
Traffic flow problems

The flow of cars is modelled by the PDE

ut + [uv(u)]x = 0

1. If v(u) = 1− u and

(a) u(x, 0) =


0 x < 0
u0x

2 0 ≤ x ≤ 1
u0 x > 1

(b) u(x, 0) = u0e
−|x|,

where 0 < u0 < 1, determine when and where a shock first forms. Sketch a characteristics diagram
and the solution up to the development of the shock. Use the equal areas rule to make sketches of
the progress of the shock after it forms for each case.

2. Solve the PDE again for v(u) = 1− u and

u(x, 0) = u0 +H(π − |x|)a sinx

with |a| < u0, |a|+u0 < 1 and H(x) the step function. Show that when a > 0 a single shock forms
and if a < 0, two shocks form simultaneously, at time t = 1/(2|a|) (in both cases). Where do these
shocks form? By fitting shocks to the multi-valued functions in each case, show that, for t � 1,
the maximum value of u is approximately

u0 +
π

2t
and u0 +

√
|a|
t

for a > 0 and a < 0, respectively.

Helpful comments: We have x0 = x− (1− 2u)t. For a > 0, u+ +u− = 2u0 and so Ẋ = 1− 2u0,
giving X(t) = (1− 2u0)t. For large t, the maximum value of u also occurs at the right side of the
shock, and points there came from close to x0 = π. Hence π ≈ (1 − 2u0)t − (1 − 2u)t. For a < 0
and t� 1, the maximum value of u comes from x0 → 0 and x0 < 0...

3. Now consider v(u) = (1− u)2. Show that c(u) in ut + cux = 0 vanishes for u = 1
3 and has a

minimum at u = 2
3 . If

u(x, 0) =
uL + uRe

x/L

1 + ex/L

with 0 < uL <
1
3 and 2

3 < uR < 1. Sketch the initial condition and the development of the solution
for t > 0. How does the solution differ from the solution with v = 1 − u? By consider the limit
L → 0, show that the car density changes discontinuously from uL to 1 − 1

2uL at a shock which
propagates at speed c(1− 1

2uL).

Some helpful results: The characteristics solution implies u = f(x0) and x0 = x − tc(u) if
u(x, 0) = f(x) denotes the initial condition. For v = (1 − u)2, we have c(u) = d

du [u(1 − u)2] =
(1 − u)(1 − 3u) When L → 0, f(x) → uL + (uR − uL)H(x), and the solution for u that bridges

between uL and uR all originates from near x0 = 0. Thus, c(u) = x/t or u = 2
3 ±

1
3

√
1 + 3x

t . The

shock speed is

dX/dt = [u+(1− u+)2 − u−(1− u−)2]/(u+ − u−) = 1 + (u+ + u−)2 − u+u− − 2(u+ + u−).
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MATH 400 – Sample Final exam problems

The rules for the actual exam: Closed book exam; no calculators. Answer as much as you can;
credit awarded for the best three answers. Adequately explain the steps you take. e.g. if you use an
expansion formula, say in one sentence why this is possible; if you quote a special function solution
to an ODE, say why this is the correct one. Be as explicit as possible in giving your solutions.

1. Using separation of variables, solve the wave equation,

1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= utt,

inside the unit sphere, r ≤ 1, with the boundary condition,

u = 0 on r = 1,

and initial condition,

ut(r, θ, 0) = 0 u(r, θ, 0) = (5 cos3 θ − 3 cos θ)g(r).

Hint: for the radial part of the problem, the substitution R(r) = X(r)/
√
r, may prove useful, if

one sets u(r, θ, t) = R(r)Y (θ)T (t).

1*. Solve Laplace’s equation,

1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
= 0,

outside the unit sphere, r ≥ 1, with the boundary condition,

u(1, θ, φ) = cos 3θ.

1**. Solve the heat equation,

1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= ut,

inside the unit sphere, r ≤ 1, with the boundary condition,

u = 0 on r = 1,

and initial condition,
u(r, θ, 0) = (3 cos2 θ − 1)g(r).

Hint: for the radial part of the problem, the substitution R(r) = X(r)/
√
r, may prove useful.

2. Establish that

F−1{e−a|k|} =
a

π(a2 + x2)
and f ◦ g = F−1{f̂ ĝ},

where F{f} = f̂(k), F{g} = ĝ(k) and f ◦ g is a convolution.
Using the Fourier transform, solve the PDE,

uxx + uyy = 0, −∞ < x <∞, 0 ≤ y <∞, u(x, 0) = g(x), u→ 0 as y, |x| → ∞,
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expressing your solution in terms of a single integral.

2*. Establish the convolution property of the Fourier transform,∫ ∞
−∞

f(z)g(x− z)dz = F−1{f̂(k)ĝ(k)}.

Solve the heat equation, ut = uxx, on the infinite line subject to the initial condition, u(x, 0) = f(x),
expressing your answer as the convolution integral

u(x, t) =

∫ ∞
−∞

f(z)G(x− z, t)dz,

where you should determine G(x, t). The region |x| < a of an infinite solid is initially at the uniform
temperature T0, the remainder being at zero temperature. By using the solution above, find the
temperature at later times in terms of the error function,

Erf(x) =
2√
π

∫ x

0
e−z

2
dz.

2**. Using the Fourier transform, solve the elastic wave equation,

utt + uxxxx = 0, −∞ < x <∞, u(x, 0) = δ(x), ut(x, 0) = 0,

showing that

u(x, t) =
1√
4πt

cos

(
x2

4t
− π

4

)
.

Note that ∫ ∞
−∞

cosx2 dx =

∫ ∞
−∞

sinx2 dx =

√
π

2
.

3. Establish the shift relation,

L{f(t− a)H(t− a)} = e−asf(s)

for the Laplace transform, where f(s) = L{f(t)}.
An age-structured model of a population is based on the PDE,

ut + ua = −µ(a)u, 0 ≤ a, t <∞,

where u(a, t) dictates the number of individuals with age a at time t; the death rate µ(a) is a
prescribed function, and initially, u(a, 0) = 0. For age a = 0, the birth function is

u(0, t) = b(t) +

∫ ∞
0

B(a)u(a, t)da,

where b(t) is a prescribed creation function, and B(a) is a prescribed reproductivity.
Using the Laplace transform in time, show that

u(a, t) = S(a)L−1
{
b(s)e−sa

D(s)

}
, D(s) = 1−

∫ ∞
0

B(a)S(a)e−sada,
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where the “survival function,”

S(a) = exp

[
−
∫ a

0
µ(a′)da′

]
.

Find an explicit solution if B = 0.

3*. Show that L{eat} = (s− a)−1, L{tn} = n!/sn+1 and L{f(t− a)H(t− a)} = e−asf(s). Use
the Laplace transform to solve the PDE,

ut + ux = u+ t2, u(0, t) = f(t), u(x, 0) = 1, 0 ≤ x <∞ 0 ≤ t <∞.

3**. Establish the relations,

L{f(t− a)H(t− a)} = e−asf(s) and L{e−bt} = (b+ s)−1,

for the Laplace transform, where f(s) = L{f(t)}.
The number of lightbulbs generated in a manufacturing process is given by the PDE,

ut + ua = −µu, 0 ≤ a, t <∞,

where µ is a constant,

u(a, 0) = 0 and u(0, t) = 1 +

∫ ∞
0

R(a)u(a, t)da,

with R(a) a prescribed weighting for production adjustment based on the current bulb population.
Using the Laplace transform in time, show that

u(a, t) = e−µaL−1
{
e−sa

sD(s)

}
, D(s) = 1−

∫ ∞
0

R(a)e−sa−µada.

Find an explicit solution if R is constant, paying attention to the two cases µ 6= R and µ = R.

4. Find an implicit algebraic formula for the solution to

ut − uux = 0, u(x, 0) = tanhx.

Sketch the characteristic curves on a space-time diagram and show that a shock forms at (t, x) =
(1, 0). Write this conservation law in integral form and derive a formula determining the speed of
any shocks. By arguing that u(−x, t) = −u(x, t) for x 6= 0, determine what happens to the shock
formed in the initial-value problem above for t > 1.

4*. For
ut − u2ux = 0, u(x, 0) = sinx.

show that an infinite number of shocks form at t = 1 and find their positions. Draw the charac-
teristic curves on a space-time diagram.

4**. Using the method of characteristics, solve

ut + (u− 1)ux = e−t,

with u(x, 0) = 1 for x < 0, u(x, 0) = 1 − x for 0 ≤ x ≤ 1, and u(x, 0) = 0 for x > 1. Sketch the
characteristic curves on a space-time diagram. Show that a shock forms at t = 1; at what position
does the shock first appear?
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MATH 400 – Final exam 2017

Closed book exam; no calculators. Answer as much as you can; credit awarded for the best
three answers. Adequately explain the steps you take. e.g. if you use an expansion formula, say
in one sentence why this is possible; if you quote a special function solution to an ODE, say why
this is the correct one. Be as explicit as possible in giving your solutions.

1. Using separation of variables, solve the wave equation,

1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= utt,

inside the unit sphere, r ≤ 1, with the boundary condition,

u = 0 on r = 1,

and initial condition,
u(r, θ, 0) = 0 ut(r, θ, 0) = cos3 θ g(r).

Hint: for the radial part of the problem, the substitution R(r) = X(r)/
√
r, may prove useful, if

one sets u(r, θ, t) = R(r)Y (θ)T (t).

2. Establish that

f ◦ g = F−1{f̂ ĝ}, F−1{f̂(ak)} =
1

a
f(x/a) and F−1{e−|k|} =

1

π(1 + x2)

where F{f} = f̂(k), F{g} = ĝ(k), f ◦ g is a convolution, and a > 0.
Using the Fourier transform, solve the PDE,

4uxx + uyy = 0, −∞ < x <∞, 0 ≤ y <∞, u(x, 0) = g(x), u→ 0 as y, |x| → ∞,

expressing your solution in terms of a single integral. Give the result explicitly if g = 1 for |x| ≤ 1
and g = 0 for |x| > 1.

3. Establish the relations,

L{f(t− a)H(t− a)} = e−asf(s) and L{e−bt} = (b+ s)−1,

for the Laplace transform, where f(s) = L{f(t)}.
An age-structured model of a population is based on the PDE,

ut + ua = −µ(a)u, 0 ≤ a, t <∞,

where u(a, t) dictates the number of individuals with age a at time t; the death rate µ(a) is a
prescribed function, and initially, u(a, 0) = 0. For age a = 0, the birth function is

u(0, t) = b(t) +

∫ ∞
0

B(a)u(a, t)da,

where b(t) is a prescribed creation function, and B(a) is a prescribed reproductivity.
Using the Laplace transform in time, show that

u(a, t) = S(a)L−1
{
b(s)e−sa

D(s)

}
, D(s) = 1−

∫ ∞
0

B(a)S(a)e−sada,
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where the “survival function,”

S(a) = exp

[
−
∫ a

0
µ(a′)da′

]
.

Find an explicit solution for a population for which B(a) = e−a, µ = 0, b(t) = e−νt and ν is a
constant.

4. For
ut − uux = 0, u(x, 0) = cosx.

show that an infinite number of shocks form after sufficient time; determine that time and find the
shock positions. Draw the characteristic curves on a space-time diagram. Sketch the solution for
u upto and beyond the formation of the shock, indicating how can avoid a multivalued solution
using an “equal-areas rule”. Briefly justify that rule using the integral form of the conservation
law corresponding to the PDE and derive a formula for the speed of a shock. For the given initial
condition, do the shocks move left, right or stay where they are?

Helpful information:

The Sturm-Liouville differential equation:

d

dx

[
p(x)

dy

dx

]
+ q(x)y + λσ(x)y = 0.

Legendre’s equation is
(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0.

Bessel’s equation is
z2y′′ + zy′ + (z2 −m2)y = 0,

and has the solution, y = Jm(z), which is regular at z = 0.

Fourier Transforms:

f̂(k) = F{f(x)} =

∫ ∞
−∞

f(x)e−ikxdx, f(x) = F−1{f̂(k)} =
1

2π

∫ ∞
−∞

f̂(k)eikxdk

Laplace Transform:

f(s) = L{f(t)} =

∫ ∞
0

f(t)e−stdt.

Convolution:

f ◦ g =

∫ ∞
−∞

f(x′)g(x− x′)dx′.

Helpful trigonometric relations:

cos(A+B) = cosA cosB − sinA sinB, sin(A+B) = sinA cosB + cosA sinB.
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Some solutions

1. Solved in class.

1*. If x = cos θ, then cos 3θ = 4x3 − 3x = 8
5P3(x) − 3

5P1(x), using a trig relation and given that
P1(x) = x and P3(x) is an odd polynomial of degree 3 with normalization Pn(1) = 1 (so setting
P3 = Ax3 + (1−A)x and plugging into Legendre’s equation gives A = 5

2).
The boundary condition is independent of φ and so u = R(r)Y (x). The usual separation of

variables procedure implies that R(r) is given by r−n−1 and Y (x) by Pn(x) where n = 0, 1, ...
(discarding the other solutions which are irregular for r →∞ and x = ±1).

Hence u =
∑∞

n=0 cnr
−n−1Pn(x) = 8

5r
−4P3(x) − 3

5r
−2P1(x), given the boundary condition at

r = 1.

2**. Fourier transforming the PDE and initial conditions implies ûtt = −k4û, û(k, 0) = 1 and
ût(k, 0) = 0. Hence û(k, t) = cos k2t. Inverting the Fourier transform gives

u(x, t) =
1

2π

∫ ∞
−∞

cos k2t eikxdk =
1

4π

∫ ∞
−∞

[cos(k2t+kx)+i sin(k2t+kx)+cos(k2t−kx)−i sin(k2t−kx)]dk.

Using the handy changes of variable κ =
√
t(k ± x

2t) and the trig relations again, one obtains the
desired answer given integrals provided.

3*. Laplace transforming the PDE and boundary condition:

ūx+(s−1)ū = 1+
2

s3
& ū(0, s) = f̄(s), −→ ū =

s3 + 2

s3(s− 1)
[1−e−(s−1)x]+e−(s−1)xf̄(s).

Inverting the Laplace transform after using a partial fraction and the shifting theorem gives

u = exf(t− x)H(t− x) + 3et − 2− 2t− t2 − ex[3et−x − 2− 2(t− x)− (t− x)2]H(t− x).

3**. Solved in class.

4. Applying the method of characteristics gives the implicit solution u = tanhx0 = tanh(x+ ut).
Hence

ux =
sech2x0

1− t sech2x0
.

This first diverges for t = 1 at x0 = x = 0. Returning to the integral form of the conservation law,
one finds that a shock located at x = X(t) travels with speed

dX

dt
= −1

2
(u+ + u−)

where u± denote the values of u to either side of the shock. Since u(x, t) is odd, u− = −u+ and so
the shock is stationary.

4**. The characteristic equations are

dx

dt
= u− 1 &

du

dt
= e−t.

Hence, u = f(x0) + 1 − e−t and x = x0 + tf(x0) + e−t − 1, if u(x, 0) = f(x) denotes the initial
condition. That is, u = 2− e−t for x0 = x− t− e−t + 1 < 0, u = 1− e−t for x0 = x− e−t + 1 > 1
and

u =
1− x− t+ te−t

1− t
for 0 ≤ x0 ≤ 1 or t+ e−t − 1 ≤ x ≤ e−t. The central region shrinks to the point x = e−1 at t = 1,
implying where and when the shock forms.
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MATH 400, final 2017 – Solution

1. (11 points) Let u = R(r)Y (x)T (t) where x = cos θ. Then, separating variables,

T ′′ + ω2T = 0, [(1− x2)Y ′]′ + λY = 0, (r2R′)′ − λR+ ω2r2R = 0.

Thus, T is given by sinωt and Y by Pn(x), with λ = n(n + 1) and n = 0, 1, 2, ..., in view of
u(r, θ, 0) = 0 and demanding regularity at x = ±1. Introducing R = X/

√
r as suggested reduces

the R−equation to Bessel’s equation with m2 = 1
4 + n(n + 1) ≡ (n + 1

2)2 and X = Jm(ωr), after
demanding regularity at r = 0 which eliminates Ym(r). But u(1, θ, t) = 0, and so ω must be a zero
of Jm(z). Denoting the jth zero of Jm(z) by zmj , we therefore find a general solution,

u = r−1/2
∞∑
j=1

∞∑
n=0

cnj sin(zmjt)Pn(x)Jm(zmjr)

(7 points so far, including comments as to why one chooses Pn(x) and Jm(r)/
√
r). The coefficients

cnj must be chosed to fit the initial condition:

ut(r, θ, 0) = x3g(r) ≡ 1

5
[2P3(x) + 3P1(x)]g(r),

given that P1(x) = x, Pn(1) = 1 and P3(x) is an odd cubic polynomial (so a little algebra with
Legendre’s equation gives P3 = (5x3 − 3x)/2) (2 points, some indication needed for where the
polynomials come from). Hence, given the Sturm-Liouville form of Bessel’s equation,

cnj =

∫ 1
0 g(r)Jm(zmjr)r

3/2dr

zmj
∫ 1
0 [Jm(zmjr)]2rdr

×
{

3/5 n = 1
2/5 n = 3

,

and cnj = 0 otherwise (2 points, some indication needed for where the weight functions come from).

2. (9 points) From the definition of the Fourier transform,

F{f ◦ g} =

∫ ∞
−∞

∫ ∞
−∞

e−ikxg(x− x′)f(x′)dxdx′ =

∫ ∞
−∞

∫ ∞
−∞

e−ikz−ikx
′
g(z)f(x′)dxdz

F−1{f̂(ak)} =
1

2π

∫ ∞
−∞

eikxf̂(ak)dk =
1

2πa

∫ ∞
−∞

eiκ(x/a)f̂(κ)dκ

and

F−1{e−|k|} =
1

2π

∫ 0

−∞
eikx+kdk +

1

2π

∫ ∞
0

eikx−kdk =
1

2π(ix+ 1)
− 1

2π(ix− 1)
,

which establish the desired results (3 points).
Transforming the PDE:

ûyy = 4k2û −→ û(k, y) = û(k, 0)e−2|k|y = ĝ(k)e−2|k|y.

Using the results above with a ≡ y and f̂ = e−|k| gives

u =
2y

π

∫ ∞
−∞

g(x′)dx′

4y2 + (x− x′)2

=
1

π
tan−1

(
1− x

2y

)
+

1

π
tan−1

(
1 + x

2y

)
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for the specific example of g(x) (6 points).

3. (10 points) From the definitions,

L{f(t− a)H(t− a)} =

∫ ∞
a

f(t− a)e−stdt = e−sa
∫ ∞
0

f(τ)e−sτdτ = e−saf̄(s)

L{e−bt} =

∫ ∞
a

e−(s+b)tdt =
1

b+ s

(2 points).
Given L{ut(a, t)} = s(̄u)(a, s)− u(a, 0) and u(a, 0) = 0, Laplace transforming the PDE gives

ūa = −(s+ µ)ū −→ ū(a, s) = ū(0, s)e−saS(a).

(2 points, including explicit incorporation of the initial condition and care with the limits of the
integrals).

Taking the transform of the condition at a = 0:

ū(0, s) = b̄(s) +

∫ ∞
0

B(a)ū(a, s)da −→ ū(0, s) =
b̄(s)

D(s)
& ū(a, s) = S(a)

b̄(s)e−sa

D(s)
,

which gives the desired result. (3 points).
For the sample functions,

S(a) = 1, D(s) =
s

s+ 1
, b̄(s) =

1

ν + s
,

and so

ū(a, s) =
(s+ 1)

s(s+ ν)
e−sa =

[
1

s
− 1− ν
s+ ν

]
e−sa

ν
& u(a, t) =

1

ν
H(t− a)[1− (1− ν)e−ν(t−a)].

if ν 6= 0, and u(a, t) = (1 + t − a)H(t − a) if ν = 0. (3 points, including explicit consideration of
the case ν = 0).

4. (11 points) The characteristics equations and solution:

dx

dt
= −u &

du

dt
= 0 −→ x = x0 − ut & u = cosx0 = cos(x+ ut).

Hence,

ux = − sinx0
1 + t sinx0

,

which first diverges for x0 = x = −1
2π = 3

2π = 7
2π = ... at t = 1. (3 points).

The integral form of the conservation law is

d

dt

∫ b

a
u(x, t)dx =

1

2
[u2(x, t)]ba

For the equal-areas rule, one surgically removes the multivalued part of the solution by introducing
a vertical line that cuts out equal area to either side; this is justified by the integral form of the
conservation law which demands that

∫∞
−∞ udx (the signed area underneath the curve of u) is
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constant in time if there is no flux into or out of the full spatial domain (a → −∞, b → ∞). If u
jumps from u− to u+ at x = X(t), then

d

dt

∫ X

a
u(x, t)dx+

d

dt

∫ b

X
u(x, t)dx =

∫ X

a
ut(x, t)dx+

∫ b

X
ut(x, t)dx+ (u+ − u−)

dX

dt
=

1

2
[u2(x, t)]ba

Taking the limits a→ X− and b→ X+ now gives

dX

dt
= −1

2
(u+ + u−).

For the case at hand, the symmetry of the solution using the method of characteristics implies that
u− = −u+ and so the shocks are stationary, as also implied by the graphical solution. (5 points).

Sketches: 3 points.
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