
Algebraic problems

1. Find the rescalings for the roots of

ǫ4x3−(1−2ǫ+3ǫ4+ǫ6)x2+(3−6ǫ+ǫ2−2ǫ3+2ǫ4+ǫ5+ǫ6−ǫ7)x−2+3ǫ+ǫ2+3ǫ3−2ǫ4 = 0,

and thence find two (non-trivial) terms in the approximation for each root, using (a)
iteration and (b) expansion.

2. Develop two terms of the perturbation solutions to

δx3 − (3 + δ + δ2 + δ3)x2 + (6 + δ − δ3 + 2δ4)x+ 6δ − 2δ2 − 6δ3 + 2δ4 = 0,

for δ ≪ 1 and δ ≫ 1.

3. Develop perturbation solutions to

x3 − (6− 4ǫ− ǫ2)x2 + (12− 15ǫ+ ǫ2 + 2ǫ3)x− 8 + 14ǫ− 4ǫ2 − ǫ3 + ǫ4 = 0

finding the three terms in the approximation for each root, x = x0 + ǫαxα + ǫ2αx2α, and
determining α along the way.

4. Develop three terms of the perturbation solutions to the real roots of

(x+ 1)x2e−x = ǫ,

identifying the scalings in the expansion sequence δ0(ǫ)x0 + δ1(ǫ)x1 + δ2(ǫ)x2 + ...



Eigenproblems and regularly perturbed differential equations

1. Find the corrections to the leading-order eigenvalues of the matrix problem

(

1 α
β 1

)

x = λx+ ǫ

(

1 2
3 4

)

x,

for all possible values of the real parameters α and β.

2. By posing λ = λ0 + ... and y = ǫy1(x) + ..., where ǫ corresponds to the small maximum
amplitude of y(x), find the (nontrivial) nonlinear correction to the leading-order eigenvalues
λ0 of the differential equation,

y′′ + λy + yn = 0,

with y(−1) = y(1) = 0, for (a) n = 3 and (b) n = 2.

3. Normal modes of a slightly mis-shapen membrane

Normal-mode solutions to the wave equation ∇2φ = φtt take the form φ(x, y, t) =
Φ(x, y) cos(ωt) and therefore satisfy

Φxx +Φyy = −ω2Φ,

where subscripts denote partial derivatives. Consider a slightly mis-shapen membrane
covering the domain,

0 ≤ x ≤ π, ǫx(π − x) ≤ y ≤ π − ǫσx(π − x),

with Φ = 0 on the boundary, where σ = ±1 Show that Φ = sinx sinny is a leading-order
eigenfunction, with n an integer. Find the corresponding eigenvalue ω. Calculate the
O(ǫ) correction to the eigenvalue for n = 1 and σ = +1; comment on (but do not solve
explicitly) the case σ = −1. Calculate the eigenvalue correction for n = 2 and σ = +1.



Integrals

1. Use the method of repeated integration by parts or rescaling to obtain four terms in
the asymptotic approximation to the integral,

∫

∞

x

t−3e−t−t2dt,

for x → 0.

2. Find the leading-order behaviour for x ≫ 1 of

(a)

∫

∞

0

ext(4−t3) sin t dt (b)

∫

∞

0

e−t2−x sin2 tdt (c)

∫

∞

0

sin t e−x sinh3 tdt

3. Evaluate the first two terms as ǫ → 0 of

∫

∞

0

dx

(ǫ3 + x3)α/3(1 + x)
,

for α = 1
2 , 2 and 1, if

C(α) =

∫

∞

0

[

1

(1 + u3)α/3
−

1

(1 + u)α

]

du.

4. Evaluate the first two terms as m approaches unity from below of

∫ π/2

0

1 +m2 sin2 θ

(1−m2 sin2 θ)1/2
dθ

5. Evaluate the first two terms as ǫ → 0 of

N (z) =

∫ 1

z

cosx dx

ǫ+ x2

where −1 < z < 1.



Matched asymptotic expansions

1. Consider
ǫy′′ + (1 + ǫ2)y′ + 2y = 0, in 0 ≤ x ≤ 1,

with y(0) = 0 and y(1) = e−2. Find three terms of the outer solution, applying only the
boundary condition at x = 1. Next find three terms in an inner approximation for the
boundary layer near x = 0 applying the boundary condition at x = 0. Determine the
constants of integration by matching (a) over an intermediate region, and (b) using van
Dyke’s rule with P = Q = 2. Compute the composite approximation, C2,2y.

2. The function y(x) satisfies

ǫx2y′′ + pxp+1y′ + p2x2py = 0, in 0 ≤ x ≤ 1,

for p > 0, y(0) = 0 and y(1) = 1. Find the rescaling for the boundary layer near x = 0,
and obtain the leading order inner approximation. Then find the leading order outer
approximation and match the two approximations.

3. Calculate two terms of the outer solution of

x3y′ = ǫ(x3 + y2 + ǫy) in 0 ≤ x ≤ 1,

with y(1) = 1. Locate the non-uniformity of the asymptoticness and hence the rescaling for
an inner region. Thence find two terms for this inner solution. Is there another boundary
layer nested inside the inner region, and if so what is the leading-order solution there?

4. The function f(r) satisfies

frr +
3

2r
fr + ǫ(2− f)fr = 0, in r > 1,

and is subject to the boundary conditions, f(1) = 0 and f → 1 as r → ∞. Obtain an
asymptotic expansion for f at fixed r and ǫ → 0 in the asymptotic sequence, 1, ǫ1/2,
ǫ log(1/ǫ), ǫ. Then find an expansion for f at fixed ρ = ǫr as ǫ → 0 in the sequence 1, ǫ1/2,
ǫ. Match these expansions. Hinch’s problem 5.14 might help.



Multiple Scales

1. Obtain an asymptotic approximation for x to order one, which is valid for t = O(ǫ−1),
when

ẍ+ 2ǫ(ẋ+ x)3 + x = 0, x(0) = 0, ẋ(0) = 1.

2. Find the leading-order approximation for times of order ǫ−1 to

ẍ+ x+ y + ǫyẋ = 0, ẏ = −ǫ(1 + x− y + y2), x(0) = 1, ẋ(0) = y(0) = 0.

3. Obtain an asymptotic approximation for x to order one, which is valid for t = O(ǫ−1),
when

ẍ+ x+ ǫ
|ẋ|

ẋ
= 0, x(0) = 1, ẋ(0) = 0.

4. Argue that the leading-order solution of the ODE,

ÿ + (1 + ǫ2a2 − 2ǫ sin t+ ǫ2ẏ2)y = 0,

depends on the two timescales (τ, T ) = (t, ǫ2t). Hence obtain equations for the amplitudes,
A(T ) and B(T ), in y ∼ A cos τ +B sin τ +O(ǫ). What do these equations suggest for the
long-time fate of the system starting with a small initial condition, y(0) = A0 and ẏ(0) = 0,
with |A0| ≪ 1?

5. Bonus question. Use the method of multiple scales to solve the pendulum problem

θ̈ + sin θ = ǫθ̇(α− θ̇2) θ(0) = π/2, θ̇ = 0.

Hence determine the long-time fate of the pendulum, and derive a criterion that dictates
whether it oscillates back and forth, with |θ| < π, or continually circulates around. The

elliptic integrals E(k) and K(k) might be useful.


