
MATH 400 – Final exam

Closed book exam; no calculators. Answer as much as you can; credit awarded for the best three
answers. Adequately explain the steps you take. e.g. if you use an expansion formula, say in one
sentence why this is possible; if you quote a special function solution to an ODE, say why this is the
correct one. Be as explicit as possible in giving your solutions.

1. The ringing of a hemispherical bell is modelled by

utt =
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
, 0 ≤ θ ≤ 1

2π.

Using separation of variables, find the solution, demanding regularity at θ = 0, and imposing the
boundary and initial conditions, u( 1

2π, t) = u(θ, 0) = 0 and ut(θ, 0) = f(θ). What are the normal-
mode frequencies (i.e. the possible choices for ω if u ∝ sinωt)? Find an explicit solution (involving
no integrals) for f(θ) = 1 + 5 cos3 θ − 3 cos θ.

2. Establish that

F{xf(x)} = i
df̂

dk
,

where F{f} = f̂(k) is the Fourier transform of f(x). Next consider the Airy function Ai(x), which
satisfies

d2Ai

dx2
= xAi,

∫ ∞
−∞

Ai(x) dx = 1, Ai→ 0 for x→ ±∞.

By applying the Fourier transform, show that

Ai(x) =
1

π

∫ ∞
0

cos( 1
3 t

3 + xt) dt.

Now solve the PDE

ut = ux − uxxx, u→ 0 for x→ ±∞, u(x, 0) = Ai(x),

expressing your answer in terms of the Airy function (without any further integrals).

3. For the Laplace transform, establish the relations,

L{f ′(t)} = sf(s)− f(0), L{f(t− a)H(t− a)} = e−saf(s) and L{δ(t− a)} = e−sa

where f(s) = L{f(t)}, a > 0, H(x) is the step function and δ(x) is the Dirac delta function.
An age-structured model of a population with larvae and adults is based on the PDEs,

ut + ua + µu = v, vt + va + µv = −v, 0 ≤ a, t <∞,

where µ is the (constant) death rate. Initially u(a, 0) = δ(a−A) and v(a, 0) = 0, for some age A > 0.
The adults reproduce to create larvae such that

v(0, t) =
3

4

∫ ∞
0

u(a, t)da,

whereas u(0, t) = 0. By Laplace transforming the equations, find u(a, t) and v(a, t).

4. Using the method of characteristics, solve the PDE,

ut + u2ux = 0, u(x, 0) = f(x).
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For the initial condition,

f(x) =


0, x < −1,
1, −1 ≤ x < 0,√

1− x, 0 ≤ x < 1,
0, 1 ≤ x,

show that an expansion fan is launched from x = −1, and that a shock forms at x = t = 1. Sketch
the characteristic curves on a space-time diagram, and snapshots of the solution for t = 1

2 , t = 3
2

and t = 3, indicating how one can use a geometrical construction to avoid a multivalued solution for
t > 1. Provide an equation of motion for the position of the shock, and then solve it to find the path
of that discontinuity for 1 < t < 5

2 and t > 5
2 . Add the shock path to your characteristics diagram.

Helpful information:

The Sturm-Liouville differential equation:

d

dx

[
p(x)

dy

dx

]
+ q(x)y + λσ(x)y = 0.

Legendre’s equation, with regular solution y = Pn(x) at x = ±1, is

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0;

∫ 1

−1
[Pn(x)]2dx =

2

2n+ 1
.

Bessel’s equation is
z2y′′ + zy′ + (z2 −m2)y = 0,

and has the solution, y = Jm(z), which is regular at z = 0.

Fourier Transform:

f̂(k) = F{f(x)} =

∫ ∞
−∞

f(x)e−ikxdx & f(x) = F−1{f̂(k)} =
1

2π

∫ ∞
−∞

f̂(k)eikxdk

Laplace Transform:

f(s) = L{f(t)} =

∫ ∞
0

f(t)e−stdt & f(t) = L−1{f(s)} =
1

2πi

∫
C
f(s)estds,

where C is the Bromwich contour

Cauchy’s theorem: if F (z) has a simple pole at z = z∗, but is otherwise analytic inside a closed
contour C, ∫

C
F (z)dz = 2πi [(z − z∗)F (z)]z→z∗ .

Convolution:

f ◦ g =

∫ ∞
−∞

f(x′)g(x− x′)dx′.

Helpful trigonometric relations:

cos(A+B) = cosA cosB − sinA sinB, sin(A+B) = sinA cosB + cosA sinB.
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MATH 400 – Solution

1. Let u = Y (x)T (t) where x = cos θ. Then, separating variables,

T ′′ + λT = 0, [(1− x2)Y ′]′ + λY = 0.

Thus, T is given by cosωt or sinωt, with ω2 = λ, and Y satisfies Legendre’s equation. The boundary
conditions are unusual: X is regular at x = 1 and X(0) = 0. The problem still has Sturm-Liouville
form, and the solutions are the odd Legendre polynomials Y = Pn(x), with λ = n(n+ 1) and n = 1,
3, 5, .... We write a general solution,

u =

∞∑
n=1,n odd

(an cosωnt+ bn sinωnt)Pn(x) ωn =
√
n(n+ 1).

But an = 0 in view of u(θ, 0) = 0, and

f(θ) =
∞∑

n=1,n odd

ωnbnPn(x) −→ bn =

∫ 1
0 fPndx

ωn
∫ 1
0 P

2
ndx

≡ (2n+ 1)√
n(n+ 1)

∫ π

0
f(θ)Pn(cos θ) sin θdθ,

in view of the expansion theorem of a Sturm-Liouville problem and the helpful integral provided. (7
points.)

For f(θ) = 1 + 5 cos3 θ − 3 cos θ = 1 + 2P3(x), we have

bn =
(2n+ 1)√
n(n+ 1)

∫ 1

0
(1 + 2P3)Pndx =

(2n+ 1)√
n(n+ 1)

[
P ′n(0)

n(n+ 1)
+

2

7
δn3

]
in view of Legendre’s equation and the orthogonality of the Pn’s. (4 points.)

2. From the definition of the Fourier transform

F{xf(x)} =

∫ ∞
−∞

e−ikxxf(x)dx = i
d

dk

∫ ∞
−∞

e−ikxf(x)dx ≡ idf̂
dk

(1 point).

Transforming the ODE:

d

dk
Âi = ik2Âi −→ Âi(k) = Âi(0)eik

3/3.

But

Âi(0) =

∫ ∞
−∞

Ai(x) dx = 1.

Hence,

Ai(x) =
1

2π

∫ ∞
−∞

eikx+ik
3/3dk =

1

π

∫ ∞
0

cos(kx+ 1
3k

3)dk (4 points).

Last, Fourier transforming the PDE and initial condition,

ût = ikû+ ik3û −→ û(k, t) = û(k, 0)ei(k
3+k)t = ei(k

3+k)t+ik3/3.

Hence, inverting the transform,

u(x, t) =
1

2π

∫ ∞
−∞

eik(x+t)+ik
3(1+3t)/3dk = (1 + 3t)−1/3Ai

(
x+ t

(1 + 3t)1/3

)
. (4 points).

3. From the definitions (and as long as Re(s) > 0 and f(t) is bounded for t→∞),

L{f ′(t)} =

∫ ∞
0

f ′(t)e−stdt = −f(0)− s
∫ ∞
0

f(t)e−stdt = sf(s)− f(0)
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L{f(t− a)H(t− a)} =

∫ ∞
a

f(t− a)e−stdt =

∫ ∞
0

f(τ)e−sτ−sadt = e−saf(s)

and

L{δ(t− a)} =

∫ ∞
0

δ(t− a)e−stdt = e−sa (3 points).

For u(a, 0) = δ(a−A) and v(a, 0) = 0, Laplace transforming the PDEs gives

ūa + (s+ µ)ū = v̄ + δ(a−A) & v̄a + (s+ µ+ 1)v̄ = 0,

Hence
v̄(a, s) = v̄(0, s)e−(s+µ+1)a & [ūe(s+µ)a]a = v̄(0, s)e−a + δ(a−A)e(s+µ)a,

or
ū(a, s) = v̄(0, s)(1− e−a)e−(s+µ)a +H(a−A)e(s+µ)(A−a).

Taking the transform of the birth condition:

v̄(0, s) =
3

4

∫ ∞
0

ū(a, s) da =
3v̄(0, s)

4(s+ µ)(s+ µ+ 1)
+

3

4(s+ µ)
,

or

v̄(0, s) =
3(s+ µ+ 1)

4[(s+ µ+ 1
2)2 − 1]

=
9

16(s+ µ− 1
2)

+
3

16(s+ µ+ 3
2)

Thus, inverting the transform using the shifting theorem,

v(a, t) =
1

16

[
9e

1
2 (t−a) + 3e−

3
2
(t−a)

]
e−µ(t−a)−(µ+1)a

and
u(a, t) = (ea − 1)v(a, t) + e−µtδ(t− a+A)

(8 points.)

4. The characteristics equations and solution:

dx

dt
= u2 &

du

dt
= 0 −→ x = x0 + u2t & u = f(x− u2t).

Given the initial condition, there is a jump at x = −1 that broadens into an expansion fan with
x0 = −1 = x− u2t for −1 < x < t− 1. Imposing the remainder of the initial condition then implies

u =


0, x < −1,√

(1 + x)/t, −1 ≤ x < t− 1,
1, t− 1 ≤ x < t,√

(1− x)/(1− t), t ≤ x < 1,
0, 1 ≤ x,

which breaks down for t = 1 at x = 1 when the third region shrinks to xero width and the solution
there becomes vertical. (4 points).

Given that the flux is J = 1
3u

3, the position of the shock X(t) satisfies

dX

dt
=

1

3

(u+)3 − (u−)3

u+ − u−
=

1

3
[(u+)2 + u+u− + (u−)2].

Just after t = 1, the shock jumps from u− = 1 to u+ = 0, and so

X(t) =
1

3
(t− 1) + 1 =

1

3
t+

2

3
.
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But the right-hand edge of the fan collides with the shock when x = t− 1 = X(t), or t = 5
2 , at x = 3

2 .

Thereafter, we have u− ≡
√

(X + 1)/t and

dX

dt
=

(1 +X)

3t
, or X =

(
25t

4

) 1
3

− 1 (4 points).

Sketches: 3 points.
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