Asymptotics final

Answer as much as you can. The questions do not have equal weight. There are two pages.

1. For $z \gg 1$, use Laplace's method to find the leading-order approximation to the integral,

$$
\int_0^\infty e^{-zf(t)}g(t) dt, \quad f(t) = 4t^5 - 5(3+a)t^4 + 20at^3, \quad g(t) > 0 \text{ for } t \ge 0,
$$

where a is a parameter.

2(a). Find the coefficients of the $\rho \to 0$ asymptotic approximation to the integral, $\int_{\rho}^{\infty} t^{-3} e^{-t} dt$, noting that Euler's constant is $\gamma = -\int_0^\infty e^{-x} \log x \, dx$.

2(b). The function $f(r)$ satisfies the equation,

$$
\frac{d^2f}{dr^2} + \frac{3}{r}\frac{df}{dr} + \frac{1}{3}\epsilon(2+f)\frac{df}{dr} = 0,
$$

in $r \ge 1$, with $\epsilon > 0$ and the boundary conditions, $f = 0$ on $r = 1$ and $f \to 1$ as $r \to \infty$. Obtain an asymptotic expansion for f at fixed r as $\epsilon \to 0$ in the asymptotic sequence, 1, ϵ , $\epsilon^2 \log(1/\epsilon)$, ϵ^2 , ... Then find an expansion for f at fixed $\rho = \epsilon r$ as $\epsilon \to 0$ in the sequence, 1, ϵ^2 , ... Match these expressions.

3. Using multiple scales, find the leading-order asymptotic approximation, valid for $t = O(\epsilon^{-1})$ to the solution of the equations,

$$
\dot{x} = y + \epsilon x^2 z
$$
, $\dot{y} = -x + \epsilon y$, $\dot{z} = x - \epsilon z$, $x(0) = 0$, $y(0) = 1$, $z(0) = 0$.

4. Using the WKB method, provide an approximation for the eigenvalue, λ , of the problem

$$
y'' + \pi^2 \lambda y (1 + 3 \cos \pi x) \sin^2 \pi x = 0, \qquad 0 \le x \le 1, \qquad y(0) = y(1) = 0.
$$

Compare your result with the first five solutions obtained numerically: $|\lambda| \approx 1.06, 7.91, 9.18, 21.16$ and 40.67. Note that the WKB approximation to $y'' + f(x)y = 0$ is

$$
y \sim \frac{1}{\sqrt{\omega}} (a \cos \theta + b \sin \theta), \quad \omega^2 = f > 0, \quad \theta = \left| \int_{x_*}^x \omega(x') dx' \right|, \quad f(x_*) = 0,
$$

$$
y \sim \frac{1}{\sqrt{2\Omega}} \left[(a - b)e^{\Phi} + 2(a + b)e^{-\Phi} \right], \quad \Omega^2 = -f > 0, \quad \Phi = \left| \int_{x_*}^x \Omega(x') dx' \right|,
$$

and

$$
w'' + \Lambda^2 x^{p-2} w = 0,
$$

has solution, $w(x) = \sqrt{x} C_{1/p}(2\Lambda x^{p/2}/p)$, where $C_{\nu}(z)$ is a Bessel function of order ν .

5. (a) For the integral,

$$
I_{\beta}(k) = \int_0^1 \frac{x(1-x) \, dx}{(1-kx^2)^{5/2}},
$$

find the general term in an expansion for $k \ll 1$.

(b) Next, from the $k \ll 1$ series solution find the nearest singularity to the origin k_0 and its type, α . Returning to the integral, make a second approximation about the singularity, obtaining the first two terms of the approximation $I(k) \sim J_0 + J_\alpha (k_0 - k)^\alpha$.

(c) Use multiplicative and additive extraction to remove the nearest singularity in the small- k approximation, keeping terms upto and including order k^2 .

(d) For $n = 0$ to 7, compute $S_n(k)$, the $(n + 1)$ −term approximation of $I(k)$. Use the Shanks transform to generate five improved approximations of $I(k)$. Iterate the Shanks transform to find even better approximations.

(e) Construct the (2,2) Padé approximant from the $k \ll 1$ series solution. At what value of k does this approximant place the singularity?

For $0 \leq k \leq 1$, sketch $S_7(k)$ against k and compare the result with the numerical computation shown in the figure; use a printout of the figure if needed! To the plot, add $I(k) \sim J_0 +$ $J_{\alpha}(k_0 - k)^{\alpha}$, the two improved series from (c), the best approximation from the Shanks transforms in (d) , and the $(2,2)$ Padé approximant from (e) . For a numerical comparison, compare all these results with the numerically determined value, $I(0.9) \approx 0.8008$.