
Math 400 - midterm

Closed book exam; no calculators. Adequately explain the steps you take and answer as much as you
can (partial credit awarded).

Consider diffusion on a disk of unit radius. The mission is to solve the PDE,

ut =
1

r
(rur)r +

1

r2
uθθ, u(r, θ, 0) = 0, u(1, θ, t) = f(θ),

where f(θ) is an odd, 2π−periodic function of angle. A difficulty is that the boundary condition at r = 1
makes the problem inhomogeneous. Therefore to solve the full initial-value problem, we must first find a
steady-state solution that we can employ to homogenize the boundary condition.

(a) Using separation of variables, find the steady-state solution, u = U(r, θ), writing your answer as a Fourier
series in angle. Compute the coefficients for the special case with

f(θ) =

{

–1, −π < θ < 0
1, 0 < θ < π

(∗)

(b) For general f(θ), exploit the identity
∑∞

n=1 z
n = z/(1− z) to sum the series and write your steady-state

in terms of a single integral. What is U(r, 0)? Briefly comment on the limit of your integral for r → 1.

(c) Using your solution for U(r, θ) from part (a), set u(r, θ, t) = U(r, θ) + v(r, θ, t), and write down the
problem for v(r, θ, t). Solve this problem to find the solution to the original initial-value problem.

(d) For the special case with f(θ) given by equation (∗), use the helpful results provided below to evaluate
all the integrals in the coefficients of your series solution.

Helpful information:

The Fourier Series: of a periodic function f(x) with period 2L is given by is

f(x) =
1

2
a0 +

∞
∑

n=1

[

an cos
(nπx

L

)

+ bn sin
(nπx

L

)]

,

a0 =
1

L

∫ L

−L

f(x) dx, an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)

dx, bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)

dx.

For m = 0, 1, 2, ..., Bessel’s equation

z2y′′ + zy′ + (z2 −m2)y = 0.

has a regular solution, y(z) = Jm(z), with Jm(z) ∝ zm for z → 0, and a singular solution, y(z) = Ym(z).
The Bessel functions of the first kind, Jm(z), satisfy the relations,

d

dz
(zm+1Jm+1) = zm+1Jm

∫ z

0

z[Jm(z)]2dz =
1

2
z2[J ′

m(z)]2 +
1

2

(

z2 −m2
)

[Jm(z)]2.

The Sturm-Liouville ODE is

[p(x)y′]′ + λσ(x)y + q(x)y = 0, a < x < b,

with σ(x) > 0 and p(x) > 0. The associated expansion formula using the eigensolutions {λn, yn(x)} is

f(x) =

∞
∑

n=1

cnyn(x), cn =

∫ b

a
f(x)yn(x)σ(x)dx

∫ b

a
[yn(x)]2σ(x)dx

.

Helpful trig identities:

cos(A±B) = cosA cosB ∓ sinA sinB & sin(A±B) = sinA cosB ± cosA sinB.
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Midterm exam - solution

(a). (8 points) For the steady-state solution, we set U = R(r)Θ(θ), plug in to the PDE, and find

−
Θ′′

Θ
=

(rR′)′

R
, or Θ = −m2Θ, r2R′′ + rR′ −m2R = 0,

where m2 is a separation constant (2 points).
The solution for Θ(θ) must be 2π−periodic, and so m = 0, 1, 2, ... with either a constant solution (for

m = 0), or a sinmθ or a cosmθ (for m > 0). But the boundary condition states that U(1, θ) = f(θ) is an
odd, 2π−periodic function. Therefore, all we need are the sinmθ solutions with m > 1. The R− equation
has Euler form, with power-type solutions, R ∝ r±m. Discarding the singular solutions for r → 0, we now
end up with the general solution (a Fourier sine series),

U =

∞
∑

m=1

bmrm sinmθ. (4 points).

Using Fourier series theory, we know that

bm =
2

π

∫ π

0

f(θ) sinmθ dθ. (1 point).

For the special case, we find

bm =
2

mπ
[1− (−1)m] (1 point).

(b). (7 points) We rewrite the general solution above as

U =
2

π

∫ π

0

f(θ̂)
∞
∑

m=1

rm sinmθ̂ sinmθ dθ̂

=
1

2π

∫ π

0

f(θ̂)

∞
∑

m=1

rm[eim(θ−θ̂) + e−im(θ−θ̂) − eim(θ+θ̂) − e−im(θ+θ̂)] dθ̂

=
1

2π

∫ π

0

f(θ̂)

[

rei(θ−θ̂)

1− rei(θ−θ̂)
+

re−i(θ−θ̂)

1− re−i(θ−θ̂)
−

rei(θ+θ̂)

1− rei(θ+θ̂)
−

re−i(θ+θ̂)

1− re−i(θ+θ̂)

]

dθ̂

=
1− r2

2π

∫ π

0

f(θ̂)

[

1

1 + r2 − 2r cos(θ − θ̂)
−

1

1 + r2 − 2r cos(θ + θ̂)

]

dθ̂

(4 points). The final simplications are not necessary.
Plugging in θ = 0 gives U(r, 0) = 0 (1 point).
If we set r = 1, then the integrand appears to vanish everywhere, even though the integral should equal

f(θ). However, the integrand also becomes undefined for θ → θ̂ and r → 1. Thus, in the limit, the integrand

must provide a representation of the delta function δ(θ − θ̂) (periodically extended as an odd, 2π−periodic
function) (2 points).

(c). (12 points) We now set u(r, θ, t) = U(r, θ) + v(r, θ, t), to find the problem,

vt = ∇2v, v(r, θ, 0) = −U(r, θ), v(1, θ, t) = 0

(2 points). Separating variables once more, we set u = R(r)Θ(θ)T (t), to find

Tt = −k2T, Θθθ = −m2Θ, r2Xrr + rXr +
(

k2r2 −m2
)

X = 0,
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for two more separation constants m2 and k2 (2 points). Again, we pick m = 1, 2, ... and Y ∝ sinmθ. The

solution in time is now T ∝ e−k2t. Finally, that in radius is X ∝ Jm(kr), on recognizing that we now have
Bessel’s equation (for z = kr) and after eliminating the singular solution at r = 0. The boundary condition
v(1, θ, t) = 0, or X(1) = 0, now implies that k must be a zero of Jm(z). Denoting the jth such zero by zmj ,
we now arrive at the general solution,

v =
∞
∑

m=1

∞
∑

j=1

cmjJm(zmjr)e
−z2

mjt sinmθ

(4 points). Because the X−problem here is a Sturm-Liouville problem, and in view of the solution in (a),
we may write

cmj =
bm

∫ 1

0
rmJm(zmjr)rdr

∫ 1

0
[Jm(zmjr)]2rdr

(4 points).

(d). (4 points) For the special case bm is given analytically in (b). Moreover, from the helpful
information, we observe that

∫ 1

0

rm+1Jm(zmjr)dr = z−m−2
mj

∫ zmj

0

zm+1Jm(z)dz = z−1
mjJm+1(zmj)

and
∫ 1

0

[Jm(zmjr)]
2rdr = z−2

mj

∫ zmj

0

[Jm(z)]2zdz =
1

2
[J ′

m(zmj)]
2.

Hence,

cmj =
4[1− (−1)m]Jm+1(zmj)

mπzmj [J ′
m(zmj)]2

.
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