Asymptotics final

Answer as much as you can. May the force be with you.

1. For $z \gg 1$, use Laplace's method to find the leading-order approximation to the integral,

$$
\int_{0}^{\infty} e^{t-z\left(t^{4}-2 t^{2}\right)} \sin ^{2}(2 \pi \nu t) d t
$$

allowing for any value of the parameter $\nu>0$.
$\mathbf{2 (a)}$. Find the coefficients of the $\xi \ll 1$ asymptotic approximation,

$$
I=\int_{\xi}^{\infty} e^{-\alpha t} \frac{d t}{t} \sim a_{0} \log \xi+a_{1}+a_{2} \xi .
$$

$\mathbf{2}(\mathbf{b})$. The function $y(x)$ satisfies the equation,

$$
y_{x x}+\frac{2}{x} y_{x}=2 \epsilon\left(y^{2}-1\right)
$$

in $x>1$, with $\epsilon>0$ and the boundary conditions, $y(1)=0$ and $y \rightarrow 1$ as $x \rightarrow \infty$. Using the asymptotic sequence $\left(1, \epsilon^{1 / 2}, \epsilon \log \epsilon^{-1}, \epsilon\right)$, obtain an asymptotic expansion for the near-field solution, $y(x)$, with $x=O(1)$, Then find an equivalent far-field solution for $y=Y(X)$, with $X=\delta(\epsilon) x=O(1)$, for some $\delta(\epsilon) \ll 1$ that you should determine. Match the two solutions. Note that the substitution $Y(X)=u(X) / X$ proves handy in finding homogeneous solutions to the ODE, $Y^{\prime \prime}+\frac{2}{X} Y^{\prime}-4 Y=F(X)$, and reduction of order or variation of constants should help with finding a particular solution.
3. Using multiple scales, find the leading-order asymptotic approximation, valid for $t=O\left(\epsilon^{-1}\right)$, to the solution of the equations,

$$
\ddot{x}+x-y=\epsilon[x-\operatorname{Max}(\dot{x}, 0)], \quad \dot{y}=\frac{1}{4} \epsilon(\dot{x} \cos t-y), \quad x(0)=1, \quad \dot{x}(0)=0, \quad y(0)=0 .
$$

4. Using the WKB method, provide an approximation for the eigenvalue, λ, of the problem

$$
y^{\prime \prime}+\pi^{2} \lambda y(1+2 \cos \pi x) \sin ^{2}(\pi x / 2)=0, \quad 0 \leq x \leq 1, \quad y(0)=y(1)=0 .
$$

Compare your result with the first five eigenvalues obtained numerically: $|\lambda| \approx 3.18,8.62,22.26$, 48.64 and 58.62. Note that the WKB approximation to $y^{\prime \prime}+f(x) y=0$ is

$$
\begin{aligned}
& y \sim \frac{1}{\sqrt{\omega}}(a \cos \theta+b \sin \theta), \quad \omega^{2}=f>0, \quad \theta=\left|\int_{x_{*}}^{x} \omega\left(x^{\prime}\right) d x^{\prime}\right|, \quad f\left(x_{*}\right)=0, \\
& y \sim \frac{1}{\sqrt{2 \Omega}}\left[(a-b) e^{\Phi}+2(a+b) e^{-\Phi}\right], \quad \Omega^{2}=-f>0, \quad \Phi=\left|\int_{x_{*}}^{x} \Omega\left(x^{\prime}\right) d x^{\prime}\right|,
\end{aligned}
$$

and

$$
w^{\prime \prime}+\Lambda^{2} x^{p-2} w=0
$$

has solution, $w(x)=\sqrt{x} \mathcal{C}_{1 / p}\left(2 \Lambda x^{p / 2} / p\right)$, where $\mathcal{C}_{\nu}(z)$ is a Bessel function of order ν.

5. (a) Find the general term in an expansion for $k \ll 1$ of

$$
I_{a}(k)=\int_{0}^{1} \frac{\log \left(x^{-1}\right) d x}{(1-k x)^{a}}
$$

where a is a positive parameter.
(b) Using this expansion, find the nearest singularity to the origin k_{0} and its type, α. Then make a second approximation of the integral to find its leading-order behaviour for $k \rightarrow k_{0}$.
(c) Use multiplicative and additive extraction to remove the nearest singularity in the small- k approximation, keeping terms upto and including order k^{2}.
(d) Construct the $(2,2)$ Padé approximant from the $k \ll 1$ series solution. At what value of k does this approximant place the singularity for $a=11 / 4$?
(e) Compute $S_{n}(k)$, the $(n+1)$-term approximation of $I_{11 / 4}(k)$ for $k \ll 1$ and $n=0$ to 6 . Sketch $S_{6}(k)$ against k for $0 \leq k \leq 1$, and compare the result with the numerical computation shown in the figure; use a printout of the figure if needed!
(f) Next use the Shanks transform to generate improved approximations of $I_{11 / 4}(k)$; iterate the transform to find even better approximations. Add the best of these to your figure, together with (for $a=11 / 4$) the leading-order solution for $k \rightarrow k_{0}$, the two improved series from (c), and the $(2,2)$ Padé approximant from (d).
(g) Finally, for a numerical comparison, compare all these results with the numerically determined value, $I_{11 / 4}(0.9) \approx 4.840$. Which is superior?

