
Pizza time!

Closed book exam; no calculators. Adequately explain the steps you take and answer as much as you
can (partial credit awarded).

1. Professor Z has invented a new system to cook pizza slices from the circular edge. The temperature
satisfies

0 =
1

r
(rur)r +

1

r2
uθθ

with

0 ≤ θ ≤ α, u(1, θ) =
θ

α

(

1−
θ

α

)

, u(r, 0) = u(r, α) = 0,

where α is the (constant) angle of the wedge-shaped slice. Solve this problem using separation of variables.
Verify Professor Z’s assertion that the temperature of the midsection (θ = 1

2α) is approximately equal to

Crπ/α to within a relative error of about 4%, where C is a constant that you should calculate.

2. After being cooked, the pizza slice cools according to

ut =
1

r
(rur)r +

1

r2
uθθ − u

with
0 ≤ θ ≤ α, u(1, θ) = uθ(r, 0) = uθ(r, α) = 0, u(r, θ, 0) = u0(r) + u2(r) cos(2πθ/α).

Solve this problem using separation of variables (it is fine if coefficients are expressed as integrals). Over
long times, how is temperature distributed over the slice and what is the final decay rate?

Helpful information:

Fourier Series:

For a periodic function f(x) with period 2L, the Fourier series is

f(x) =
1

2
a0 +

∞
∑

n=1

[

an cos
(nπx

L

)

+ bn sin
(nπx

L

)]

with

a0 =
1

L

∫ L

−L

f(x) dx, an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)

dx, bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)

dx.

For any non-negative constant ν, Bessel’s equation

z2y′′ + zy′ + (z2 − ν2)y = 0.

has a regular solution, y(z) = Jν(z), with Jν(z) ∝ zν for z → 0, and an infinite number of zeros at
z = zνn > 0, n = 1, 2, ... (i.e. Jν(zνn) = 0). We have zν1 > z01 ≈ 2.405 for any ν > 0.

The Sturm-Liouville ODE is

[p(x)y′]′ + λσ(x)y + q(x)y = 0, a < x < b,

with σ(x) > 0 and p(x) > 0. The associated expansion formula using the eigensolutions {λn, yn(x)} is

f(x) =
∞
∑

n=1

cnyn(x), cn =

∫ b

a
f(x)yn(x)σ(x)dx

∫ b

a
[yn(x)]2σ(x)dx

.

Helpful trig identities:

cos(A±B) = cosA cosB ∓ sinA sinB & sin(A±B) = sinA cosB ± cosA sinB.
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Midterm exam - solution

1. We separate variables: u(r, θ) = R(r)Θ(θ), giving

Θ′′

Θ
= −

r(rR′)′

R
= −λ.

Hence Θ ∝ sinMθ and R ∝ rM , with M = mπ/α and m = 1, 2, ..., given that we want a non-trivial solution
that is regular for r → 0 and Θ(0) = Θ(α) = 0. Hence

u(r, θ) =
∞
∑

m=1

bmrM sinMθ (M = mπα−1).

This solution is justified by extending everything as odd periodic functions wth period 2α, or by using
Sturm-Liouville theory. Moreover, the coefficients bm are given by

bm =

∫ α

0

θ

α

(

1−
θ

α

)

sinMθ dθ ×

[
∫ α

0

sin2 Mθ dθ

]

−1

= 2

∫ 1

0

x(1− x) sinmπx dx =
4[1− (−1)m]

m3π3

Along the midsection θ = π, sinMθ = sin(πm/2) and so

u =
8

π3

[

ra −
r3a

27
+

r5a

125
+ ...

]

with a = πα−1. Thus u ≈ Cra, as required, with C = 8/π3. Also, the next terms in the series are less than
1/25 ≡ 4% at their greatest (negative) size at r = 1.

2. We separate variables for the PDE, u = R(r)Θ(θ)T (t), finding

Tt = −(1 + k2)T, Θθθ = −M2Θ, r2Xrr + rXr +
(

k2r2 −M2
)

X = 0.

The solutions are T ∝ e−(1+k2)t, Θ ∝ sinMθ or cosMθ if M > 0 or a constant if M = 0, and the Bessel
function JM (kr). The boundary conditions in angle demand M = mπ/α and Θ ∝ cos(mπθ/α) (m = 1, 2, ...)
or Θ = constant (m = 0), whereas that at r = 1 demands that k = zMn, the nth zero of JM (z). However,
the initial condition has only two pieces, one independent of θ and the other proportional to cos(2πθ/α).
Therefore,

u =

∞
∑

n=1

c0nJ0(z0nr)e
−(1+z2

0n
)t + cos(2πθ/α)

∞
∑

n=1

cνnJν(zνnr)e
−(1+z2

νn
)t, ν = 2πα−1.

Using the Sturm-Liouville expansion formula, the coefficients must be given by

c0n =

∫ 1

0

u0(r)J0(z0nr)rdr ×

[
∫ 1

0

[J0(z0nr)]
2rdr

]−1

cνn =

∫ 1

0

u2(r)Jν(zνnr)rdr ×

[
∫ 1

0

[Jν(zνnr)]
2rdr

]−1

.

For large times, the first, θ−independent term dominates with

u ≈ c01J0(z01r)e
−at with a = 1 + z201 (z01 ≈ 2.405).
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