Math 257/316 Assignment 1

Due Wednesday September 10 IN CLASS
Problem 1: (ODE Review)Find the general solutions of the following equations:

a. xy’ + 3y = xe*, Exact solution is: y(x) = eX - 2e*+ Sex- LeX+ L Cy
X X X
b.y = eXly?, Exact solution is: y(x) = J(3e¢* + C;)
c.y"+2y' +y =0, Exact solution is: y(x) = C1e7™* + Cpe7*x
d.y" —2y" + 5y = 0, Exact solution is: y(x) = C1€*sin2x + C,e*cos 2x
2y" -3y' -2y =0
€. y(0) = -1, Exact solution is: y(x) = 2 — 2~z

y'(0) =3
f. 3x2%y" —xy' +y = —x? — x*3, Exact solution is: y(x) = —£x? — X3 + C1X+ Ca X
g. 4x?y" +y = 0, Exact solution is: y(x) = C1 /X + C2/X Inx
h. x2y" + 3xy’ + 2y = 0, Exact solution is: y(x) = & sin(Inx) + <& cos(Inx)
Problem 2: (Power series solution warm-up): Consider the following first order linear
ODEs:

A+x)y +y=0
y+(@0+x)y=0
a. Solve the differential equations () and () using the appropriate integrating factors.
b. Expand these solutions in Taylor series about the point xo = 0. For what values of x do

these series fail to converge?
c. Now assume a power series solution of the form

y(x) = Zanx”
n=0

For each of the differentail equations () and () assume a series solution of the form () and
obtain a recursion for the coefficients a,. Use these recursions to determine the series
representations of the solutions. Compare this result to the series obtained in part b above. For
equation () is there any relationship between the points of divergence of the series and the
coefficient (1 + x) of the derivative in ()?

d. Consider the following recursive strategy to generate an approximate solution to ().
Rewrite () as

y +y=-xy

Now assuming x — 0 and discarding the right hand side of (), find a first order approximation
Yo as the solution to

Yo+Yo=0
Now substitute yo on the right side of () and solve for y;
y1+Y1=-Xyo

Continue this process till you obtain y,. How does y, compare with the solutions obtained in a
and c?
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