

Math 257/316 Assignment 1
Due Wednesday September 10 IN CLASS

Problem 1: (ODE Review) Find the general solutions of the following equations:

a. $xy' + 3y = xe^x$, Exact solution is: $y(x) = e^x - \frac{3}{x}e^x + \frac{6}{x^2}e^x - \frac{6}{x^3}e^x + \frac{1}{x^3}C_1$

b. $y' = e^x/y^2$, Exact solution is: $y(x) = \sqrt[3]{(3e^x + C_1)}$

c. $y'' + 2y' + y = 0$, Exact solution is: $y(x) = C_1e^{-x} + C_2e^{-x}x$

d. $y'' - 2y' + 5y = 0$, Exact solution is: $y(x) = C_1e^x \sin 2x + C_2e^x \cos 2x$

$2y'' - 3y' - 2y = 0$

e. $y(0) = -1$, Exact solution is: $y(x) = e^{2x} - 2e^{-\frac{1}{2}x}$

$y'(0) = 3$

f. $3x^2y'' - xy' + y = -x^2 - x^{4/3}$, Exact solution is: $y(x) = -\frac{1}{5}x^2 - x^{\frac{4}{3}} + C_1x + C_2\sqrt[3]{x}$

g. $4x^2y'' + y = 0$, Exact solution is: $y(x) = C_1\sqrt{x} + C_2\sqrt{x} \ln x$

h. $x^2y'' + 3xy' + 2y = 0$, Exact solution is: $y(x) = \frac{C_1}{x} \sin(\ln x) + \frac{C_2}{x} \cos(\ln x)$

Problem 2: (Power series solution warm-up): Consider the following first order linear ODEs:

$$(1+x)y' + y = 0 \quad \#$$

$$y' + (1+x)y = 0 \quad \#$$

a. Solve the differential equations () and () using the appropriate integrating factors.

b. Expand these solutions in Taylor series about the point $x_0 = 0$. For what values of x do these series fail to converge?

c. Now assume a power series solution of the form

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \quad \#$$

For each of the differential equations () and () assume a series solution of the form () and obtain a recursion for the coefficients a_n . Use these recursions to determine the series representations of the solutions. Compare this result to the series obtained in part b above. For equation () is there any relationship between the points of divergence of the series and the coefficient $(1+x)$ of the derivative in ()?

d. Consider the following recursive strategy to generate an approximate solution to ().

Rewrite () as

$$y' + y = -xy \quad \#$$

Now assuming $x \rightarrow 0$ and discarding the right hand side of (), find a first order approximation y_0 as the solution to

$$y'_0 + y_0 = 0$$

Now substitute y_0 on the right side of () and solve for y_1

$$y'_1 + y_1 = -xy_0$$

Continue this process till you obtain y_2 . How does y_2 compare with the solutions obtained in a and c?

$$\text{2/} \quad (1+x)y' + y = 0 \quad (1)$$

$$y' + (1+x)y = 0 \quad (2)$$

$$\text{a)} \quad (1) \quad \int \frac{dy}{y} = - \int \frac{dx}{1+x} + C \Rightarrow \ln y = \ln(1+x)^{-1} + C \Rightarrow y = \frac{A}{1+x}$$

$$\text{OR } [(1+x)y]' = (1+x)y' + y = 0 \quad \therefore y = \frac{A}{1+x}$$

$$(2) \quad \int \frac{dy}{y} = - \int (1+x)dx + C \Rightarrow \ln y = -x - \frac{x^2}{2} + C \quad y = A e^{-x - \frac{x^2}{2}}$$

$$\text{OR } F = C \int (1+x)dx = e^{x + x^2/2}$$

$$\therefore [e^{(x+x^2/2)} y]' = e^{x+x^2/2} y' + e^{x+x^2/2} (1+x)y = 0$$

$$\therefore y = A e^{-x - x^2/2}$$

$$\text{b)} \quad (1) \quad y = \frac{A}{1+x} = A [1 - x + x^2 - \dots] \quad \text{A GEOMETRIC SERIES}$$

WHICH CONVERGES PROVIDED $|x| < 1$.

$$(2) \quad y = A e^{-x} e^{-x^2/2}$$

$$= A [1 - x + x^2/2 - \dots] [1 - x^2/2 + x^4/8 - \dots] \quad \text{CONVERGE FOR } |x| < \infty$$

$$= A [1 - x + x^3/3 - x^4/12 + \dots]$$

$$\text{c)} \quad (1) \quad Ly = (1+x)y' + y = 0$$

$$y = \sum_{n=0}^{\infty} a_n x^n \quad y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$Ly = y' + x y' + \dots + x y' + \dots = 0$$

$$= \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\boxed{m=n-1} \quad \boxed{m=n} \quad \boxed{m=n}$$

$$= \sum_{m=0}^{\infty} (m+1) a_{m+1} x^m + \sum_{m=1}^{\infty} m a_m x^m + \sum_{m=0}^{\infty} a_m x^m = 0$$

$$= [1 a_1 + a_0] x^0 + \sum_{m=1}^{\infty} [(m+1) a_{m+1} + (m+1) a_m] x^m = 0$$

$$x^0 \quad a_1 = -a_0$$

$$x^m, m \geq 1 \quad a_{m+1} = -a_m$$

$$a_2 = -a_1 = a_0 \quad a_3 = -a_2 = -a_0 \quad \dots$$

$$y(x) = a_0 [1 - x + x^2 - x^3 + \dots] = a_0 / (1+x) \quad |x| < 1$$

NOTE: THE SERIES DIVerges when $x = -1$ AT WHICH POINT THE COEFFICIENT $(1+x)$ OF y' IN (1) VANISHES.

C) CONTINUED (2) $Ly = y' + (1+x)y = 0 \quad (2)$

$$y = \sum_{n=0}^{\infty} a_n x^n \quad y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$Ly = \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} a_n x^{n+1}$$

$m=n-1$
$n=m+1$
$n=1 \Rightarrow m=0$

$m=n$

$m=n+1$
$n=m-1$
$n=0 \Rightarrow m=1$

$$= \sum_{m=0}^{\infty} (m+1) a_{m+1} x^m + \sum_{m=0}^{\infty} a_m x^m + \sum_{m=1}^{\infty} a_{m-1} x^m$$

$$= [a_1 + a_0] x^0 + \sum_{m=1}^{\infty} [(m+1) a_{m+1} + a_m + a_{m-1}] x^m$$

$x^0] \quad a_1 = -a_0$

$x^m, m \geq 1] \quad a_{m+1} = \frac{-a_m - a_{m-1}}{m+1}$

$$a_2 = \frac{-a_1 - a_0}{2} = \frac{+a_0 - a_0}{2} = 0$$

$$a_3 = \frac{-a_2 - a_1}{3} = \frac{+a_0 - a_0}{3} = 0$$

$$a_4 = \frac{-a_3 - a_2}{4} = \frac{-a_0 - a_0}{4} = -a_0/12$$

$$\therefore y(x) = a_0 [1 - x + x^3/3 - x^4/12 + \dots]$$

d) $Ly = y' + (1+x)y = 0 \quad (2)$

$$Ly_0 = y_0' + y_0 = 0 \Rightarrow y_0 = C_0 e^{-x}$$

$$Ly_1 = y_1' + y_1 = -x(C_0 e^{-x})$$

$$\therefore [e^x y_1]' = -C_0 x \Rightarrow y_1 = -C_0 \frac{x^2}{2} e^{-x} + C_1 e^{-x}$$

$$Ly_2 = y_2' + y_2 = -x y_1 = -x \left[-C_0 \frac{x^2}{2} e^{-x} + C_1 e^{-x} \right]$$

$$[e^x y_2]' = +C_0 \frac{x^3}{2} - C_1 x$$

$$\therefore y_2 = \left[C_0 \frac{x^4}{8} - C_1 \frac{x^2}{2} + C_2 \right] e^{-x}$$

SINCE A 1ST ORDER EQ CAN ONLY HAVE ONE FREE CONSTANT WE REQUIRE THAT $C_0 = C_1 = C_2$ SO THAT

$$y_2(x) = C_0 e^{-x} \left[1 - \frac{x^2}{2} + \frac{1}{2} \left(\frac{x^2}{2} \right)^2 \right]$$

WHICH ARE THE FIRST THREE TERMS IN THE TAYLOR EXPANSION OF $e^{-x^2/2}$ IN THE SOLUTION

$$y(x) = C_0 e^{-x} e^{-x^2/2}$$