s`)(ẊZ + Ż`)− Ẋ(H + Z)H

2(H + Z)+ s`
. (A 6)

This is a standard Rankine–Hugoniot-style jump condition, and can be derived by
balancing fluxes into and out of the moving position x= X(t)+`(t). With the inclusion
of surface tension, this shock condition is replaced by a smooth transition zone (cf.
Quintans Carou et al. 2009 and figure 10b). Equation (A 6) determines the size of the
leading wedge in the lubrication theory; it is slightly different from the approximation
in (3.6) because the lubrication analysis allows for some back-flow, whereas (3.6)
assumes that Q= 0.

As in the main text, a third-order system results from incorporating the expression
for F(Z, Ż, `) in (A 5) into the equation of motion IZ̈ = F − mg, along with (A 6).
There is again a steady state which is stable when the towing speed is small
enough, but which becomes unstable to oscillations above a threshold speed depending
upon the effective mass and inertia. Figure 11 shows the instability region and a
bifurcation diagram of the amplitude of the periodic solutions analogous to that for
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FIGURE 11. (a) Stability diagram for the lubrication model for varying moment and
towing speed, with fluid depth H = 1 cm, and other parameters µ = 15 Pa s, α = 30◦,
I = 0.03 kg, W = 5 cm, ρ = 1500 kg m−3. The shaded region is linearly unstable. (b)
Amplitudes of periodic solutions to the nonlinear lubrication equations for varying velocity
V at three different effective paddle masses m = 0.003 kg (solid), m = 0.006 kg (dashed),
m = 0.009 kg (dotted). The inset shows the corresponding periods. The abrupt jump in
amplitude corresponds to the periodic oscillation leaving contact with the surface.

the viscoplastic model in figure 8. The vertical jumps in the bifurcation diagram arise
when the paddle first leaves contact with the fluid and becomes airborne for part of its
trajectory.
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