
Coursework 2: Sturm-Liouville problems and Bessel functions

Hand in solutions to the questions on page 1 only; later pages contain helpful information and
supplementary “warm-up” problems to practice on for your own enjoyment. Be as explicit as you
can in providing your answers.

(1). Consider a uniformly heated disk, with temperature u(r, θ, t) satisfying

ut = ∇2u+ 4 =
1

r
(rur)r +

1

r2
uθθ + 4, u(1, θ, t) = 0, u(r, θ, 0) = cos θ.

First, find the steady-state solution, u = U(r), which satisfies

∇2U + 4 = 0 & U(1) = 0.

Now set u(r, θ, t) = U(r) + v(r, θ, t) and solve for v(r, θ, t) using separation of variables. Compare
your result, with the series truncated to six terms, with a numerical solution based on the MATLAB
code provided below, at the times and radii indicated in the figure. In a sentence or two, assess the
performance of your truncated series.

(2). A model of a star with a nuclear burning core has a temperature given by

ut =
1

r2
(r2ur)r +

3u

16r2
, u(1, t) = 0, u(r, 0) = 1,

and
√
ru → 0 for r → 0. Provide an expression for the star’s luminosity, L = −ur(1, t). Hence

establish that the star slowly burns out and give an approximate formula for its half-life (the time
required for L to reduce by a factor of a half).

Helpful notes: Bessel’s equation is

x2y′′ + xy′ + (k2x2 − ν2)y = 0,

and has the two solutions, y = Jν(kx) and Yν(kx), of which only the former is regular at z = 0.
For z → 0, Jν(z) ∝ zν .

The more general ODE,

x2y′′ + (1− 2α)xy′ + (ω2β2x2β + α2 − ν2β2)y = 0,

has solutions y = xαCν(ωxβ) where Cν(z) is a Bessel function.
If ν is equal to an integer m, the Bessel functions satisfy the recurrence relation,

Jm−1(z)− Jm+1(z) = 2J ′m(z), J ′0(z) = −J1(z).

Remember, Bessel functions are our friends.



Figure 1: Top panel: the Bessel functions J0(z) and J1(z) and their zeros. Middle panels: numerical
solutions to ut = ∇2u+ 4(1−m) and u(1, θ, t) = 0, for m = 0 and u(r, θ, 0) = 0 (left) and m = 1
and u(r, θ, 0) = cos θ (right). The lower panels show snapshots and time series of the two solutions
at the times and positions indicated.
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Warm-up problems

(1). The equation of motion of a hanging, heavy chain is

utt =
∂

∂x

(
x
∂u

∂x

)
,

where u(x, t) is the horizontal deflection at height x and time t (the tension in the chain varies
with height due to the weight underneath). The end at x = 0 is free, whereas the end at x = l is
fixed, so that u is regular for x = 0 and u(l, t) = 0. Using separation of variables reduce the PDE
to two equivalent ODEs. Show that the spatial dependence of the solution is given by the Bessel
function, J0(z). Hint: the transformation x = cz2 may prove helpful, for some constant c.

Given that the zeros of J0(z) are z = z1, z2, ..., zn, ..., write down a general solution of the
PDE in terms of a sum over Bessel functions with unspecified coefficients. If u(x, 0) = 0 and
ut(x, 0) = f(x), express those coefficients in terms of integrals of J0(z).

Separation of variables: u = X(x)T (t), with

xX ′′ +X ′ + λ2nX = 0, T = an cosλnt+ bn sinλnt.

Making the suggested change of variable and choosing c = 1/(4λ2n), leads to

Xzz +
1

z
Xz +X = 0 −→ X = J0(z) = J0(2λn

√
x),

on using the regularity of J0(z) at z = 0. The other boundary condition implies that λn = zn/2
√
l,

where zn is the nth zero of J0(z). Thus,

u =

∞∑
n=1

(an cosλnt+ bn sinλnt)J0(2λn
√
x),

With the given initial condition, an = 0 and bn must be computed from a suitable expansion
in Bessel functions. Given that the equation for X(x) is a Sturm-Liouville problem with weight
σ(x) = 1, the J0’s form an orthogonal basis set, and we arrive at

bn =
2
√
l

zn

∫ l
0 f(x)J0(zn

√
x/l)dx∫ l

0 J
2
0 (zn

√
x/l)dx

.

(2). Using the method of separation of variables, solve Laplace’s equation inside the cylinder,
0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L, in cylindrical polar coordinates (r, θ, z), applying the boundary
condition, u(R, θ, z) = 0, u(r, θ, 0) = 0 and

u(r, θ, L) = F (r, θ) =
1

2
F0(r) +

∞∑
m=1

Fm(r) cosmθ

expressing your result in terms of Bessel functions (including any constants of integration).

The PDE to solve is
1

r
(rur)r +

1

r2
uθθ + uzz = 0.

We put u = X(r)Y (θ)Z(z) and rewrite the PDE as

1

rX
(rXr)r +

1

r2Y
Yθθ = −Zzz

Z
.



The right-hand side is a function of z alone, whereas the left-hand side is a function of r and θ, so
both must equal a separation constant, −k2. Hence

r

X
(rXr)r + r2k2 = −Yθθ

Y
.

The right-hand side is now a function of θ, the left is a function of r; we put both equal the
separation constant m2. Consequently,

Zzz = k2Z, and Yθθ = −m2Y,

Thus,

Z = sinh kz, Y = cosmθ or sinmθ with m = 1, 2, ..., or constant with m = 0

(since Z(0) = 0 and Y (θ) must be 2π−periodic). Finally,

(rXr)r −
m2

r
X + rk2X = 0,

which, along with the boundary conditions, X(r) regular at r = 0 and X(R) = 0, determine a
Sturm-Liouville problem for X(r) and eigenvalue k2, with p(r) = r, q(r) = −m2/r and σ(r) = r.
For each m, there is an infinite number of solutions, k = km,n and X(r) = Xm,n(r), n = 1, 2, ...
Likewise, there are similar solutions for m = 0. The general solution of the PDE is therefore

u(r, θ, z) =
∞∑
n=1

[
1

2
a0,nX0,n(r) sinh(k0,nz) +

∞∑
m=1

(am,n cosmθ + bm,n sinmθ)Xm,n(r) sinh(km,nz)

]
.

Comparing the ODE of the Sturm-Liouville problem with Bessel’s equation, we see that

Xm,n(r) ≡ Jm(km,nr) and km,n =
zm,n
R

where zm,n is the nth zero of Jm(z), and the set of functions can be extended to include m = 0.
Given also the boundary condition at z = L (a cosine series in θ), we have bm,n = 0. Finally,

Fm(r) =
∞∑
n=1

am,nJm(km,nr) sinh(km,nL),

with m = 0, 1, 2, ..., and so

am,n =

∫ R
0 Fm(r)Jm(km,nr)rdr

sinh(km,nL)
∫ R
0 [Jm(km,nr)]2rdr

.

(3). Using the method of separation of variables, solve the heat equation inside the unit disk,
r ≤ 1, applying the boundary condition, u(1, θ, t) = 0, and initial condition,

u(r, θ, 0) =
∞∑
m=1

fm(r) sinmθ.

expressing your result in terms of Bessel functions and their integrals.



The PDE to solve is (if one includes the diffusivity for completeness but not necessity)

1

κ
ut =

1

r
(rur)r +

1

r2
uθθ.

We put u = X(r)Y (θ)T (t) and rewrite the PDE as

1

rX
(rXr)r +

1

r2Y
Yθθ =

Tt
κT

.

The right-hand side is a function of t alone, whereas the left-hand side is a function of r and θ, so
both equal a separation constant, −k2. Hence

r

X
(rXr)r + r2k2 = −Yθθ

Y
.

The right-hand side is now a function of θ, the left is a function of r; we put both equal the
separation constant m2. Consequently,

Tt = −κk2T, and Yθθ = −m2Y,

Thus,
T = Ce−κk

2t, Y = A cosmθ or B sinmθ, m = 0, 1, 2, ...

since Y (θ) must be 2π−periodic. Finally,

(rXr)r −
m2

r
X + rk2X = 0,

which, along with the boundary conditions, X(r) regular at r = 0 and X(1) = 0, determine a
Sturm-Liouville problem for X(r) and eigenvalue k2, with p(r) = r, q(r) = −m2/r and σ(r) = r.
For each m, there is an infinite number of solutions, k = km,n and X(r) = Xm,n(r), n = 1, 2, ...
Comparing the ODE of the Sturm-Liouville problem with Bessel’s equation, we see that

Xm,n(r) ≡ Jm(km,nr) and km,n = zm,n

where zm,n is the nth zero of Jm(z). The general solution of the PDE is therefore

u(r, θ, z) =
∞∑
n=1

[
1

2
a0,nJ0(z0,nr)e

−κz20,nt +
∞∑
m=1

(am,n cosmθ + bm,n sinmθ)Jm(r)e−κz
2
m,nt

]
.

Finally, we observe that u(r, θ, 0) is a sine series in θ, so a0,n = am,n = 0, and demanding
u(r, θ, 0) = f(r, θ) =

∑
m fm(r) sinmθ, implies

fm(r) =

∞∑
n=1

bm,nJm(zm,nr)

and so (from the SL expansion formulae)

bm,n =

∫ 1
0 fm(r)Jm(zm,nr)rdr∫ 1

0 [Jm(zm,nr)]2rdr
.



Two More...

(1). Consider the axisymmetric heat equation,

ut =
1

r
(rur)r

in r ≤ R, subject to u(R, t) = 0 and u(r, t) regular at the origin. Determine the Sturm-Liouville
(SL) problem satisfied by the radial part of the separable solution, u(r, t) = X(r)T (t), establishing
the form of the functions p(r), q(r) and σ(r) in the ODE and stating the boundary conditions and
how the eigenvalue is related to the separation constant of the PDE. Show that the eigenfunctions of
the SL problem are Bessel functions, and write the eigenvalue in terms of the zeros of J0(z). Given
u(r, 0) = f(r), express the solution to the PDE in terms of Bessel functions and their integrals.

(2). Using the method of separation of variables, solve the wave equation inside the unit disk,
r ≤ 1, applying the boundary condition, u(1, θ, t) = 0, and initial conditions,

u(r, θ, 0) =
1

2
f0(r) +

∞∑
m=1

fm(r) cosmθ and ut(r, θ, 0) = 0,

expressing your result in terms of Bessel functions and their integrals.

Solutions:

(1). Separate variables: u = X(r)T (t), giving

1

rX
(rXr)r =

Tt
T

= −k2,

where −k2 is the separation constant. Hence

(rXr)r + k2rX = 0 and T = e−k
2t.

The first equation is the ODE of a Sturm-Liouville (SL) problem with p(r) = σ(r) = r, q(r) = 0
and eigenvalue k2. Comparison with Bessel’s equation and imposition of X(R) = 0 indicates that

X(r) = J0(kr) and J0(kR) = 0.

Denoting zn as the nth zero of J0(z), n = 1, 2, ..., we find the SL eigenvalues, kn = zn/R, and
eigenfunctions, Xn(r) = J0(knr). Hence,

u(r, t) =

∞∑
n=1

cne
−k2ntJ0(knr).

Finally, we apply the initial condition:

f(r) =

∞∑
n=1

cnJ0(knr) −→ cn =

∫ R
0 f(r)J0(knr)rdr∫ R
0 [J0(knr)]2rdr

.

(2). The PDE to solve is

utt =
1

r
(rur)r +

1

r2
uθθ.



We put u = X(r)Y (θ)T (t) and rewrite the PDE as

1

rX
(rXr)r +

1

r2Y
Yθθ =

Ttt
T
.

The right-hand side is a function of t alone, whereas the left-hand side is a function of r and θ, so
both equal a separation constant, −k2. Hence

r

X
(rXr)r + r2k2 = −Yθθ

Y
.

The right-hand side is now a function of θ, the left is a function of r; we put both equal the
separation constant m2. Consequently,

Ttt = −k2T, and Yθθ = −m2Y,

Thus,
T = cos kt, Y = cosmθ or sinmθ, m = 0, 1, 2, ...

since ut(r, θ, 0) = 0 (or Tt(0) = 0) and Y (θ) must be 2π−periodic. Finally,

(rXr)r −
m2

r
X + rk2X = 0,

which, along with the boundary conditions, X(r) regular at r = 0 and X(1) = 0, determine a
Sturm-Liouville problem for X(r) and eigenvalue k2, with p(r) = r, q(r) = −m2/r and σ(r) = r.
For each m, there is an infinite number of solutions, k = km,n and X(r) = Xm,n(r), n = 1, 2, ...
The general solution of the PDE is therefore

u(r, θ, z) =
∞∑
n=1

[
1

2
a0,nX0,n(r) cos(k0,nt) +

∞∑
m=1

(am,n cosmθ + bm,n sinmθ)Xm,n(r) cos(km,nt)

]
.

Comparing the ODE of the Sturm-Liouville problem with Bessel’s equation, we see that

Xm,n(r) ≡ Jm(km,nr) and km,n = zm,n

where zm,n is the nth zero of Jm(z).
Finally, we observe that u(r, θ, 0) is a cosine series in θ, so bm,n = 0, and

u(r, θ, z) =
∞∑
n=1

[
1

2
a0,nJ0(k0,nr) cos(k0,nt) +

∞∑
m=1

am,n cosmθ Jm(km,nr) cos(km,nt)

]
.

Finally, demanding u(r, θ, 0) = f(r, θ) = 1
2f0(r) +

∑
m fm(r) cosmθ, implies

fm(r) =

∞∑
n=1

am,nJm(km,nr)

(for m = 0, 1, 2...), and so

am,n =

∫ R
0 fm(r)Jm(km,nr)rdr∫ R

0 [Jm(km,nr)]2rdr
.



A previous year’s assignment:
(1). The temperature T (r, θ, t) in a heated circular swimming pool satisfies

Tt =
1

r
(rTr)r +

1

r2
Tθθ + α, T (1, θ, t) = 0,

where the heating rate α is a prescribed constant. First, find the temperature distribution T (r, θ, t) =
Tss(r) if the pool were in steady state. Next, by putting T (r, θ, t) = Tss(r) + u(r, θ, t), solve the
PDE for u(r, θ, t) using separation of variables, imposing the initial condition,

T (r, θ, 0) = f(r) sin 2θ,

and expressing your result in terms of Bessel functions and their integrals.

(2). Consider the PDE,

ut = (rur)r +
1

r
uθθ

in r ≤ 1, subject to u(1, θ, t) = 0 and the conditions that u(r, θ, t) is 2π−periodic in θ and regular
at r = 0.

(a) Determine the Sturm-Liouville (SL) problem satisfied by the radial part of the separable
solution, u(r, θ, t) = R(r)Θ(θ)T (t), establishing the form of the functions p(r), q(r) and σ(r) in
the ODE, and stating the boundary conditions and how the eigenvalue is related to the separation
constant of the PDE. Show that the eigenfunctions of the SL problem are Bessel functions, and
write the eigenvalue in terms of the zeros of a Bessel function. Given u(r, θ, 0) = f(r, θ), express
the solution to the PDE in terms of Bessel functions and their integrals.

(b) As shown in figure 2, the numerical solution to the axisymmetric problem, with u = u(r, t)
and f(r) = 16r2(1− r)2, eventually decays exponentially at each radial position, with a rate 1.45.
Explain this observation.

(c) If f(r, θ) = 16r2(1 − r)2 sin θ, write down a reduced version of your separation of variables
solution. Compute the coefficients for the first five terms of the series, then compare your results
with the numerical solution shown in figure 3, at the times and positions indicated in the lowest
two panels.

Figure 2: Axisymmetric numerical solution



Figure 3: Output from pde21b.m.

Solutions

1. We have

(rT ′ss)
′ + αr = 0 → T ′ss +

1

2
αr = 0 → Tss =

1

4
α(1− r2)

(avoiding any singularities at r = 0 and since Tss(1) = 0). If T (r, t) = Tss(r) + u(r, t), then u(r, t)
satisfies

ut =
1

r
(rur)r, u(1, θ, t) = 0, u(r, θ, 0) = f(r) sin 2θ − Tss(r).

We separate variables, u = R(r)Θ(θ)T (t), giving the ODEs

T ′ + λT = 0, Θ′′ +m2Θ = 0, (rR′)′ + λrR−m2R = 0,

for two separation constants λ and m. We choose m = 0 and Θ = 1
2A0, or m = 1, 2, ... and

Θ = Bm sinmθ or Am cosmθ to guarantee 2π-periodic solutions in θ, in the usual manner of a
Fourier series. In fact, the initial condition indicates that we only need the (m,Θ) = (0, 12A0) and
(m,Θ) = (2, B2 sin 2θ) solution pairs. The ODE for R(r) is Bessel’s equation, with either J0(kr) or
J2(kr) as solutions, given that m = 0 or 2, with λ = k2. But u(1, θ, t) = 0 implies that R(1) = 0
and so k must be a zero of the corresponding Bessel function. i.e. λ = k20,n for m = 0, or λ = k22,n
for m = 2, with Jm(km,n) = 0 and n = 1, 2, ... Altogether, we find the general solution,

u(r, θ, t) =

∞∑
n=1

[
anJ0(k0,nr)e

−k20,nt + bnJ2(k2,nr)e
−k22,nt sin 2θ

]
,



for a suitable set of constants an and bn. Last, in view of the initial condition and the Sturm-
Liouville expansion theorem, we see that

an = −1

4
α

∫ 1

0
(1− r2)J0(k0,nr) rdr

[∫ 1

0
[J0(k0,nr)]

2 rdr

]−1
and

bn =

∫ 1

0
f(r)J2(k2,nr) rdr

[∫ 1

0
[J2(k2,nr)]

2 rdr

]−1
.

2(a) Separating variables, we arrive at the ODEs

T ′ + λT = 0, Θ′′ +m2Θ = 0, (rR′)′ + λR− m2

r
R = 0,

for two separation constants λ and m. We choose m = 0 and Θ = constant, or m = 1, 2, ... and
Θ ∝ sinmθ or cosmθ to guarantee 2π-periodic solutions in θ. The ODE for the r−dependence
is a Sturm-Liouville problem with p ≡ r, σ ≡ 1 and q = −m2/r, and type (i) and (ii) boundary
conditions (R(1) = 0 and we demand regularity at r = 0 with p(0) = 0). It is also a form of the
general ODE that has Bessel functions as solutions with

α = 0,
1

4
ω2 = λ, β =

1

2
,

1

4
ν2 = m2.

The solutions are therefore J2m(2
√
λr) and Y2m(2

√
λr). However, the latter cannot satisfy the

regularity condition at r = 0 The other boundary condition therefore implies that J2m(2
√
λ) = 0,

which demands that 2
√
λ is a zero of J2m(z). Denoting the nth such zero by zmn, we have R ∝

J2m(zmn
√
r).

A general solution of the PDE is therefore

u(r, θ, t) =
∞∑
n=1

{
1

2
A0nJ0(z0n

√
r)e−z

2
0nt/4 +

∞∑
m=1

(Amn cosmθ +Bmn sinmθ)J2m(zmn
√
r)e−z

2
mnt/4

}
.

At t = 0, and exploiting a Fourier series for the initial condition, we need

u(r, θ, 0) = f(r, θ) =
1

2
a0(r) +

∞∑
m=1

[am(r) cosmθ + bm(r) sinmθ].

Given the Sturm-Liouville expansion formulae, we may enforce this by setting

A0n =

∫ 1
0 a0(r)J0(z0n

√
r)dr∫ 1

0 [J0(z0n
√
r)]2dr

, [Amn, Bmn] =

∫ 1
0 [am(r), bm(r)]J2m(zmn

√
r)dr∫ 1

0 [J2m(zmn
√
r)]2dr

.

(b) When the initial condition has no θ−dependence and u(r, 0) = f(r), Amn = Bmn = 0. The
long-time behaviour of the solution is then controlled by the smallest value of z20n/4 (the exponent
of the slowest decaying term in the remaining sum). This is given by the first zero of J0(z), which
is z ≈ 2.40. The long-time decay rate is therefore (2.40)2/4 ≈ 1.45, as observed in the numerical
solution.

(c) If f(r, θ) = 16r2(1−r)2 sin θ, the entire solution has the factor sin θ with only the coefficients
B1n non-zero. The revised figure shows a comparison of the numerical solution with the analytical
one, truncated to five terms. The updated code pde20bx.m performs the task. Note that, since
u(r, θ, t) ∝ sin θ, one can factor out the θ−dependence and plot the solution as a function of only
r and t, as done in the figure (or, equivalently, one could take the nominal value of θ of π/2, for
illustration).



Figure 4: Comparison of numerical and truncated analytical solutions.



Solutions to actual problems

1. (18 points)
The steady state solution is U = 1− r2. (2 points).
After introducing the new variable v, we arrive at the problem

vt = ∇2v, v(1, θ, t) = 0, v(r, θ, 0) = cos θ − (1− r2) (1 point).

We separate variables: v = R(r)Θ(θ)T (t), giving

T ′

T
=

(rR′)′

rR
+

1

r2
Θ′′

Θ
.

This function or t, or function of r and θ must then equal the separation constant −ω2, leading to

T = Ce−ω
2t &

r(rR′)′

R
+ ω2r2 = −Θ′′

Θ
(3 points).

We therefore introduce a second separation constant m2 to find

Θ = constant×
{

1, m = 0,
cosmθ or sinmθ, m = 1, 2, ...,

& R ∝ Jm(ωr).

We only need the m = 0 term and the cos θ solution for m = 1 in view of the initial condition.
Hence, a suitable general solution is

v =
∞∑
j=1

[
cjJ0(ω0jr)e

−ω2
0jt + CjJ1(ω1jr)e

−ω2
1jt cos θ

]
,

where the boundary condition at r = 1 tells us that ωmj is fixed as a zero of a Bessel function:
Jm(ωmj) = 0. (4 points).

To find the constants cj and Cj we apply the initial condition on v:

cj = −
∫ 1
0 (1− r2)J0(ω0jr)rdr∫ 1

0 [J0(ω0jr)]2rdr
, Cj =

∫ 1
0 J1(ω1jr)rdr∫ 1

0 [J1(ω1jr)]2rdr
(2 points).

Finally, we reconstruct u(r, θ, t) = U(r) + v(r, θ, t) (1 point).
The two parts to the solution coincide with the two numerical solutions of the figure. Con-

structing the truncated series and plotting the results gives the modification to the lowest panels
shown below. The truncated series for m = 0 is pretty good for all times and radii; the difference
between the series and numerical solution is less that 3.3 × 10−3 for the data in the figure. The
truncated series solution for m = 1 is plagued by Gibbs phenomenon for t→ 0 and r → 0 or r → 1.
Otherwise, it works well. (5 points, including the plots).

2 (10 points) We separate variables: u = R(r)T (t), giving

T ′

T
=

(r2R′)′

r2R
+

3

16r2
.

This function or t or r must then equal a separation constant −ω2, leading to

T = Ce−ω
2t & (r2R′)′ + ω2r2R+

3

16
R = r2R′′ + 2rR′ + ω2r2R+

3

16
R = 0 (2 points).
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Figure 5: Comparison of the numerical and truncated analytical solutions.

We can match up the remaining ODE with the more general form of Bessel’s equation by taking

α = −1

2
, β = 1, ν =

1

4
,

implying the solution

R ∝
J 1

4
(ωr)
√
r

,

after discarding the other Bessel function, which fails to respect the regularity condition needed for
r → 0 (3 points). Note that the weight function of the ODE is r2. The boundary condition implies
that ω must be taken to be a zero of J 1

4
(ω). We denote the jth such zero as ωj , and arrive at the

general solution,

u(r, t) =

∞∑
j=1

cj
J 1

4
(ωjr)
√
r

e−ω
2
j t,

where

cj =

∫ 1
0 J 1

4
(ωjr)r

3/2dr∫ 1
0 [J 1

4
(ωjr)]2rdr

(3 points).

The luminosity is given by the exponentially decaying function,

L = −
∞∑
j=1

ωjcjJ
′
1
4

(ωj)e
−ω2

j t (1 point).

The first term dominates at large times, implying a half-life of approximately ln 2/ω2
1 ≈ 0.0896 (in

whatever cosmic units are at work here) (1 point; no need for the numerical value).


