
Sturm-Liouville problems

This theory surrounds the ODE:

d

dx

[
p(x)

dy

dx

]
+ q(x)y + λσ(x)y = 0 (1)

which is to be solved on the interval a ≤ x ≤ b subject to the constraints that p(x) ≥ 0 and σ(x) ≥ 0
(over that interval), and certain boundary conditions. Those boundary conditions take one of three
forms:

(i) C1y(a) + C2y
′(a) = 0, D1y(b) +D2y

′(b) = 0, (2)

(ii) Regularity, if p(a) = 0 or p(b) = 0. (3)

(iii) Periodic conditions : y(a) = y(b) & y′(a) = y′(b). (4)

Here, (C1, C2) and (D1, D2) correspond to suitably chosen constants. Sturm-Liouville (SL) problems
can also combine boundary conditions of types (i) and (ii).

In the SL ODE (1), the parameter λ is not known, but must be found as part of the solution.
In particular, unless λ takes one of a set of special values, the only solution is trivial; the non-trivial
solutions at the special values of λ are those that are of interest. All this means that the SL problem
is the differential equivalent of a matrix eigenvalue problem. i.e. a differential eigenvalue problem, in
which λ is the eigenvalue and y(x) is the “eigenfunction.”

e.g. Solve

ut + tu = uxx, u(0, t) = 0, ux(L, t) + u(L, t) = 0, u(x, 0) = f(x).

Separation of variables with u(x, t) = X(x)T (t) gives

T ′ + tT

T
=
X ′′

X
= −λ,

where λ is a separation constant. For the space part of the problem, we have X ∝ sin kx with k2 = λ,
given that X(0) = 0. But the other boundary condition now implies that

k cos kL+ sin kL = 0, or tan kL = −k. (5)

This is a trancendental algebraic equation for k (or λ). In view of the periodic nature of the tan
function, there are an infinite number of solutions that can be constructed graphically; see figure 1.
The solution at k = 0 can be discounted as it leads to a trivial solution for X(x). There is also
no need to consider the solutions with k < 0, as λ = k2, and any change in sign of sin kx can be
absorbed into the arbitrary constant in front of that function in X(x). The positive solutions for k
can be effortlessly computed in MATLAB (using fzero, for example). For the first few and L = 1, we
find

k ≈ 2.029, 4.913, 7.979, 11.086 (6)
1
2(2n− 1)π ≈ 1.571, 4.712, 7.854, 10.996. (7)

The solutions rapidly converge to k ≈ 1
2(2n − 1)π as n increases, for reasons that are obvious from

figure 1.
The time part of the PDE problem now gives

T (t) = C exp
(
−k2nt− 1

2 t
2
)
,
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Figure 1: Graphical solution of (5) for L = 1.

for some arbitrary constant C, where kn denotes the nth possible value of k. Hence the general
solution of the PDE is

u(x, t) =
∞∑
n=1

cne
−1
2 t

2−k2nt sin knx.

The constants cn must be selected to enforce the initial condition,

f(x) =
∞∑
n=1

cn sin knx. (8)

But no amount of weird extensions or choice of period will reduce this to a genuine Fourier series. So
our previous methodology, relying on Fourier series theory to justify the analogue of (8), is royally
messed up. The space problem (for X(x)) is, however, a SL problem (we have X(x) ≡ y(x), p(x) =
σ(x) = 1 and q(x) = 0; a = 0 and b = L; both BCs are of type (i), with C2 = 0 and C1 = D1 = D2 =
1), and we can use SL theory for the justification instead.

Sturm-Liouville theory

SL theory establishes certain properties of the solutions to (1)-(4):
• The solution pairs [λ, y(x)] = [λn, yn(x)] form an infinite sequence, n = 1, 2, ...
• The eigenvalues can be ordered such that λ1 < λ2 < λ3 < ..., with λn →∞ for n→∞ (as seen in
the example above).
• yn(x) has exactly n− 1 zeros between x = a and x = b (we will not need this).
• The set {y1(x), y2(x), ...} is complete, in the sense that any continuous function f(x) can be
represented as the series,

f(x) =

∞∑
n=1

cnyn(x). (9)

The last point here establishes that it is justified to write (8) in the previous example; no need for
any Fourier series or painful extensions.

This might make you wonder why we bothered with Fourier series in previous lectures! It now
turns out that if we can identify that we have a SL problem (by comparing our ODE with (1) and
matching with the boundary conditions in (2)-(4)), then the SL theory immediately justifies our
expansion in terms of the SL eigenfunctions. Indeed, this is far more straighforward than the Fourier
series folderol.
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Orthogonality and the Sturm-Liouville expansion formula

The SL eigenfunctions are orthogonal in the sense that∫ b

a
yn(x)ym(x)σ(x) dx = 0, if n 6= m. (10)

Note the σ(x) here!
To establish this orthogonality relation, we take the ODE for yn, multiply by ym and integrate:∫ b

a
ym

d

dx

[
p

dyn
dx

]
dx+

∫ b

a
qymyn dx+ λn

∫ b

a
ymynσ dx = 0.

Similarly, from the ODE for ym(x), we have∫ b

a
yn

d

dx

[
p

dym
dx

]
dx+

∫ b

a
qymyn dx+ λm

∫ b

a
ymynσ dx = 0.

Subtracting these two relations, we end up with∫ b

a

{
ym

d

dx

[
p

dyn
dx

]
− yn

d

dx

[
p

dym
dx

]}
dx+ (λn − λm)

∫ b

a
ymynσ dx = 0.

But a speedy integration by parts and use of the various SL boundary conditions immediately demon-
strates that the first integral cancels identically. Hence, as long as n 6= m, (10) follows. And we now
see why there must be a σ(x) in this orthogonality relation.

As a final piece of the SL puzzle, it is all very well being able to write the series in (9), but
it is absolutely useless if we cannot find a convenient way of computing the coefficients cn. To do
this, we use the same trick that we used for Fourier series: we multiply the series by one of the SL
eigenfunctions and σ(x), then integrate. The orthogonality relation ensures that we pick out one of
the coefficients in this way:∫ b

a
fymσ dx =

∞∑
n=1

cn

∫ b

a
ymynσ dx = cm

∫ b

a
y2mσ dx.

Hence we arrive at the SL expansion formula,

cm =

∫ b
a f(x)ym(x)σ(x) dx∫ b
a [ym(x)]2σ(x) dx

. (11)

Our previous examples with the heat equation or wave equation all led to spatial problems that
had SL form, and our Fourier sine or cosine series were nothing more than examples of expansions
using SL eigenfunctions. To see this, we note that all those problems descended to the spatial ODE

X ′′ + λX = 0, 0 ≤ x ≤ π,

which is an example of (1) with p = σ = 1, q = a = 0 and b = π. The Dirichlet or Neumann conditions
that we championed are both of the form (2) with either C2 = D2 = 0 or C1 = D1 = 0. The SL
eigenvalues turned out to be λ = n2, n = 1, 2, ... For the Dirichlet conditions u(0, t) = u(π, t) = 0,
the SL eigenfunctions were sinnx. In the case of the Neuman conditions ux(0, t) = ux(π, t) = 0, we
had yn(x) ≡ cosnx, but there is a minor awkward detail in that the first eigenvalue-eigenfunction
pair is (λ, y) = (0, 12). If we insist on always starting the SL sequence with n = 1, this means that
(λ1, y1) = (0, 12), (λ2, y2) = (1, cosx), (λ3, y3) = (4, cos 2x), etc. The nth−member of this sequence is
(λn, yn) = ((n − 1)2, cos(n − 1)x), which is perhaps a tad aesthically displeasing in the mismatch of
the integers on the right and left. In any event, the expansion formula (11) corresponds precisely to
the integrals giving the coefficients of the Fourier sine or cosine series, and there is no need to extend
any functions outside the domain of the PDE when using SL theory to justify the solution.
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Oscillations of a drum

Let’s solve

utt = ∇2u =
1

r
(rur)r +

1

r2
uθθ,


u 2π − periodic in θ,
u regular for r → 0,
u(1, θ, t) = 0,
u(r, θ, 0) = f(r, θ) & ut(r, θ, 0) = g(r, θ).

With separation of variables, we set u(r, θ, t) = R(r)Θ(θ)T (t), plug in, re-arrange, to find

(rR′)′

rR
+

Θ′′

r2Θ
=
T ′′

T
; i .e. funk(r, θ) = funk(t).

Expecting oscillatory solutions in time (this is the wave equation for a drum with unit radius), we
therefore set the right-hand side to a first separation constant −λ = −ω2, to obtain T ∝ sinωt or
cosωt, as long as ω 6= 0. Should the separation constant vanish (λ = ω = 0), T (t) is some linear
function of t. Then,

r(rR′)′

R
+ λr2 = −Θ′′

Θ
; i .e. funk(r) = funk(θ),

so we need a second separation constant, m2. The angular problem Θ′′ + m2Θ = 0 takes SL form,
given that the periodic boundary conditions are of type (iii) in (4) (and a = −π, b = π). Obviously,
Θ ∝ sinmθ or cosmθ with m = 1, 2, ..., or Θ = constant if m = 0, and we are headed to another full
Fourier series in angle.

Last, the radial problem is

(rR′)′ + λrR− m2

r
R = 0. (12)

The signs of the last two terms indicate that we should take λ as the eigenvalue of this SL problem;
p(r) = σ(r) = r ≥ 0. Indeed, we already know what values m must take from the angular SL
problem, so when solving (12), we should treat m as a given parameter. In other words, q ≡ −m2/r.
The boundary conditions, R(r) regular for r → 0 and R(1) = 0, correspond to the type (i) and (ii)
conditions in (2) and (3) (given that p(r) = r → 0 for r → 0). We could now write the radial SL
eigenfunctions as Rn(r;m), n = 1, 2, ..., which highlights the dependence on the given parameter m.
Alternatively, for those that like subscripts or superscripts, we could use the slightly more compact
notation, R = Rmn(r) or R = Rmn (r). Take your pick; I’ll use the last one. We also have that
λ = λmn or ω = ωmn , using this last notation (care must be taken so that we do not confuse the indicial
superscripts with powers).

At this stage, we can formulate a general solution, which takes a form that is something like

u(r, θ, t) =
∑
m

∞∑
n=1

/m
n ×Rmn (r)×


cosmθ, m = 1, 2, ...
sinmθ, m = 1, 2, ...

1, m = 0

×


cosωmn t, ω
m
n 6= 0

sinωmn t, ω
m
n 6= 0

linear funk of t, ωmn = 0

 ,

where /m
n refers to the usual arbitrary constant. This is getting messy, though: we now have a double

infinite sum, which is part Fourier series and part radial SL eigenfunction expansion. Somehow, we
need to use the SL expansion formula to fix the constants /m

n so that we can match up with the
initial conditions. Before doing that, let’s learn a little more about the radial SL problem.

One last general comment, however: when our PDE was of two dimensions (or one space, plus
one time), we ended up with a single SL problem and a single sum. Now that we’ve buffed up in
dimension (here, two space, one time), we arrived at two SL problems and two sums. As you might
guess, adding more dimensions may well give yet more SL problems and sums. In other words,
high dimensional PDEs solved with separation of variables or eigenfunctions expansions feature an
excessive and likely impractical number of sums. Hopefully, we can handle one, two or even three.
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Bessel’s equation

Setting z =
√
λr = ωr, the radial SL problem above can be written as Bessel’s differential

equation,
z2y′′ + zy′ + (z2 − ν2)y = 0.

This is an ODE with non-constant coefficients (oops) that, for general ν, has no solution that can be
expressed in terms of simple elementary functions (such as powers or exponentials). Note that we have
replaced m by a new parameter ν in the ODE here to emphasize how this coefficient need not be an
integer. Despite the lack of a simple analytical solution, a large amount of information is known about
the solutions, as any quick google search will turn up. The on-line “Digital Library of Mathematical
Functions” or DLMF is a particularly useful resource in this regard. The two independent solutions
are usually denoted by Jν(z) and Yν(z). They are examples of special functions, and will become our
friends.

To get a little more familiar with Jν(z), here is a plot of three of them, for ν = 0, 1 and 2. They

Figure 2: Bessel functions for ν = 0 (blue), 1 (green) and 2 (red); the dotted lines show (13) and the
stars are the (nontrivial) zeros.

are wiggly functions with lots of zeros. In fact, when z � 1, it is known that

Jν(z) ≈
√

2

πz
cos
(
z − 1

2νπ −
1
4π
)
, (13)

which certainly does not look so mysterious. It is also known that Jν(z) ∝ zν for z � 1. Both
behaviours can be seen in figure 2. This picture is generated in MATLAB with the in-built function
besselj(nu,z), which performs much as it is written.

Similarly, Yν(z) ∝ z−ν for z � 1, and there is another large-argument approximation like (13).
In fact, the dependences for z → 0 indicate why we usually prefer Jν(z) to Yν(z): z = 0 is a singular
point of Bessel’s ODE. In its vicinity, there is a regular (Jν(z)) and a singular (Yν(z)) solution.
Obviously now, for our oscillating drum problem, the correct SL eigenfunction is Jm(ωr). Moreover,
the other boundary condition (R(1) = 0, which corresponds to pinning the membrane of the drum
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around a ring of unit radius), implies that Jm(ω) = 0. In other words, ω should be a zero of Jm(z),
for which there are an infinite number (this is demanded because there must be an infinite sequence
of SL eigenvalues, and evident from the figure and the limiting form in (13)). i.e. ω = zmn , where zmn
is the nth zero of Jm(z). Note that Jm(0) = 0 for m > 0, but we are normally not interested in that
particular zero.

The limiting form (13) actually indicates

zmn ≈ 1
2(2n− 1

2 + ν)π, n� 1.

More accurately, combining besselj(nu,z) and fzero in MATLAB (or looking at DLMF or other on-line
resources), we may find

z0n ≈ 2.405, 5.520, 8.654, 11.792, 14.931, 18.071
1
2(2n− 1

2)π ≈ 2.356, 5.498, 8.639, 11.781, 14.923, 18.064

z1n ≈ 3.832, 7.016, 10.174, 13.324, 16.471, 19.616
1
2(2n+ 1

2)π ≈ 3.927, 7.069, 10.210, 13.352, 16.493, 19.635

z2n ≈ 5.136, 8.417, 11.620, 14.796, 17.960, 21.117
1
2(2n+ 3

2)π ≈ 5.498, 8.639, 11.781, 14.923, 18.064, 21.206.

The limiting form (13) is evidently not that bad, even when z is not so big. It does, however, mess
up for z � 1.

Note that the general solution to Bessel’s equation is AJν(z)+BYν(z) for two arbitrary constants
A and B. In order to remove any ambiguity in writing down such solution, and to provide defini-
tive information about Bessel functions in general, those special functions are normalized to render
them unique. The normalization of special functions overall is a bit of a mish-mash, with different
special functions normalized in different ways. For Bessel functions, it is conventional to use the
normalization, ∫ ∞

0
Jν(z) dz = 1,

which is not particularly helpful to us. It does imply, though, that J0(0) = 1, as evident in figure 2.
Finally, there is an entire family of differential equations that have different versions of Bessel

functions as the solutions. The family of ODEs can be written in the form

x2y′′ + (1− 2α)xy′ + (ω2β2x2β + α2 − ν2β2)y = 0,

with parameters α, ω, β and ν. The general solution is y = AxαJν(ωxβ)+BxαYν(ωxβ), with arbitrary
constants A and B. This more general family of ODEs will prove useful to us later.

At this stage, you will hopefully be starting to gain a warm and fuzzy feeling about Bessel
functions. Remember, they are our friends. Deep down, there’s not that much difference with the
more familiar exponential or trig function: if I presented you with some value for the argument z, the
chances are that you could not quote to me the value of exp(z) or sin(z). However, you would know
certain special values of the function for certain arguments (like z = 0), and some of its mathematical
properties (such as what happens when it is differentiated). It is much like that with Bessel functions,
although the mathematical properties are typically more convoluted. You can check many of them
out at DLMF.
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Back to the PDE

Returning to the PDE, we now use the fact that the solutions of the radial part of the problem
must be Bessel functions. i.e. Rmn (r) ∝ Jm(

√
λr), given the regularity condition at r = 0. Moreover,

the boundary condition Rmn (1) = 0 demands that Jm(
√
λ) = 0. The fact that Jm(z) is an oscillatory

function with an infinite number of zeros now tells us how to pick λ: if z = zmn denotes the nth zero
of Jm(z) then λ = (zmn)2, or ωmn = zmn, and Rmn (r) ∝ Jm(zmnr). We then arrive at the general
solution,

u =
∞∑
n=1

{
1
2(c0n cos z0nt+ C0n sin z0nt)J0(z0nr)+

∞∑
m=1

[(cmn cos zmnt+ Cmn sin zmnt) cosmθ + (dmn cos zmnt+Dmn sin zmnt) sinmθ]Jm(zmnr)

}
,

given all the possible combinations of acceptable functions.

Simpler initial conditions

If the initial condition contains only a single term of the Fourier series in angle, things are easier.
For example, if f(r, θ) = 0 and g(r, θ) = G(r), then we can drop the sum over m and write1

u(r, θ, t) =
1

2

∞∑
n=1

CnJ0(znr) sin(znt),

using the shorthand, zn = z0n and C0n = Cn. Then,

ut(r, θ, 0) = G(r) =
1

2

∞∑
n=1

znCnJ0(znr).

The fact that Bessel’s equation and our boundary conditions form a SL problem with weight function
σ(r) = r justifies this representation of the solution and indicates that

Cn =
2
∫ 1
0 G(r)J0(znr) rdr

zn
∫ 1
0 [J0(znr)]2rdr

,

from the expansion formula.
Similarly, if f(r, θ) = F (r) sinmθ and g(r, θ) = 0, for some integer m, we have

u(r, θ, t) =
∞∑
n=1

cnJm(znr) cos(znt) sinmθ, cn =

∫ 1
0 F (r)Jm(znr) rdr∫ 1

0 [Jm(znr)]2rdr
,

with zmn → zn and cmn → cn.

The full initial-value problem

To satisfy u(r, θ, 0) = f(r, θ) and ut(r, θ, 0) = g(r, θ) for less specific choices of f and g, we must
suitably choose the coefficients, {c0n, C0n, cmn, Cmn, dmn, Dmn}. This can be accomplished using the

1Originally, in these notes, I ditched the extra factor of 1
2
outside the sum, making the notation for this special case

inconsistent with the full general solution. After the lecture on 6/2/25, I decided this was sloppy and confusing, and
put the 1

2
back in...
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SL expansion formulae, but is a big, bad, book-keeping exercise. One way to proceed is to first expand
the initial conditions as Fourier series:{

f(r, θ)
g(r, θ)

}
= 1

2

{
a0(r)
A0(r)

}
+
∞∑
m=1

[{
am(r)
Am(r)

}
cosmθ +

{
bm(r)
Bm(r)

}
sinmθ

]
.

We can then match up terms to arrive at

∞∑
n=1


cmn

zmnCmn
dmn

zmnDmn

 Jm(zmnr) =


am(r)
Am(r)
bm(r)
Bm(r)

 ,

for both m = 0 and m = 1, 2, ... The SL expansion formula now implies
cmn

zmnCmn
dmn

zmnDmn

 =

[∫ 1

0
[Jm(zmnr)]

2rdr

]−1 ∫ 1

0


am(r)
Am(r)
bm(r)
Bm(r)

 Jm(zmnr) rdr.

Finally, we can even use the definitions of {am(r), Am(r), bm(r), Bm(r)} to write
cmn

zmnCmn
dmn

zmnDmn

 =
1

π

[∫ 1

0
[Jm(zmnr)]

2rdr

]−1 ∫ π

−π

∫ 1

0


f(r, θ) cosmθ
g(r, θ) cosmθ
f(r, θ) sinmθ
f(r, θ) sinmθ

 Jm(zmnr) rdr dθ.

This last result is exactly what one would find by multiplying the original general solution or its
time derivative by the weight function r and pairs of the two sets of SL eigenfunctions (the Fourier
series solutions and the Bessel functions), setting t = 0, and then performing a double integral over
r and θ.
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