
Math 400 - N. Balmforth (njbmath.ubc.ca, Math 229C)

Pre-amble

The course webpage: www.math.ubc.ca/˜njb/Math400.htm

Suggested text: R. Haberman, Applied PDEs

Assessment: coursework, midterm, final (breakdown to be determined)

Office hours: to be determined

Main topics:
• Separation of variables and eigenfunction expansions (§2, 4, 7)
• Fourier and Laplace Transforms (§10, 13)
• Method of characteristics (§12)
(chapters numbers refer to the 4th edition of Haberman’s book)

Definitions and notation

The essential problem:
• To find a function [u(x, y) or u(x, t) or u(x, y, t) etc.]

of multiple independent variables [(x, y) or (x, t) or (x, y, t) etc.]
• The differential equation: an algebraic relation between the independent variables, u and its deriva-
tives: 

F (x, t, u, ux, ut, uxx, utt, uxt, ...) = 0, or
F (x, y, u, ux, uy, uxx, uyy, uxy, ...) = 0, or
F (x, y, t, u, ux, uy, ut, ...) = 0.

• Shorthand notation for derivatives: for u(x, y),

ux =
∂u

∂x

∣∣∣∣
y

≡ ∂u

∂x
, uy =

∂u

∂y

∣∣∣∣
x

≡ ∂u

∂y
, uxx =

∂2u

∂x2
, uyy =

∂2u

∂y2
, uxy =

∂2u

∂x∂y
,

• Boundary and/or initial conditions on the edges of the domain of the independent variables over
which the PDE is to be solved

The independent variable t is usually a time-like quantity, requiring suitable initial conditions.
The variables x, y etc. are typically space-like variables, demanding boundary data.

Organization

* Order The number of derivatives on the most differentiated term, for each independent variable

* Dimension: The number of independent variables

* Domain: The window of space and time for the solution

* Linear versus nonlinear: The PDE is linear if F is a linear function of u and its derivatives

e.g. The wave equation

∂2u

∂t2
= C2∂

2u

∂x2
or utt = C2uxx

where the wavespeed C is a prescribed coefficient, is linear, second-order in space (x) and time (t),
and has two dimensions (x and t). It is normally solved on the domain t ≥ 0 and a ≤ x ≤ b, with
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initial conditions on u(x, 0) and ut(x, 0), and boundary conditions at x = a and x = b. Wave-like
solutions include the travelling or standing waves,

u(x, t) = sin(x− Ct) or u(x, t) = sinx sinCt.

A more general solution is d’Alembert’s:

u(x, t) = f(x− Ct) + g(x+ Ct),

where f(z) and g(z) are arbitrary functions. All these solutions can be verified by plugging and
chugging with the PDE. At t = 0, u(x, 0) = f(x) + g(x) and ut(x, 0) = C[g′(x) − f ′(x)], indicating
that initial conditions on u(x, 0) and ut(x, 0) are sufficient to pin down a unique solution (i.e. find
f(z) and g(z)). D’Alembert’s solution is suitable for an infinite spatial domain −∞ < x < ∞, in
which case the boundary conditions in x are not relevant at finite times.

The Korteweg de Vries equation, ut + uux = uxxx, is two-dimensional, first-order in time, third-
order in space; it is nonlinear because of the uux term. At the initial moment u(x, 0) is normally
provided, and boundary conditions are needed in x.

Linear PDEs have the property that known solutions can be linearly superposed to generate new
solutions. i.e. if u1(x, y) and u2(x, y) satisfy the PDE, then so does a1u1 + a2u2 if a1 and a2 are
arbitrary constants. Much of Math400 will be concerned with these linear PDEs; only when we
consider the method of characteristics will we advance into the realm of nonlinear PDEs.

Classification

The general form of a linear, second-order, two-dimensional PDE for u(x, y) is

auxx + buxy + cuyy + dux + euy + fu = g.

The coefficients (a, b, ..., g) may be functions of the independent variables x and y (but not u and its
derivatives). The principal part of this PDE consists of the three second-order derivative terms:

auxx + buxy + cuyy

Introduce the replacements, ∂/∂x→ ξx and ∂/∂y → ξy:

(aλ2 + bλ+ c)ξ2yu, λ =
ξx
ξy
.

The PDE is classified according to the roots of the first factor: if the roots are real, b2 > 4ac, the
PDE is said to be hyperbolic; if the roots are complex and b2 < 4ac, the PDE is elliptic. Finally, if
b2 = 4ac, and the roots are real and equal, the PDE is parabolic.

Laplace’s equation or the Helmholtz equation,

∇2u = uxx + uyy = 0 or ∇2u = uxx + uyy = ρ(x, y)

where ρ(x, y) is a prescribed function, have a = c = 1 and b = 0, rendering them elliptic; the wave
equation (with unit wavespeed)

uxx = utt

has a = 1 = −c and b = 0, indicating that it is hyperbolic (identifying t with y). The diffusion
equation

ut = κuxx
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(the coefficient κ, or “diffusivity”, is a physical constant), has b = c = 0, and so it is parabolic.
Classification has something to do with the geometry of the solution u(x, y), which can be thought

of as a surface above the (x, y)−plane. The PDEs of each of these classes share many common
properties. Consequently, we can understand much about any linear, second-order, two-dimensional
PDEs simply by looking at the canonical three examples given above: Laplace’s equation, the wave
equation and the diffusion equation.

Heat or diffusion equation

Consider a long thin rod along which heat diffuses. Let T (x, t) denote the temperature at position
x and time t. The heat content of the element a ≤ x ≤ b is given by∫ b

a
ρcpT (x, t) dx

where ρ and cp are density and specific heat. This heat content changes according to the flux of heat
in and out, and due to any sources or sinks. If S(x, t) denotes the (line) density of any sources and
sinks, we have

d

dt

∫ b

a
ρcpT (x, t) dx = flux in− flux out+

∫ b

a
S(x, t) dx.

According to Fourier’s law, the flux is proportional to temperature gradient and heat flows from hot
to cold: flux = −k ∂T

∂x , where k is a physical constant. Thus,

d

dt

∫ b

a
ρcpT dx = −

[
k
∂T

∂x

]
x=a

+

[
k
∂T

∂x

]
x=b

+

∫ b

a
S dx ≡

∫ b

a

[
∂

∂x

(
k
∂T

∂x

)
+ S

]
dx.

We may bring the time derivative inside the integral, in which case it should be interpreted as a
partial derivative, holding x fixed. Then,∫ b

a
(ρcpTt − kTxx − S) dx = 0.

But, because the endpoints a and b are arbitrary, this can only hold if the integrand itself vanishes
eveywhere. Thus,

Tt = κTxx + s, κ =
k

ρcp
, s =

S

ρcp
.

This must be solved subject to an initial temperature profile T (x, 0), and boundary conditions, such
as fixed temperature T = T0 at (say) x = 0 and x = L.

As a last step, one can rescale x to resize the domain, rescale t to eliminate the coefficient κ (pro-
vided it is constant), and adjust the dependent variable T (x, t) to remove the reference temperature
and its physical units: T = T0 + T0u(x, t). The dimensionless mathematical problem that we end up
with is then more compact and something like

ut = uxx + q(x, t), u(x, 0) = f(x), 0 ≤ x ≤ π, u(0, t) = u(π, t) = 0,

where the (rescaled, dimensionless) initial profile f(x) and source density q(x, t) are prescribed, and
we choose a scaled domain length of π because of the Fourier series theory to appear shortly. This is
not to say that the coefficients of the original PDE are not important: they contain essential physical
information regarding dimensional units, which is critical in any application of the mathematical
analysis. But for the purposes of Math400, we will not be concerned about that, and focus on
dimensionless mathematical problems.
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