Math 256: Differential Equation. Section 102 - Final Exam

Name and student number:

No formula sheet, books or calculators! Include this exam sheet with your answer booklet!

Part I

Circle what you think is the correct answer. $+3$ for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The ODE $y' \tan x = \tan y$ with $y(0) = 0$ has the solution,

(a)
$$
\cos x
$$
, (b) $e^{\cos x}$, (c) x, (d) $\tan x$, (e) None of the above.

2. The general solution of the system,

$$
\mathbf{y}' = \begin{pmatrix} 2 & 0 & 0 \\ 4 & 1 & 3 \\ 4 & 0 & 4 \end{pmatrix} \mathbf{y} ,
$$

is

(a) $\mathbf{u}_1 e^{-4t} + \mathbf{u}_2 e^{-2t} + \mathbf{u}_3 e^{-t}$ (b) $\mathbf{u}_1 e^{4t} + \mathbf{u}_2 e^{2t} + \mathbf{u}_3 e^{t}$ (c) $\mathbf{u}_1 e^{2t} + \mathbf{u}_2 e^{t} + \mathbf{u}_3 e^{-2t}$ (d) $\mathbf{u}_1 e^{-t} + \mathbf{u}_2 e^{t} + \mathbf{u}_3 e^{4t}$ (e) None of the above,

for three constant vectors \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .

3. The inverse Laplace transform of the function,

$$
\bar{y}(s) = \frac{4s}{(s^2 + 2s + 5)} ,
$$

is

(a)
$$
y(t) = 4e^{-t} \cos 2t - 2e^{-t} \sin 2t
$$
, (b) $y(t) = 4e^{-2t} \cos t$, (c) $y(t) = 4e^{-t} \cos 2t$,
(d) $y(t) = 4e^{-2t}(\cos t - 2\sin t)$, (e) None of the above.

4. Which of the following is a solution to the PDE $u_{xx} + 9u_{yy} - 5u = 0$:

(a)
$$
u = \cos x \sin 3y
$$
 (b) $u = \cos 2x \cos 2y$ (c) $u = \cos x e^{2y}$
(d) $u = \sin 3x \sin y$ (e) $u = \sin 2x e^{-y}$.

5. The Laplace transform

(a) is a method for turning ODEs into algebraic equations,

 (b) is defined by an integral,

 (c) is difficult to invert without a table of known transforms,

(d) is cool if you like that sort of thing,

(e) None of the above.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. (12 points) Solve the ODEs

$$
x'-y=2\cos t, \quad y'-x-y=\cos t, \quad yz'+xz+1=0, \quad w'+2xyw^2=0,
$$

subject to the initial conditions, $x(0) = 0$, $y(0) = -1$, $z(0) = 0$ and $w(0) = 1$.

2. (12 points) Write the ODEs

$$
x'' - 3y + 3x = 0, \quad y'' - x + y = 3\sin t,
$$

as a 2×2 system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system. For the initial conditions $x(0) = y(0) = 0$, $x'(0) = -3$ and $y'(0) = -2$, confirm that the solution oscillates with a single frequency that you should determine.

3. (12 points)

(a) From the definition of the Laplace transform, prove that

$$
\mathcal{L}{y''(t)} = s^2 \bar{y}(s) - y'(0) - sy(0), \quad \mathcal{L}{e^{at}} = \frac{1}{s-a} \text{ and } \mathcal{L}{f(t-a)H(t-a)} = e^{-as}\bar{f}(s).
$$

(b) The current in an electrical circuit satisfies the ODE,

$$
\ddot{y} + y = e^{-t} [1 - H(t - T)],
$$

with $y(0) = A$ and $\dot{y}(0) = B$, where $H(t)$ denotes the step function and T, A and B are constants. Solve this ODE. Find the values of A and B for which the current vanishes for $t > T$. Show that this condition implies $A = -B = \frac{1}{2}$ if $T \gg 1$.

4. (14 points)

(a) The function $f(x) = \frac{1}{4}(1 - \cos 2x)$ is defined on $0 \le x \le \pi$, but is then extended as an odd, 2π-periodic function. Sketch the extended function over the interval $-\pi < x < 3\pi$ and find its Fourier series. (b) Solve the PDE

$$
u_t = u_{xx} + \cos 2x, \quad 0 < x < \pi, \qquad u(0, t) = u(\pi, t) = u(x, 0) = 0.
$$

Fourier Series:

For a periodic function $f(x)$ with period 2L, the Fourier series is

$$
f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]
$$

with

$$
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx, \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx.
$$

Helpful trig identities:

$$
\sin 0 = \sin \pi = 0, \quad \sin(\pi/2) = 1 = -\sin(3\pi/2),
$$

$$
\cos 0 = -\cos \pi = 1, \quad \cos(\pi/2) = \cos(3\pi/2) = 0,
$$

$$
\sin(-A) = -\sin A, \quad \cos(-A) = \cos A, \quad \sin^2 A + \cos^2 A = 1,
$$

$$
\sin(2A) = 2\sin A \cos A, \quad \sin(A + B) = \sin A \cos B + \cos A \sin B,
$$

$$
\cos(2A) = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A, \quad \cos(A + B) = \cos A \cos B - \sin A \sin B,
$$

$$
\sin(A + B) + \sin(A - B) = 2\sin A \cos B
$$

Useful Laplace Transforms:

$$
f(t) \rightarrow \bar{f}(s)
$$

\n
$$
1 \rightarrow 1/s
$$

\n
$$
t^{n}, \quad n = 0, 1, 2, \dots \rightarrow n!/s^{n+1}
$$

\n
$$
e^{at} \rightarrow 1/(s-a)
$$

\n
$$
\sin at \rightarrow a/(s^{2} + a^{2})
$$

\n
$$
\cos at \rightarrow s/(s^{2} + a^{2})
$$

\n
$$
t \sin at \rightarrow 2as/(s^{2} + a^{2})^{2}
$$

\n
$$
t \cos at \rightarrow (s^{2} - a^{2})/(s^{2} + a^{2})^{2}
$$

\n
$$
y'(t) \rightarrow s\bar{y}(s) - y(0)
$$

\n
$$
y''(t) \rightarrow s^{2}\bar{y}(s) - y'(0) - sy(0)
$$

\n
$$
e^{at}f(t) \rightarrow \bar{f}(s-a)
$$

\n
$$
f(t-a)H(t-a) \rightarrow e^{-as}\bar{f}(s)
$$

 $\int_{-\infty}^{\infty} \delta(x-a) f(x) dx = f(a)$

Solutions:

Part I: (c), (b), (a), (e), any of $(a)-(d)$

Part II:

1. We divide and conquer, dealing with $x(t)$ and $y(t)$ first. Eliminating $y = x' - 2\cos t$, we arrive at the ODE

$$
x'' + 2\sin t - x - x' + 2\cos t = \cos t \quad \text{or} \quad x'' - x' - x = -2\sin t - \cos t
$$

This ODE has the homogeneous solutions, $A_1e^{m_1t} + A_2e^{m_2t}$, and the particular solution sin t, with

$$
m_{1,2} = \frac{1}{2} \pm \frac{\sqrt{5}}{2}.
$$

But the ICs demand that $A_1 + A_2 = 0$ and $-1 = x'(0) - 2$ or $x'(0) = m_1A_1 + m_2A_2 + 1 = 1$, demanding $A_1 = A_2 = 0$ and $x(t) = \sin t$ and $y(t) = -\cos t$. Inserting these into the z-equation gives

$$
-z'\cos t + z\sin t = 1 \quad \text{or} \quad \frac{d}{dt}(z\cos t) = 1 \quad \longrightarrow \quad z(t) = \frac{t+C}{\cos t} = \frac{t}{\cos t},
$$

in view of the IC. Alternatively, but with more effort, one can divide by cost, find the integrating factor $I = \exp \int (-\sin t)/(\cos t)dt = \cos t$, and then solve the ODE (given $qI = 1$). Last,

$$
w' = 2w^2 \sin t \cos t = w^2 \sin 2t,
$$

which is separable:

$$
\int \frac{dw}{w^2} = C + \int \sin 2t dt \quad \text{or} \quad -\frac{1}{w} = C - \frac{1}{2}\cos 2t = -\frac{1}{2} - \frac{1}{2}\cos 2t
$$

given $w(0) = 1$. *i.e.* $w = 2/(1 + \cos 2t)$.

2. The system is

$$
\begin{pmatrix} x'' \\ y'' \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 3 \end{pmatrix} \sin t
$$

The eigenvalues of the matrix are -4 and 0, with eigenvectors $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ −1 $\Big)$ and $\Big(\begin{array}{c}1\\1\end{array}\Big)$ 1 , respectively. The particular solution is $\begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$ d_2 $\sin t$ where

$$
-d_1 = 3d_2 - 3d_1 \quad \& \quad -d_2 = d_1 - d_2 + 3,
$$

which lead to $-\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ 2 $\sin t$. The general solution is therefore

$$
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (A + Bt) + \begin{pmatrix} 3 \\ -1 \end{pmatrix} (C \cos 2t + D \sin 2t) - \begin{pmatrix} 3 \\ 2 \end{pmatrix} \sin t
$$

The initial conditions give $A = B = C = D = 0$, implying no homogeneous solutions and a pure oscillation with unit frequency.

3. From the definition of the Laplace transform, as long as $\text{Re}(s)$ is sufficiently positive and $y \to 0$ for $t\to\infty,$

$$
\mathcal{L}\lbrace y'(t)\rbrace = \int_0^\infty e^{-st} y'(t)dt = [y(t)e^{-st}]_0^\infty + s \int_0^\infty e^{-st} y(t)dt = s\overline{y}(s) - y(0).
$$

Replacing y' by y'' gives $\mathcal{L}{y''} = s\mathcal{L}{y'} - y'(0) = s^2\mathcal{L}{y} - sy(0) - y'(0)$. Next,

$$
\mathcal{L}\lbrace e^{at}\rbrace = \int_{a}^{\infty} e^{at - st} dt = -\left[\frac{e^{-(s-a)t}}{s-a}\right]_{0}^{\infty} = \frac{1}{s-a}
$$

Last,

$$
\mathcal{L}\lbrace H(t-a)f(t-a)\rbrace = \int_{a}^{\infty} e^{-st} f(t-a)dt = e^{-as} \int_{a}^{\infty} e^{-s\tau} f(\tau)d\tau = e^{-as}\overline{f}(s)
$$

The Laplace transform of the ODE gives

$$
(s2 + 1)\overline{y}(s) - sA - B = \frac{1}{s+1}(1 - e^{-s-T})
$$

or

$$
\overline{y}(s) = \frac{As}{s^2 + 1} + \frac{B}{s^2 + 1} + \frac{1}{2} \left(\frac{1}{s + 1} - \frac{s}{s^2 + 1} + \frac{1}{s^2 + 1} \right) (1 - e^{-sT - T}).
$$

The inverse is

$$
y(t) = A\cos t + B\sin t + \frac{1}{2}(e^{-t} - \cos t + \sin t) - \frac{1}{2}[e^{T-t} - \cos(t - T) + \sin(t - T)]e^{-T}H(t - T)
$$

When $t > T$, we have

$$
y(t) = \frac{1}{2} \left[2A - 1 + e^{-T} (\cos T + \sin T) \right] \cos t + \frac{1}{2} \left[2B + 1 + e^{-T} (\sin T - \cos T) \right] \sin t
$$

which vanishes if $2A = 1 - e^{-T}(\cos T + \sin T)$ and $2B = e^{-T}(\cos T - \sin T) - 1$. These imply $A = -B = \frac{1}{2}$ if $T \gg 1$.

4. (a) The extended function has the Fourier sine series,

$$
f(x) = \sum_{n=1}^{\infty} b_n \sin nx,
$$

with (using a handy trig formulae)

$$
b_n = \frac{1}{2\pi} \int_0^{\pi} (1 - \cos 2x) \sin nx \, dx = \frac{1}{\pi n} - \frac{n}{\pi (n^2 - 4)}, \quad n \text{ odd},
$$

and $b_n = 0$ if n is even.

(b) The steady state solution, satisfying $U'' + \cos 2x = 0$, $U(0) = U(\pi) = 0$, is $U = \frac{1}{4}(\cos 2x - 1)$. Putting $v = u - U$ we then find the homogeneous problem,

$$
v_t = v_{xx}
$$
, $v(0, t) = v(\pi, t) = 0$, $v(x, 0) = -U(x)$.

Separating variables then gives

$$
v = \sum_{n=1}^{\infty} b_n e^{-n^2 t} \sin nx,
$$

with b_n given in (a). Thence,

$$
u(x,t) = \frac{1}{4}(1 - \cos 2x) + \sum_{n=1}^{\infty} b_n e^{-n^2 t} \sin nx.
$$