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Abstract. For various families of elliptic curves over the integers, we ob-

tain distribution results towards the Lang–Trotter conjecture on average. We

demonstrate the existence of a congruence class bias in this context, and then
investigate this further computationally.

1. Introduction

Let E = E(a, b), for some (suitable) a, b ∈ Z, be an elliptic curve with Weierstrass
equation y2 = x3 + a+ b, where the discriminant is ∆(a, b) = 4a3 + 27b2 ̸= 0. If p
is a prime of good reduction, then the reduction modulo p of E is an elliptic curve
over Fp. For such a p, we define ap(E) := p+1−|E(Fp)|. The statistical properties
of the sequences (ap(E))p have been studied extensively from various perspectives.
Our particular interest lies in the Lang–Trotter conjecture, which predicts that, for
any integer r,

π(x,E(a, b), r) := #{p ≤ x : ap(E) = r} ∼ CE

√
x

log x
,

for some suitable constant CE .
This was shown [4,5] to hold on average for families of elliptic curves of the form

{E(a, b) : |a| ≤ A, |b| ≤ B, a, b ∈ Z,∆(a, b) ̸= 0},
{E(a, b) ∈ FA,B : E(a, b) minimal in its isomorphism class}.

Further averaging results were obtained through the perspective of different fam-
ilies, for example with the work of James [7] on 3-torsion elliptic curves (which
form a subset of density zero in the families above) and many further results
[1, 3, 6, 8, 13,14,16].

In this work, we explore a direction involving thin families determined by a
combination of polynomial and exponential functions (see also Section 4.2 of [6]),
and show that the Lang–Trotter conjecture holds on average for these new families
over various specified congruence classes of primes. We also exhibit the existence
of a congruence class bias in this context.

First let us define, for any subset of primes P and polynomials f, g,

π(x,E(a, b), r, P ) := #{p ≤ x : p ∈ P, ap(E) = r}

and

FA,B(f, g) := {E(f(a), g(b)) : |a| ≤ A, |b| ≤ B, a, b ∈ Z,∆(f(a), g(b)) ̸= 0}.

1
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Theorem 1.1. For positive integers k1, k2, a1, a2, let fki,ai
(n) := nkiani for all

n ∈ N.
(a) Fix ai = −1 and let P be the set of all primes p such that p ≡ −1

(mod 2k1), p ≡ −1 (mod 2k2), and if ki is divisible by 4, then one can
also weaken the corresponding condition to p ≡ −1 (mod ki). If k1, k2 are
both odd, then we instead set P = {p : (ki, p−1) = 1, i = 1, 2}. Then, given
any integer r, for A,B > x1+ϵ, we have

|FA,B(fk1,a1
, fk2,a2

)|−1
∑

|a|≤A,|b|≤B

π (x,E(fk1,a1
(a), fk2,a2

(b)), r, P ) ∼ Ck1,k2,r

√
x

log x
,

as x → ∞, for some specified constant Ck1,k2,r.

(b) Fix ki = 2, and let P =
{
p :

(
ai

p

)
= −1

}
. Then given any integer r, for

A,B > x2+ϵ, we have

|FA,B(fk1,a1
, fk2,a2

)|−1
∑

|a|≤A,|b|≤B

π (x,E(fk1,a1
(a), fk2,a2

(b)), r, P ) ∼ C ′
a1,a2,r

√
x

log x
,

as x → ∞, for some specified constant C ′
a1,a2,r.

We will also prove:

Theorem 1.2. Let gi(n) = nki(ani + bni ), with i = 1, 2, for positive integers ai, bi
and odd ki. Let P := {p : (k, p − 1) = 1, p ∤ a, b}. Then for A,B > x2+ϵ and any
integer r,

|FA,B(g1, g2)|−1
∑

|a|≤A,|b|≤B

π (x,E(g1(a), g2(b)), r, P ) ≥ C

√
x

log x
+ o

( √
x

log x

)
as x → ∞, where the bound C depends on ai, bi, ki.

In special cases, we will describe the constant in Theorem 1.1 explicitly in Sec-
tion 2.4 (in particular, see equation (25)). In examining these constants, one can
determine the existence of a congruence class bias in terms of the occurrence of
primes p such that ap = r, which depends on the congruence conditions used to
determine P . This provides further evidence of the bias observed in [15].

Our paper is structured as follows. In Section 2, we establish modulo p reduction
properties for the families from our theorems. Then we make use of a variant of the
Lang–Trotter conjecture on average under congruence conditions (see earlier work
in [7, 8]), the main aspects of this proof are described for the convenience of the
reader. In Section 3, we examine the implications of our theorems for congruence
class bias on average. In Section 4, we obtain some computations to examine
congruence class bias for individual elliptic curves.

2. Proof

2.1. Equidistribution of certain functions.
We begin our proof with some equidistribution results. We say that f : C → D

is an m-to-one function if the preimage of each element of D has order m.

Proposition 2.1. Let p be an odd prime.

(a) For any positive integer k, let fk : Z → Fp be the function n 7→ annk

(mod p). For any integer c, let Sc := {c, c+ 1, . . . , c+ (2p− 1)}.
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(i) For a = −1, if k is even and p ≡ −1 (mod 2k), then fk|Sc
is a two-

to-one function for any integer c.
(ii) For a = −1, if k is a multiple of 4 and p ≡ k−1 (mod 2k), then fk|Sc

is a two-to-one function for any c.
(iii) For any integer a, if (k, p−1) = 1, then fk|Sc

is a two-to-one function
for any c.

(b) Define Tc := {c, c+1, . . . , c+p(p−1)−1} for any integer c. For any integer

a, if k = 2 and
(

a
p

)
= −1, then fk|Tc

is a (p− 1)-to-one function.

(c) Given positive distinct integers a, b and odd integer k ≥ 3, let gk : Z → Fp

be the function n 7→ nk(an+bn). For an odd prime p such that (k, p−1) = 1
and p ∤ a, b, we have, for any integer c,

| (gk |Tc
)
−1

(u)| ≥ p− 1

2
,

for all u ∈ Fp.

Proof of (a)(i). We first note that 0 is in the image of fk. Given c ∈ F×
p , choose

any integer d such that

d ≡ c(p+1)/2k(mod p).

Then fk(d) ≡ (−1)dc(p+1)/2 (mod p).
We have cp+1 ≡ c2(mod p) by Fermat’s little theorem. Since the polynomial

x2 − c2 ≡ 0 (mod p) has exactly two solutions ±c, we have that c(p+1)/2 ≡ ±c
(mod p). Since

fk(d) ≡ −fk(d+ p) (mod p),

either

fk(d) ≡ c (mod p) or fk(d+ p) ≡ c (mod p).

Therefore c is in the image of fk. We conclude that fk is surjective.
If furthermore we choose d above in {0, . . . , p− 1}, then {d, d+ p} ⊂ S maps to

{c,−c} ⊂ Fp under the function fk, given the construction above. Therefore, fk |S
is a two-to-one function. □

Proof of (a)(ii). Note that the squares are in the image of fk. Indeed, given c ∈ F×
p ,

choose an integer d such that d ≡ c(p+1)/k (mod p). Then

(c(p+1)/k)k ≡ cp+1 ≡ c2 (mod p).

Since k is even, p ≡ k − 1 (mod 2k) ⇒ p ≡ k − 1 (mod 4). If k is a multiple of 4,
this means p ≡ 3 (mod 4), and so −1 is not a square in mod p.

As above, we now note that fk(d) ≡ −fk(d+ p) (mod p), so

{fk(d), fk(d+ p)} = {c2,−c2}.

Therefore, fk is surjective.
Using a similar argument to that in the proof of the previous lemma, we also

obtain that fk |S is a two-to-one function. □

Proof of part (a)(iii). This follows using similar ideas to above. □
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Proof of part (b). For integers ℓ, j note that f(ℓ+ j(p− 1)) ≡ (ℓ− j)2aℓ (mod p).
Under our assumption that a is not a quadratic residue in mod p, we consider the
following multiset over Fp: For odd ℓ, {(ℓ− j)2aℓ|j ∈ {0, . . . , p− 1}} is exactly the
multiset of each quadratic non-residue occurring twice, along with the element 0
occurring once. For even ℓ, it is the multiset of each non-zero quadratic residue
occurring twice, along with the element 0 occurring once. Since {ℓ+ j(p− 1) | ℓ ∈
{0, . . . , p − 2}, j ∈ {0, . . . , p − 1}} = T0, this shows that f2 |T0

is a (p − 1)-to-one
function. The cases for other Tc follow in a similar way. □

Proof of part (c). First, we note that for any n we cannot have an + bn ≡ an+1 +
bn+1 ≡ 0 (mod p). Otherwise, we would have

an+1 + abn ≡ 0 ≡ an+1 + bn+1 (mod p)

which implies a ≡ b (mod p) and so 2an ≡ 0 (mod p), contradicting our assump-
tions. Therefore, an + bn ̸≡ 0 (mod p) for at least half of the elements n ∈ T0.

Given t ∈ T0 with at+ bt ̸≡ 0 (mod p), consider the following (as a subset of Fp){
nk(an + bn) | n = t+ j(p− 1), j ∈ {0, . . . , p− 1}

}
=
{
(t− j)k(at + bt) | j ∈ {0, . . . , p− 1}

}
=Fp.

Since at least half the elements t ∈ T0 have at + bt ̸≡ 0 (mod p), we conclude that

| (gk |T0)
−1

(u)| ≥ (p − 1)/2, for all u ∈ Fp. The proof follows in a similar way for
other cases of Tc. □

2.2. Averaging results. The proof now proceeds in a standard way by following
David–Pappalardi [4], in a similar way to James [7] (see also [8] and [6] for related
work), and applying Proposition 2.1. We present some of the details for the benefit
of the reader, focusing on the special case where r is odd and m is prime.

Let r be an odd integer, and set B(r) = max
(
3, r, r2

4

)
. Letm be a prime number

and c an integer coprime to m. Let d := (r2 − 4p)/f2, h(d) be the class number of
the order of discriminant d, w(d) the number of units in this order, and let

H(r2 − 4p) = 2
∑

f2|r2−4p
d≡0,1 mod 4

h(d)/w(d)

be the Kronecker class number, which gives the number of Fp-isomorphism classes
of elliptic curves over Fp with p + 1 − r points (for r ≤ 2

√
p). Note that f in the

sum takes positive integer values only.
Given an elliptic curve E(a, b)/Fp represented by the equation y2 = x3 + ax+ b,

outside of certain special cases requiring either a or b to be 0, the number of elliptic
curves in the Fp-isomorphism class of E is (p− 1)/2. This means that the number
of elliptic curves E(a, b) where 0 ≤ a, b < p are integers and ap(E(a, b)) = r is
H(r2 − 4p)(p− 1)/2 +O (p) (see Birch [2]).

Let Ff,g(A,B) := {E(f(a), g(b)) | |a| ≤ A, |b| ≤ B}, where f and g are a pair of
functions. Using the notation from earlier, let π(x,E, r, {p ≡ c (mod m)}) denote
the number of primes p ≤ x such that p ≡ c (mod m) and such that ap(E) = r.

We also define π1/2(x) =
∫ x

2
dt/(2

√
t log t) (see [9]).
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For the proof of Theorem 1.1(a), we let f, g be a pair of functions described in
the theorem statement, and we begin with

1

4AB

∑
E∈Ff.g(A,B)

π(x,E, r, {p ≡ c (mod m)})

=
1

4AB

∑
p≤x

p≡c (mod m)

#{|a| ≤ A, |b| ≤ B : ap(E(a, b)) = r}

=
1

4AB

∑
p≤x

p≡c (mod m)

(
2A

p
+O(1)

)(
2B

p
+O(1)

)(
pH(r2 − 4p)

2
+O(p)

)

applying Proposition 2.1(a) and Birch [2]. We write the above as

1

2

∑
p≤x

p≡c (mod m)

H(r2 − 4p)

p
+O

 ∑
p≤x

p≡c (mod m)

H(r2 − 4p)

(
1

A
+

1

B
+

p

AB

)

+O

 ∑
p≤x

p≡c (mod m)

1

p

 .

The proof of Theorem 1.1(b) begins similarly, but with larger error terms. We
have (applying Proposition 2.1(b) and Birch [2]),

1

4AB

∑
E∈Ff.g(A,B)

π(x,E, r, {p ≡ c (mod m)})

=
1

4AB

∑
p≤x

p≡c (mod m)

(
2A

p
+O(p)

)(
2B

p
+O(p)

)(
pH(r2 − 4p)

2
+O(p)

)
.

=
1

2

∑
p≤x

p≡c (mod m)

H(r2 − 4p)

p
+O

 ∑
p≤x

p≡c (mod m)

H(r2 − 4p)

(
p

A
+

p

B
+

p3

AB

) (1)

This demonstrates the need for stronger bounds on A and B in Theorem 1.1(b),
where we require A,B > x2+ϵ.

In the case of Theorem 1.2, let us denote the expression in equation line (1)
above as M(x,A,B). Then given Proposition 2.1(c), we have

1

4AB

∑
E∈Ff.g(A,B)

π(x,E, r, {p ≡ c (mod m)}) ≥ 1

2
M(x,A,B).

The remainder of the proofs follow in the same way for each theorem, which we
will continue below.
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Following [4], we obtain

1

2

∑
p∈Sf (x)

p≡c (mod m)

H(r2 − 4p)

p
=

2

π
Kr(c,m) · π 1

2
(x) +O

( √
x

log2 x

)
. (2)

where

Kr(c,m) =

∞∑
f=1

(f,2r)=1

∞∑
n=1

λr
f (n; c,m)

fnϕ ([m,nf2])
, (3)

with

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod (nf2,m))

(a

n

)
, (4)

where
∑

a (mod 4n)∗ is the sum over all invertible residues modulo 4n and

Sf (x) =

{
B(r) < p ≤ x

∣∣∣∣∣4p ≡ r2 (mod f2), and d =
r2 − 4p

f2
≡ 0, 1 (mod 4)

}
.

Note that p > B(r) implies that |r| ≤ 2
√
p.

2.3. An Auxiliary lemma. We determine the constant that will arise in our
asymptotic expression. We begin by proving various properties of

λr
f (n; c,m) :=

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod (nf2,m))

(a

n

)
, (5)

for (c,m) = 1. First we define κ(n) to be the multiplicative function such that

κ(ℓα) =

{
ℓ if α is odd,
1 if α is even.

(6)

for positive integer α and prime ℓ.

Lemma 2.2. We show

(a) When n is odd,

λr
f (n; c,m) =

∑
a (mod n)∗

(r2−af2,n)=1

r2−af2≡4c (mod (nf2,m))

(a

n

)
.

(b) Let p1, p2 be odd, distinct primes, then λr
f (p1p2; c,m) = λr

f (p1; c,m)λr
f (p2; c,m).

(c) For a prime ℓ,

λr
f (ℓ

α; c,m) =
∑

a (mod 4ℓα)∗

a≡1 (mod 4)

(r2−af2,4ℓα)=4
r2−af2

4 ≡c (mod (ℓαf2,m))

(a
ℓ

)α

,
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for cases of ℓ,m, f , where (c,m) = 1 and m is prime.

(d) If α ≥ 1 and m is odd, then λr
1(2

α; c,m) = (−2)α

2 .

If α ≥ 1 and m is even, then λr
1(2

α; c,m) = (−2)α

2min(α,β) .
(e) For an odd prime ℓ ∤ m,

λr
1(ℓ

α; c,m) = ℓα−1 ·

 ℓ− 1−
(

r2

ℓ

)
if α is even,

−
(

r2

ℓ

)
if α is odd.

For ℓ|m,

λr
1(ℓ

α; c,m) = ℓα−min(α,β) ·
(
r2 − 4c

ℓ

)α

.

(f) For an odd prime ℓ ∤ r with (ℓα+2,m) ̸= 1, we have

λr
ℓ(ℓ

α; c,m)

ℓα−1
=

{
0 if α is odd or r2 ̸≡ 4c (mod m),
ℓ− 1 if α is even and r2 ≡ 4c (mod m).

(g) For all positive integers n, |λr
f (n; c,m)| ≤ n/κ(n).

Proof.
Part (a): Since n and f are odd, we apply the Chinese remainder theorem, to

get that r2 − af2 ≡ 4c (mod 4 · (nf2,m)) implies

r2 − af2 ≡ 0 (mod 4), and r2 − af2 ≡ 4c (mod (nf2,m)). (7)

We have that (r2 − af2, 4n) = 4 implies (r2 − af2, 4) = 4 and (r2 − af2, n) = 1.
Let a1 and a2 be the images of a under the projections (Z/4nZ)∗ → (Z/nZ)∗
and (Z/4nZ)∗ → (Z/4Z)∗, respectively. Therefore we can break up the condition
(r2 − af2, 4n) = 4 into (r2 − a2f

2, 4) = 4, and (r2 − a1f
2, n) = 1. Finally, since n

is odd so the shape of the Kronecker symbol does not change. The result follows.

Part (b): Since p1p2 is odd, we apply Lemma 2.2 (a)

λr
f (p1p2; c,m) =

∑
a (mod p1p2)

∗

(r2−af2,p1p2)=1

r2−af2≡4c (mod (p1p2f
2,m))

(
a

p1p2

)
. (8)

As (p1, p2) = 1, we apply the Chinese Remainder Theorem and let a1 and a2 be
the images of a under the projections (Z/p1p2Z)∗ → (Z/p1Z)∗ and (Z/p1p2Z)∗ →
(Z/p2Z)∗, respectively. It follows that (r2 − a1f

2, p1) = 1 and (r2 − a2f
2, p2) = 1.

The third condition on the sum in equation (8) implies that r2−af2 ≡ 4c (mod N),
for any N |(p1p2f2,m). Since (p1f

2,m), (p2f
2,m)|(p1p2f2,m), we can write

r2 − af2 ≡ 4c (mod (p1f
2,m)) and r2 − af2 ≡ 4c (mod (p2f

2,m)).

We obtain

λr
f (p1p2; c,m) =

∑
a1 (mod p1)

∗

(r2−a1f
2,p1)=1

r2−a1f
2≡4c (mod (p1f

2,m))

(
a1
p1

) ∑
a2 (mod p2)

∗

(r2−a2f
2,p2)=1

r2−a2f
2≡4c (mod (p2f

2,m))

(
a2
p2

)

= λr
f (p1; c,m) · λr

f (p2; c,m).

Part (c): Consider the case when (ℓα,m) = ℓ and (f, ℓ) = ℓ:
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Using (ℓ, 4) = 1, we apply the Chinese remainder theorem to obtain,

r2 − af2 ≡ 4c (mod ℓ) (9)

r2 − af2 ≡ 0 (mod 4). (10)

But (10) is true since (r2 − af2, 4ℓα) = 4, so we can drop this condition. Since f
contains a factor of ℓ, (9) can be rewritten as r2 ≡ 4c (mod ℓ) and we are left with,

λr
f (ℓ

α; c,m) =
∑

a (mod 4ℓα)∗

a≡1 (mod 4)

(r2−af2,4ℓα)=4

r2≡4c (mod ℓ)

(a
ℓ

)α

.

We have m = ℓ since (m, ℓ) = 1 and m, ℓ are prime. So if r2 ≡ 4c (mod m), then
addressing λr

f (ℓ
α; c,m) reduces to a case from [4]; otherwise, it is zero.

The other cases follow using similar approaches.

Part (d): We are considering

λr
1(2

α; c,m) =
∑

a (mod 4·2α)∗

a≡1 (mod 4)

(r2−a,4·2α)=4
r2−a

4 ≡c (mod (2α,m))

( a

2α

)
=

∑
a (mod 2α+2)∗

a≡1 (mod 4)

(r2−a,4·2α)=4
r2−a

4 ≡c (mod (2α,m))

(a
2

)α

. (11)

If m is odd: (2α,m) = 1 and so the last condition on the sum of equation (11)
is trivial. Using earlier work, we obtain

λr
1(2

α; c,m) = cr1(2
α) = (−2)α/2.

If m is even: We write m = 2βm′, where 2 ∤ m′ and β ≥ 1. Then we have
(2α,m) = 2min(α,β) and

r2 − a

4
≡ c (mod (2α,m)) =⇒ r2 − a ≡ 4c (mod 2min(α,β)+2).

Equation 11 simplifies to

λr
1(2

α; c,m) =
∑

a (mod 2α+2)∗

(r2−a,4·2)=4

r2−a≡4c (mod 2min(α,β)+2)

(a
2

)α

.

Next, we use the projection

(Z/4 · 2αZ)∗ → (Z/4 · 2min(α,β)Z)∗

for the first condition on the sum in equation (11), which gives

λr
1(2

α; c,m) = 2α−min(α,β)
∑

a (mod 2min(α,β)+2)∗

(r2−a,4·2)=4

r2−a≡4c (mod 4·2min(α,β))

(a
2

)α

.

Since m is even and (c,m) = 1, c is odd. So the third condition on the sum above
implies that (r2 − a, 4 · 2) = 4. We also see that r2 − a ≡ 4c (mod 4 · 2min(α,β))
implies that there is one value of a which satisfies it (as c, r are fixed). Moreover,
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the value of the Kronecker symbol here only depends on the congruence class of a
in mod 8. Thus the first and third conditions can be rewritten in mod 8 instead.
The third condition reduces to r2−a ≡ 4c (mod 8), but r and c are odd so we have
r2 ≡ 1 (mod 8) and 4c ≡ 4 (mod 8). Putting this together we get a ≡ 5 (mod 8).
Leaving us with

λr
1(2

α; c,m) = 2α−min(α,β)
∑

a≡5 (mod 8)

(a
2

)α

= 2α−min(α,β) (−1)
α

=
(−2)α

2min(α,β)
.

Part (e): If l ∤ m, 4 · (lα,m) = 1 so r2 − a ≡ 4c (mod 4) ≡ 0 (mod 4). Which

is already implied by the third condition on our sum, (r2 − a, 4lα) = 4. So, we end
up with

λr
1(l

α; c,m) =
∑

a (mod 4lα)∗

a≡1 (mod 4)

(r2−a,4lα)=4

(a
l

)α

= cr1(l
α) = lα−1 ·

 l − 1−
(

r2

l

)
if α is even,

−
(

r2

l

)
if α is odd.

If l|m, we let m = lβm′ where l ∤ m′ and β ≥ 1. Then (lα,m) = lmin(α,β), so

λr
1(l

α; c,m) =
∑

a (mod 4lα)∗

a≡1 (mod 4)

(r2−a,4·lmin(α,β))=4

r2−a≡4c (mod 4·lmin(α,β))

(a
l

)α

. (12)

Consider the map Z/4 · lαZ → Z/4 · lmin(α,β)Z. We use this with respect to the first
condition on our sum in equation (12) to get

λr
1(l

α; c,m) = lα−min(α,β)
∑

a (mod 4·lmin(α,β))∗

a≡1 (mod 4)

(r2−a,4·lmin(α,β))=4

r2−a≡4c (mod 4·lmin(α,β))

(a
l

)α

. (13)

Now, the third condition in the sum above can be broken up into (r2 − a, 4) = 4
and (r2 − a, l) = 1. The fourth condition in (12) then implies

r2 − a ≡ 4c (mod 4) ≡ 0 (mod 4) =⇒ (r2 − a, 4) = 4,

using the fact that (c, l) = 1 since (c,m) = 1. We also get, r2−a ≡ 4c (mod l) =⇒
(r2 − a, l) = 1. By the definition of the Kronecker symbol, we are only concerned
with a reduced modulo l. Since l is odd we obtain

λr
1(l

α; c,m) = lα−min(α,β) ·
(
r2 − 4c

l

)α

.
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Part (f): Note that if (lα+2,m) = 1, then our expression is identical to crl (l
α)

from David-Pappalardi and can be treated the same. Otherwise, we have

λr
l (l

α; c,m) =
∑

a (mod lα)∗

(r2−al2,lα)=1

r2−al2≡4c (mod (lα+2,m))

(a
l

)α

. (14)

The second condition in the sum above tells us (r2 − al2, l) = 1. But this is always
true since al2 ≡ 0 (mod l) and we have l ∤ r. So our third condition on the sum
in equation (14) becomes r2 − al2 ≡ 4c (mod m) which implies r2 ≡ 4c (mod m).
Since (lα+2,m) ̸= 1, we have that l and m are prime. So we have

λr
l (l

α; c,m) =
∑

a (mod lα)∗

r2≡4c (mod m)

(a
l

)α

,

and the result follows.
Part (g): This follows from applying results of parts (c) and (d) and using [4].

□

2.4. Determining the constant.
We will now express our constant as a product over primes. Recall that m is an

odd prime and c is not divisible by m. We assume that r is an odd integer; later
we will also specify that (m, r) = 1.

Lemma 2.3. Let

Kr(c,m) =

∞∑
f=1

(f,2r)=1

∞∑
n=1

λr
f (n; c,m)

fnϕ ([m,nf2])
, (15)

where

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod (nf2,m))

(a

n

)
. (16)

Then

Kr(c,m) =
1

ϕ(m)
g(c,m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1 ∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
,

where

g(c,m) =


m2

m2−1 , if
(

r2−4c
m

)
= 0

m
m−1 , if

(
r2−4c

m

)
= +1

m
m+1 , if

(
r2−4c

m

)
= −1.

Proof. We write

Kr(c,m) =

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)=1

λr
f (n; c,m)

fnϕ ([m,nf2])
+

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)>1

λr
f (n; c,m)

fnϕ ([m,nf2])
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+

∞∑
f=1

(f,2r)=1
(f,m)>1

∞∑
n=1

λr
f (n; c,m)

fnϕ ([m,nf2])
.

Notation: We denote the first double sum as K
(1)
r , the second as K

(2)
r , and the

third as K
(3)
r . Accordingly, we consider three cases.

Case 1: Assume (m,nf2) = 1. Then ϕ([m,nf2]) = ϕ(m)ϕ(nf2). As (m,nf2) = 1,

r2 − af2

4
≡ c (mod (nf2,m)) ≡ c (mod 1).

which is already implied by (r2 − af2, 4n) = 4. So,

λr
f (n; c,m) = crf (n) :=

∑
a(4n)∗

(r2−af2,4n)=4

(a

n

)
.

So we have

K(1)
r =

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)=1

λr
f (n; c,m)

fnϕ(nf2)ϕ(m)
=

1

ϕ(m)

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)=1

crf (n)

fnϕ(nf2)
. (17)

Consider (nϕ(nf2))−1 from the inner sum of (17). Replacing n by ℓα for some
prime ℓ, we have

1

ℓαϕ(ℓαf2)
=

1

ℓαϕ(f2)ϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)
.

This allows us to write the inner sum in (17) as

1

fϕ(f2)

∞∑
n=1

(n,m)=1

crf (n)

nϕ(n)

ϕ((f2, n))

(f2, n)
.

Using Lemma 2.2 (b),

K(1)
r =

1

ϕ(m)

∞∑
f=1

(f,2r)=1
(f,m)=1

1

fϕ(f2)

∏
ℓ∤m

∑
α≥0

crf (ℓ
α)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)

 . (18)

For the product in the equation above, we note that

∏
ℓ∤m

∑
α≥0

crf (ℓ
α)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)

 =
∏
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤m
ℓ|f

∑
α≥0

crf (ℓ
α)

ℓαϕ(ℓα)
ϕ((f2,ℓα))
(f2,ℓα)∑

α≥0
cr1(ℓ

α)
ℓαϕ(ℓα)

 .

We can then substitute this back into (18) and use multiplicativity to express the
sum using products over primes.

K(1)
r =

1

ϕ(m)

∏
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
p∤2r
p∤m

∑
β≥0

1

pβϕ(p2β)

∏
ℓ∤m
ℓ|p

∑
α≥0

cr
pβ

(ℓα)

ℓαϕ(ℓα)
ϕ((p2β ,ℓα))
(p2β ,ℓα)∑

α≥0
cr1(ℓ

α)
ℓαϕ(ℓα)


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=
1

ϕ(m)

∏
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

1 +
∑
β≥1

1

ℓβϕ(ℓ2β)

∑
α≥0

crℓ (ℓ
α)

ℓαϕ(ℓα)
ϕ((ℓ2β ,ℓα))
(ℓ2β ,ℓα)∑

α≥0
cr1(ℓ

α)
ℓαϕ(ℓα)



=
1

ϕ(m)

∏
ℓ∤m
ℓ|2r

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)
+

∑
β≥1

1

ℓβ(ℓ− 1)ℓ2β−1

1 +
∑
α≥1

crℓ(ℓ
α)

ℓαϕ(ℓα)

ϕ(ℓγ)

ℓγ


where γ = min{2β, α},

=
1

ϕ(m)

∏
ℓ∤m
ℓ|2r

1 +
∑
α≥1

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

1 +
∑
α≥1

cr1(ℓ
α)

ℓαϕ(ℓα)
+

1

(ℓ− 1)

ℓ

ℓ3 − 1

1 +
∑
α≥1

crℓ(ℓ
α)

ℓ2α

 .

Applying page 180 of [4], we obtain

K(1)
r =

1

ϕ(m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1 ∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
. (19)

Case 2: Assume (m, f) = 1 and (m,n) > 1. Then [m,nf2] = nf2. We consider

K(2)
r =

∞∑
f=1

(f,2r)=1
(m,f)=1

∞∑
n=1

(m,n)=m

λr
f (n; c,m)

fnϕ(nf2)
, (20)

where (since (m,nf2) = m),

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod m)

(a

n

)
=

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4

r2−af2≡4c (mod m)

(a

n

)
.

as m is odd.
Since λr

f (n; c,m) is a multiplicative function, given Lemma 2.2 (b), we can rewrite

the inner sum of (20) as products over primes.

K(2)
r =

∞∑
f=1

(f,2r)=1
(m,f)=1

1

fϕ(f2)

∏
ℓ∤m

∑
α≥0

λr
f (ℓ

α; c,m)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)

 (21)

·
∏
ℓ=m

∑
α≥1

λr
f (ℓ

α; c,m)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)


Note that if (ℓ,m) = 1, then λr

f (ℓ
α; c,m) = crf (ℓ

α). If (ℓ,m) > 1 (and so ℓ = m),

then Lemma 2.2 (c) gives that λr
f (ℓ

α; c,m) = ℓα−1
(

r2−4c
ℓ

)α

. So we get

K(2)
r =

∞∑
f=1

(f,2r)=1
(m,f)=1

1

fϕ(f2)

∏
ℓ∤m

∑
α≥0

crf (ℓ
α)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)


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·
∏
ℓ=m

∑
α≥1

ℓα−1
(

r2−4c
ℓ

)α

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)


We simplify the final product of the expression above to get

∏
ℓ=m

 1

ℓ− 1

∑
α≥1

(
r2−4c

ℓ

)α

ℓα

 =
1

ϕ(m)

∑
α≥1

(
r2−4c

m

)α

mα
.

Following [4], we eventually get

∏
ℓ|2r
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

1 +
∑
α≥1

cr1(ℓ
α)

ℓαϕ(ℓα)
+

1

(ℓ− 1)

ℓ

ℓ3 − 1

1 +
∑
α≥1

crℓ(ℓ
α)

ℓ2α



· 1

ϕ(m)

∑
α≥1

(
r2−4c

m

)α

mα

which gives

K(2)
r =

1

ϕ(m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1 ∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
· f(m), (22)

where

f(m) :=
∑
α≥1

(
r2−4c

m

)α

mα
=


0, if r2 ≡ 4c (mod m)

1
m−1 , if

(
r2−4c

m

)
= +1

−1
m+1 , if

(
r2−4c

m

)
= −1.

Case 3: Assume (m, f) > 1. Then [m,nf2] = nf2. We consider

K(3)
r =

∞∑
f=1

(f,2r)=1
(f,m)=m

∞∑
n=1

λr
f (n; c,m)

fnϕ(nf2)
, (23)

where (since (m,nf2) = m),

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod m)

(a

n

)
=

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4

r2≡4c (mod m)

(a

n

)
.

Again following [4], this eventually leads to:

If r2 ≡ 4c (mod m),

K(3)
r =

1

ϕ(m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1 ∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
· 1

m2 − 1
, (24)
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If r2 ̸≡ 4c (mod m), K
(3)
r = 0.

Summing cases: We sum the equations (19), (22), and (24), we get

Kr(c,m) = K(1)
r +K(2)

r +K(3)
r

=
1

ϕ(m)
gr(c,m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1 ∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
, (25)

where

gr(c,m) =


1 + 0 + 1

m2−1 = m2

m2−1 , if
(

r2−4c
m

)
= 0

1 + 1
m−1 + 0 = m

m−1 , if
(

r2−4c
m

)
= +1

1 + −1
m+1 + 0 = m

m+1 , if
(

r2−4c
m

)
= −1.

□

3. Congruence class bias

In [16], we observed that, given some positive integerm, the distribution of super-
singular primes on average was not evenly distributed over the invertible congruence
classes of m. For example, on average there are twice as many supersingular primes
congruent to 2 (mod 3) as there are congruent to 1 (mod 3). More generally, we
observed that if m is an odd prime, the ratio of supersingular primes congruent to
a quadratic residue of m, versus those congruent to a quadratic non-residue of m,
is

m+ 1

m− 1
.

For an individual non-CM elliptic curve E, we recall that for sufficiently large
primes p we have E(Q)tors ↪→ E(Fp). For example, if 5 divides the order of E(Q)tors,
then for a sufficiently large p, ap(E) ≡ p + 1− |E(Fp)| ≡ p + 1 (mod 5), and so if
p is supersingular for E, then we must have p ≡ 4 (mod 5).

One can conjecture that for any individual non-CM elliptic curve, if there is
no obstruction arising from torsion, that there exists a congruence class bias for
the distribution of supersingular primes, in accordance with the displayed formula
above. (In Section 4, we briefly explore this conjecture computationally for a few
elliptic curves.)

In this section, we take the opportunity to extend the above observations to
non-supersingular cases, using equation (25) from Section 2. We use the notation
from Section 2.2 (see equations (2) and (3)). We first observe that, for any odd
r ̸= 3, we have

Kr(1, 3)/Kr(2, 3) = 3/2.

This lies in contrast to the supersingular case, where K0(2, 3)/K0(1, 3) = 2. Note
in particular that the direction of the bias has changed and that the strength of the
bias has decreased.

In the case of m = 5 with odd r ̸= 5, there are two possibilities:

Kr(1, 5)/Kr(2, 5) =

{
1, for r ≡ 1 or 4 mod 5

5/6, for r ≡ 2 or 3 mod 5.
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We again contrast this with the supersingular case, where K0(1, 5)/K0(2, 5) = 3/2,
and note that the strength of the bias has decreased.

We lastly discuss the case of m = 7 with odd r ̸= 7. There are three possibilities:

Kr(1, 7)/Kr(2, 7) =


8/7, for r ≡ 1 or 6 mod 7

7/6, for r ≡ 2 or 5 mod 7

3/4, for r ≡ 3 or 4 mod 7.

This has a stronger bias compared to the supersingular case, which simply has
K0(1, 7)/K0(2, 7) = 1 (the difference in outcome compared to the m = 3 and 5
cases is due to both 1 and 2 being quadratic residues mod 7). Even if we instead
consider the ratio K0(1, 7)/K0(3, 7) = 4/3, we note that the bias is no stronger
than in the odd r ≡ 3, 4 (mod 7) case above.

In general, given equation (25), we observe that the possible biases for odd prime
m with coprime odd r are of the form

1,
m+ 1

m
,

m

m− 1
,
m+ 1

m− 1
,

or their inverses.

4. Computations

The biases demonstrated in Section 3 are on average over a family of infinite
size. This means that we do not obtain information about any individual elliptic
curve in the context of congruence class bias for the Lang–Trotter conjecture.

In this section we consider individual elliptic curves and examine whether the
predictions from [16] seem to be consistent with our computational evidence.

We selected six elliptic curves, all without Complex Multiplication, and chosen to
have varied ranks and torsion subgroups, from the LMFDB [10]. A table of these
is presented below, using the LMFDB label of the curve. The torsion subgroup
column refers to the isomorphism class of E(Q)tors.

Elliptic curve Conductor Rank Torsion subgroup
21.a1 21 0 Z/2Z
38.b2 38 0 Z/5Z
53.a1 53 1 trivial
55.a1 55 0 Z/4Z
65.a2 65 1 Z/2Z
83.a1 83 1 trivial

For each elliptic curve we used SAGE [12] to obtain a list of all supersingular
primes less than 4×108. We then used Python [11] to partition these lists according
to certain congruence classes. The overall run time on a standard laptop was 4 hours
or more for each curve.

The first graph below finds, for each elliptic curve, the ratio of the number of
supersingular primes less than x that are 2 mod 3 versus 1 mod 3. One can compare
this to the result on average [16] which gives a ratio of 2.

Note that for all three graphs, the x-axes are labelled in increments of 108 and
that the graphs have points plotted every 0.25 × 108 units, which are connected
with straight lines.
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Figure 1: Ratio of supersingular primes that are 2 mod 3 versus 1 mod 3.

The next graph finds, for five of the six elliptic curves, the ratio of the number of
supersingular primes less than x that are 1 mod 5 versus 2 mod 5. The ratio from
the averaging result was 3/2.

Note that the curve 38.b2 was excluded from the graph below because it has 5-
torsion. Recall that for sufficiently large p, we have E(Q)tors ↪→ E(Fp). So for curve
38.b2 we have 5 | #E(Fp) and therefore ap(E) = p+ 1−#E(Fp) ≡ p+ 1 (mod 5).
So if p is supersingular, then p ≡ 4 (mod 5).

Figure 2: Ratio of supersingular primes that are 1 mod 5 versus 2 mod 5.

This final graph plots the ratio of the number of supersingular primes less than
x that are 1 mod 7 versus 3 mod 7. (We did not consider the case of 1 mod 7 versus
2 mod 7 since no bias is predicted for that case.) The ratio from the averaging
result was 4/3.
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Figure 3: Ratio of supersingular primes that are 1 mod 7 versus 3 mod 7.
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