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Abstract. For various families of elliptic curves over the integers, we ob-

tain distribution results towards the Lang–Trotter conjecture on average. We

demonstrate the existence of a congruence class bias in this context, and then
investigate this further computationally.

1. Introduction

Let E be an elliptic curve over Q. If p is a prime of good reduction, then the
reduction modulo p of E is an elliptic curve over Fp. For such a p, we define
ap(E) := p+1− |E(Fp)|. The statistical properties of the sequences (ap(E))p have
been studied extensively from various perspectives. Our particular interest lies in
the Lang–Trotter conjecture, which predicts that, for a non-CM elliptic curve E
and an integer r,

π(x,E, r) := #{p ≤ x : ap(E) = r} ∼ CE,r

√
x

log x
,

as x → ∞, for some suitable constant CE,r.
This was shown [6, 8] to hold on average for a family of elliptic curves. Let

E = E(a, b), for some (suitable) a, b ∈ Z, be an elliptic curve with Weierstrass
equation y2 = x3 + ax + b, where the discriminant is ∆(a, b) = 4a3 + 27b2 ̸= 0.
Define

S(A,B) := {E(a, b) : |a| ≤ A, |b| ≤ B, a, b ∈ Z,∆(a, b) ̸= 0}.

Let r be an integer. Then David–Pappalardi [6] have shown

1

4AB

∑
E∈S(A,B)

π(x,E, r) ∼ C(r)

√
x

log x
,

as x → ∞, for A,B > x1+ϵ, where

C(r) :=
2

π

∏
prime ℓ|r

(
1− 1

ℓ2

)−1 ∏
prime ℓ∤r

(
1− 1

(ℓ− 1)(ℓ2 − 1)

)
(1)

is a positive constant.
Further averaging results were obtained through the perspective of different fam-

ilies, such as the work of James [10] on 3-torsion elliptic curves (which form a subset
of density zero in the families above) and many further results [2,4, 17,18,20]. For
example, let f, g ∈ Z[t] be polynomials such that

∆(t) := −16(4f(t)3 + 27g(t)2) ̸= 0, j(t) :=
−1728(4f(t))3

∆(t)
̸∈ Q,

1
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and for a positive rational u/v, with (u, v) = 1, define its height to be h(u/v) =
max{|u|, |v|}. Then one approach (for example, see [17]) involves working with the
family

Ff,g(T ) := {E(f(t), g(t)) : t ∈ Q>0, h(t) ≤ T,∆(f(t), g(t)) ̸= 0},
where one can obtain asymptotic upper bounds on the sum

1

|F(T )|
∑

E∈F(T )

π(x,E, r),

as x → ∞ and T depends on x in a prescribed manner. Under further constraints
on the polynomials, one can obtain an asymptotic equivalence [9]: If the degree of
f and g is 1, then for T ≫ x1+ϵ,

1

|F(T )|
∑

E∈F(T )

π(x,E, r) ∼ C(r)

√
x

log x
,

as x → ∞. Note that the constant C(r) is the same as in equation (1) earlier.

Averaging results for the family S(A,B) have also been carried out under a
restriction of primes to congruence classes. This has been done in [9, 11, 19] in
various settings. Given odd r and positive integers c,m with (c,m) = 1, first we
define

π(x,E, r, c,m) := #{p ≤ x : ap(E) = r, p ≡ c (mod m)}.
Then we have

1

4AB

∑
E∈S(A,B)

π(x,E, r, c,m) ∼ C(r, c,m)

√
x

log x
,

as x → ∞, for A,B > x1+ϵ, where C(r, c,m) is a positive constant. The expression
for C(r, c,m) is somewhat elaborate, so we have expressed it for odd r in Proposition
2.4.

To provide a concrete example in the introduction, we will write out the constant
in the case when r = 1, m is an odd prime, and m ∤ r2 − 4c, which is as follows:

C(1, c,m) =
2

π
· m

(m− 1)
(
m−

(
r2−4c

m

)) ∏
prime ℓ∤m

(
1− 1

(ℓ2 − 1)(ℓ− 1)

)
,

where
( ·
·
)
is the Kronecker symbol. One can compare this to the r = 1 case of

equation (1),

C(1) =
2

π

∏
prime ℓ

(
1− 1

(ℓ2 − 1)(ℓ− 1)

)
.

In this work, we explore a direction which combines the ideas mentioned above of
working with thin families as well as primes restricted to certain congruence classes.
This latter restriction allows us to work with certain families involving exponential
functions which would otherwise not appear to be accessible to current techniques.

Our families are determined by a combination of polynomial and exponential
functions (see also Section 4.2 of [9]), and show that the Lang–Trotter conjecture
holds on average for these new families over various specified congruence classes
of primes. We want to make it clear to the reader that these families are not
geometrically motivated, but rather they were chosen to be amenable to averaging
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techniques that are in current use, particularly with regard to the distribution of
coefficients in mod p, for certain primes p. We also exhibit the existence of a
congruence class bias on average in this context.

First let us define, for any subset of primes P and functions f, g,

π(x,E(a, b), r, P ) := #{p ≤ x : p ∈ P, ap(E) = r}

and

FA,B(f, g) := {E(f(a), g(b)) : |a| ≤ A, |b| ≤ B, a, b ∈ Z,∆(f(a), g(b)) ̸= 0}.

Theorem 1.1. For positive integers k1, k2, and integers a1, a2, let fki,ai(n) = ani n
ki

for all n ∈ N.
(a) Fix ai = −1 and let P be the set of all primes p such that p ≡ −1

(mod 2k1), p ≡ −1 (mod 2k2), and if ki is divisible by 4, then one can
also weaken the corresponding condition to p ≡ −1 (mod ki). If k1, k2 are
both odd, then we can instead set P = {p : (ki, p− 1) = 1, i = 1, 2}. Then,
given any integer r, for A,B > x1+ϵ, we have

|FA,B(fk1,a1 , fk2,a2)|−1
∑

|a|≤A,|b|≤B

π (x,E(fk1,a1(a), fk2,a2(b)), r, P ) ∼ Cr,k1,k2

√
x

log x
,

as x → ∞, for a positive constant Cr,k1,k2 , where in the first case of general
ki, we have

Cr,k1,k2
= C(r, 2k1k2/(k1, k2)− 1, 2k1k2/(k1, k2)),

with the latter constant having a long description that is expressed in Propo-
sition 2.4.

(b) Fix ki = 2, and let P =
{
p :
(

ai

p

)
= −1

}
. Then given any integer r, for

A,B > x2+ϵ, we have

|FA,B(fk1,a1
, fk2,a2

)|−1
∑

|a|≤A,|b|≤B

π (x,E(fk1,a1
(a), fk2,a2

(b)), r, P ) ∼ C ′
r,a1,a2

√
x

log x
,

as x → ∞, for some positive constant C ′
r,a1,a2

. This constant is determined
by Proposition 2.4 and P . In the case of a1, a2 being distinct primes con-
gruent to 1 (mod 4), we can express the constant as the following finite
sum

C ′
r,a1,a2

=
∑

c (mod a1a2)(
c
a1

)
=−1,

(
c
a2

)
=−1

C(r, c, a1a2).

Examples. As a concrete example for Theorem 1.1(a), if r = 1, k1 = 3, and k2 = 5,
we have

Cr,k1,k2
=

2

π
· 2
3
· 3
8
· 25
96

·
∏
ℓ≥7

(
1− 1

(ℓ2 − 1)(ℓ− 1)

)
where the second, third, and fourth quotients are the contributions arising from
the primes 2, 3, and 5 (respectively) when applying Proposition 2.4 to obtain the
constant.
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For Theorem 1.1(b), let r = 1, a1 = 2, and a2 = 3. Then,

C ′
r,a1,a2

=
∑

c≡5,19 (mod 24)

C(1, c, 24)

=
2

π
· 1
6
· 15
16

·
∏

ℓ ̸=2,3

(
1− 1

(ℓ2 − 1)(ℓ− 1)

)
,

where again the second and third quotients are the contributions arising from the
primes 2 and 3, respectively.

We will also prove:

Theorem 1.2. Let gi(n) = (ani + bni )n
ki , with i = 1, 2, for positive integers ai, bi,

and odd ki. Let P = {p : (ki, p − 1) = 1, i = 1, 2, p ∤ a, b}. Then for A,B > x2+ϵ

and an integer r,

|FA,B(g1, g2)|−1
∑

|a|≤A,|b|≤B

π (x,E(g1(a), g2(b)), r, P ) ≥ C

√
x

log x
+ o

( √
x

log x

)
as x → ∞, where the positive constant C depends on ai, bi, ki, and r. The precise
constant can be determined using Proposition 2.4. In particular, if k1 and k2 are
distinct odd primes, then

C =
∑

c (mod k1k2)
c ̸≡1 (mod ki) for i=1,2

C(r, c, k1k2).

Remark 1. Note that all the constants above are consistent with what would be
expected given results concerning the Lang–Trotter conjecture on average for con-
gruence classes of primes [11].

In examining the constants that arise in these theorems, one can see the existence
of a congruence class bias on average in terms of the occurrence of primes p such
that ap = r, which depends on the congruence conditions used to determine P .
This provides further evidence of the average bias observed in [19].

Our paper is structured as follows. In Section 2, we establish modulo p reduction
properties for the families from our theorems. Then we make use of a variant of the
Lang–Trotter conjecture on average under congruence conditions (see earlier work
in [10, 11]), the main aspects of this proof are described for the convenience of the
reader. In Section 3, we examine the implications of our theorems for congruence
class bias on average. In Section 4, we obtain some computations to examine the
distributions of supersingular primes in congruence classes for individual elliptic
curves.

2. Proof

2.1. Equidistribution of certain functions.
We begin our proof with some equidistribution results. We say that f : C → D

is an m-to-one function if the preimage of each element of D has order m.

Proposition 2.1. Let p be an odd prime.

(a) For any positive integer k, let fk : Z → Fp be the function n 7→ annk

(mod p). For any integer j, let Sj := {j, j + 1, . . . , j + (2p− 1)}.
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(i) For a = −1, if p ≡ −1 (mod 2k), then fk|Sj
is a two-to-one function

for any integer j.
(ii) For a = −1, if k is a multiple of 4 and p ≡ k−1 (mod 2k), then fk|Sj

is a two-to-one function for any j.
(iii) For any integer a, if (k, p−1) = 1, then fk|Sj

is a two-to-one function
for any j.

(b) Define Tj := {j, j + 1, . . . , j + p(p − 1) − 1} for any integer j. For any

integer a, if k = 2 and
(

a
p

)
= −1, then fk|Tj

is a (p− 1)-to-one function.

(c) Given positive distinct integers a, b and odd integer k ≥ 3, let gk : Z → Fp

be the function n 7→ (an+bn)nk. For an odd prime p such that (k, p−1) = 1
and p ∤ a, b, we have, for any integer j,

|
(
gk |Tj

)−1
(u)| ≥ p− 1

2
,

for all u ∈ Fp.

Proof of (a)(i). We first note that exactly two elements of Sj map to 0 under fk.
Given c ∈ F×

p , we choose the smaller of the two integers in Sj that are congruent

to c(p+1)/2k(mod p), and denote it as d. Since

d ≡ c(p+1)/2k(mod p),

we have fk(d) ≡ (−1)dc(p+1)/2 (mod p).
We have cp+1 ≡ c2(mod p) by Fermat’s little theorem. Since the polynomial

x2 − c2 ≡ 0 (mod p) has exactly two solutions ±c, we have that c(p+1)/2 ≡ ±c
(mod p). Since

fk(d) ≡ −fk(d+ p) (mod p),

we have that fk({d, d+ p}) = {c,−c}. Applying the above approach to the case of
−c ∈ F×

p , we conclude that fk |Sj
is a two-to-one function. □

Proof of (a)(ii). Note that the squares are in the image of fk. Indeed, given c ∈ F×
p ,

choose an integer d such that d ≡ c(p+1)/k (mod p). Then

(c(p+1)/k)k ≡ cp+1 ≡ c2 (mod p).

Since k is even, p ≡ k − 1 (mod 2k) ⇒ p ≡ k − 1 (mod 4). If k is a multiple of 4,
this means p ≡ 3 (mod 4), and so −1 is not a square in mod p.

As above, we now note that fk(d) ≡ −fk(d+ p) (mod p), so

{fk(d), fk(d+ p)} = {c2,−c2}.
Therefore, fk is surjective.

Using a similar argument to that in the proof of the previous lemma, we also
obtain that fk |Sj is a two-to-one function. □

Proof of part (a)(iii). This follows using similar ideas to above. □

Proof of part (b). For integers ℓ, j note that f(ℓ+ j(p− 1)) ≡ (ℓ− j)2aℓ (mod p).
Under our assumption that a is not a quadratic residue in mod p, we consider the
following multiset over Fp: For odd ℓ, {(ℓ− j)2aℓ|j ∈ {0, . . . , p− 1}} is exactly the
multiset of each quadratic non-residue occurring twice, along with the element 0
occurring once. For even ℓ, it is the multiset of each non-zero quadratic residue
occurring twice, along with the element 0 occurring once. Since {ℓ+ j(p− 1) | ℓ ∈
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{0, . . . , p − 2}, j ∈ {0, . . . , p − 1}} = T0, this shows that f2 |T0
is a (p − 1)-to-one

function. The cases for other Tj follow in a similar way. □

Proof of part (c). First, we note that for any n we cannot have an + bn ≡ an+1 +
bn+1 ≡ 0 (mod p). Otherwise, we would have

an+1 + abn ≡ 0 ≡ an+1 + bn+1 (mod p)

which implies a ≡ b (mod p) and so 2an ≡ 0 (mod p), contradicting our assump-
tions. Therefore, an + bn ̸≡ 0 (mod p) for at least half of the elements n ∈ T0.

Given t ∈ T0 with at+ bt ̸≡ 0 (mod p), consider the following (as a subset of Fp){
nk(an + bn) | n = t+ j(p− 1), j ∈ {0, . . . , p− 1}

}
=
{
(t− j)k(at + bt) | j ∈ {0, . . . , p− 1}

}
=Fp.

Since at least half the elements t ∈ T0 have at + bt ̸≡ 0 (mod p), we conclude that

| (gk |T0
)
−1

(u)| ≥ (p − 1)/2, for all u ∈ Fp. The proof follows in a similar way for
other cases of Tj . □

2.2. Averaging results. The proof for the remainder of Section 2 now proceeds
in a standard way by following David–Pappalardi [6], in a similar way to James [10]
(see also [11] and [9] for related work), and applying Proposition 2.1. We present
some of the details for the benefit of the reader, focusing on the special case where
r is odd and m is an odd prime.

Let r be an odd integer, and set B(r) := max
(
3, r, r2

4

)
. Let m be a prime

number and c an integer coprime to m. Let d := (r2 − 4p)/f2, h(d) be the class
number of the order of discriminant d, w(d) the number of units in this order, and
let

H(r2 − 4p) = 2
∑

f2|r2−4p
d≡0,1 mod 4

h(d)/w(d)

be the Kronecker class number, which gives the number of Fp-isomorphism classes
of elliptic curves over Fp with p+1−r points (for r ≤ 2

√
p) (see Deuring [7]). Note

that f in the sum takes positive integer values only.
Given an elliptic curve E(a, b)/Fp represented by the equation y2 = x3 + ax+ b,

outside of certain special cases requiring either a or b to be 0, the number of elliptic
curves in the Fp-isomorphism class of E is (p− 1)/2. This means that the number
of elliptic curves E(a, b) where 0 ≤ a, b < p are integers and ap(E(a, b)) = r is
H(r2 − 4p)(p− 1)/2 +O (p) (see Birch [3]).

Let Ff,g(A,B) := {E(f(a), g(b)) | |a| ≤ A, |b| ≤ B}, where f and g are a pair of
functions. Using the notation from earlier, let π(x,E, r, {p ≡ c (mod m)}) denote
the number of primes p ≤ x such that p ≡ c (mod m) and such that ap(E) = r.

We also define π1/2(x) =
∫ x

2
dt/(2

√
t log t).

For the proof of Theorem 1.1(a), we let f, g be a pair of functions described in
the theorem statement, and we begin with

1

4AB

∑
E∈Ff.g(A,B)

π(x,E, r, {p ≡ c (mod m)})
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=
1

4AB

∑
p≤x

p≡c (mod m)

#{|a| ≤ A, |b| ≤ B : ap(E(f(a), g(b))) = r}

=
1

4AB

∑
p≤x

p≡c (mod m)

(
2A

p
+O(1)

)(
2B

p
+O(1)

)(
pH(r2 − 4p)

2
+O(p)

)

applying Proposition 2.1(a) and Birch [3]. We write the above as

1

2

∑
p≤x

p≡c (mod m)

H(r2 − 4p)

p
+O

 ∑
p≤x

p≡c (mod m)

H(r2 − 4p)

(
1

A
+

1

B
+

p

AB

)

+O

 ∑
p≤x

p≡c (mod m)

1

p

 .

The proof of Theorem 1.1(b) begins similarly, but with larger error terms. We
have (applying Proposition 2.1(b) and Birch [3]),

1

4AB

∑
E∈Ff.g(A,B)

π(x,E, r, {p ≡ c (mod m)})

=
1

4AB

∑
p≤x

p≡c (mod m)

(
2A

p
+O(p)

)(
2B

p
+O(p)

)(
pH(r2 − 4p)

2
+O(p)

)
.

=
1

2

∑
p≤x

p≡c (mod m)

H(r2 − 4p)

p
+O

 ∑
p≤x

p≡c (mod m)

H(r2 − 4p)

(
p

A
+

p

B
+

p3

AB

) (2)

This demonstrates the need for stronger bounds on A and B in Theorem 1.1(b),
where we require A,B > x2+ϵ.

In the case of Theorem 1.2, let us denote the expression in equation line (2)
above as M(x,A,B). Then given Proposition 2.1(c), we have

1

4AB

∑
E∈Ff.g(A,B)

π(x,E, r, {p ≡ c (mod m)}) ≥ 1

2
M(x,A,B).

The remainder of the proofs follow in the same way for each theorem, which we
will continue below.

Following [6], we obtain

1

2

∑
p≤x

p≡c (mod m)

H(r2 − 4p)

p
=

2

π
Kr(c,m) · π 1

2
(x) +O

( √
x

log2 x

)
. (3)
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where

Kr(c,m) =

∞∑
f=1

(f,2r)=1

∞∑
n=1

λr
f (n; c,m)

fnϕ ([m,nf2])
, (4)

with

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod (nf2,m))

(a
n

)
, (5)

where
∑

a (mod 4n)∗ is the sum over all invertible residues modulo 4n. Note that

p > B(r) implies that |r| ≤ 2
√
p.

2.3. An Auxiliary lemma. We determine the constant that will arise in our
asymptotic expression. We begin by proving various properties of

λr
f (n; c,m) :=

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod (nf2,m))

(a
n

)
, (6)

for m an odd prime and (c,m) = 1. First we define κ(n) to be the multiplicative
function such that

κ(ℓα) =

{
ℓ if α is odd,
1 if α is even.

(7)

for positive integer α and prime ℓ.

Lemma 2.2. We show

(a) When n is odd,

λr
f (n; c,m) =

∑
a (mod n)∗

(r2−af2,n)=1

r2−af2≡4c (mod (nf2,m))

(a
n

)
.

(b) For coprime positive integers n1, n2, we have

λr
f (n1n2; c,m) = λr

f (n1; c,m)λr
f (n2; c,m).

(c) For a prime ℓ:
Case I: Assume that ℓ = m.

If (f, ℓ) = 1, then λr
f (ℓ

α; c,m) = ℓα−1
(

r2−4c
ℓ

)α
.

If (f, ℓ) = ℓ, then λr
f (ℓ

α; c,m) = λr
f (ℓ

α; 1, 1) when r2 ≡ 4c (mod m), and 0
otherwise.
Case II: Assume that ℓ ̸= m:
If (f,m) = 1, then λr

f (ℓ
α; c,m) = λr

f (ℓ
α; 1, 1).

If (f,m) = m, then λr
f (ℓ

α; c,m) = λr
f (ℓ

α; 1, 1) when r2 ≡ 4c (mod m), and
0 otherwise.

(d) If α ≥ 1 then λr
1(2

α; c,m) = (−2)α

2 .
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(e) For an odd prime ℓ ∤ m,

λr
1(ℓ

α; c,m) = ℓα−1 ·

 ℓ− 1−
(

r2

ℓ

)
if α is even,

−
(

r2

ℓ

)
if α is odd.

For ℓ|m,

λr
1(ℓ

α; c,m) = ℓα−min(α,β) ·
(
r2 − 4c

ℓ

)α

.

(f) For an odd prime ℓ ∤ r with ℓ = m, we have

λr
ℓ(ℓ

α; c,m)

ℓα−1
=

{
0 if α is odd or r2 ̸≡ 4c (mod m),
ℓ− 1 if α is even and r2 ≡ 4c (mod m).

(g) For all positive integers n, |λr
f (n; c,m)| ≤ n/κ(n).

Proof.
Part (a): Since n and f are odd, we apply the Chinese remainder theorem, to

get that r2 − af2 ≡ 4c (mod 4 · (nf2,m)) implies

r2 − af2 ≡ 0 (mod 4), and r2 − af2 ≡ 4c (mod (nf2,m)). (8)

We have that (r2 − af2, 4n) = 4 implies (r2 − af2, 4) = 4 and (r2 − af2, n) = 1.
Let a1 and a2 be the images of a under the projections (Z/4nZ)∗ → (Z/nZ)∗
and (Z/4nZ)∗ → (Z/4Z)∗, respectively. Therefore we can break up the condition
(r2 − af2, 4n) = 4 into (r2 − a2f

2, 4) = 4, and (r2 − a1f
2, n) = 1. Finally, since n

is odd so the shape of the Kronecker symbol does not change. The result follows.

Part (b): This follows the same line of proof as in Lemma 3.3 of [6], with the
additional condition that

r2 − af2 ≡ 4c (mod (n1n2f
2,m)). (9)

We claim that this condition is equivalent to:

r2 − a1f
2 ≡ 4c (mod (n1f

2,m)) and r2 − a2f
2 ≡ 4c (mod (n2f

2,m)), (10)

where a1 and a2 are the images of a under the projections (Z/nα1
1 nα2

2 Z)∗ →
(Z/nα1

1 Z)∗ and (Z/nα1
1 nα2

2 Z)∗ → (Z/nα2
2 Z)∗, respectively. Under this equivalence,

the proof then proceeds as in [6].
We consider cases to establish the claimed equivalence: If m ∤ n1n2f , then (9)

and (10) are trivial. If m | f , then (9) and (10) become r2 ≡ 4c (mod m), which
is a condition independent of any summation indices. If m ∤ f and m | n1 then (9)
is equivalent to r2 − a1f

2 ≡ 4c (mod m) and the second equation in (10) becomes
trivial. The remaining case of m ∤ f and m | n2 proceeds similarly.

Part (c): Consider the case when (ℓα,m) = ℓ and (f, ℓ) = ℓ:
Using (ℓ, 4) = 1, we apply the Chinese remainder theorem to obtain,

r2 − af2 ≡ 4c (mod ℓ) (11)

r2 − af2 ≡ 0 (mod 4). (12)
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But (12) is true since (r2 − af2, 4ℓα) = 4, so we can drop this condition. Since f
contains a factor of ℓ, (11) can be rewritten as r2 ≡ 4c (mod ℓ) and we are left
with,

λr
f (ℓ

α; c,m) =
∑

a (mod 4ℓα)∗

a≡1 (mod 4)

(r2−af2,4ℓα)=4

r2≡4c (mod ℓ)

(a
ℓ

)α
.

We have m = ℓ since (m, ℓ) = 1 and m, ℓ are prime. So if r2 ≡ 4c (mod m), then
addressing λr

f (ℓ
α; c,m) reduces to a case from [6]; otherwise, it is zero.

The other cases follow using similar approaches.

In the particular case of ℓ = 2, we have (ℓα,m) = 1 (since m is an odd prime
by assumption). If (f,m) = 1 then λr

f (ℓ
α; c,m) = λr

f (ℓ
α; 1, 1). On the other

hand, if (f,m) = m then λr
f (ℓ

α; c,m) = λr
f (ℓ

α; 1, 1) when r2 ≡ 4c (mod m), and 0
otherwise.

Part (d): We are considering

λr
1(2

α; c,m) =
∑

a (mod 4·2α)∗

a≡1 (mod 4)

(r2−a,4·2α)=4
r2−a

4 ≡c (mod (2α,m))

( a

2α

)
=

∑
a (mod 2α+2)∗

a≡1 (mod 4)

(r2−a,4·2α)=4
r2−a

4 ≡c (mod (2α,m))

(a
2

)α
. (13)

If m is odd: (2α,m) = 1 and so the last condition on the sum of equation (13)
is trivial. Using earlier work, we obtain

λr
1(2

α; c,m) = cr1(2
α) = (−2)α/2.

If m is even: We write m = 2βm′, where 2 ∤ m′ and β ≥ 1. Then we have
(2α,m) = 2min(α,β) and

r2 − a

4
≡ c (mod (2α,m)) =⇒ r2 − a ≡ 4c (mod 2min(α,β)+2).

Equation 13 simplifies to

λr
1(2

α; c,m) =
∑

a (mod 2α+2)∗

(r2−a,4·2)=4

r2−a≡4c (mod 2min(α,β)+2)

(a
2

)α
.

Next, we use the projection

(Z/4 · 2αZ)∗ → (Z/4 · 2min(α,β)Z)∗

for the first condition on the sum in equation (13), which gives

λr
1(2

α; c,m) = 2α−min(α,β)
∑

a (mod 2min(α,β)+2)∗

(r2−a,4·2)=4

r2−a≡4c (mod 4·2min(α,β))

(a
2

)α
.
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Since m is even and (c,m) = 1, c is odd. So the third condition on the sum above
implies that (r2 − a, 4 · 2) = 4. We also see that r2 − a ≡ 4c (mod 4 · 2min(α,β))
implies that there is one value of a which satisfies it (as c, r are fixed). Moreover,
the value of the Kronecker symbol here only depends on the congruence class of a
in mod 8. Thus the first and third conditions can be rewritten in mod 8 instead.
The third condition reduces to r2−a ≡ 4c (mod 8), but r and c are odd so we have
r2 ≡ 1 (mod 8) and 4c ≡ 4 (mod 8). Putting this together we get a ≡ 5 (mod 8).
Leaving us with

λr
1(2

α; c,m) = 2α−min(α,β)
∑

a≡5 (mod 8)

(a
2

)α
= 2α−min(α,β) (−1)

α

=
(−2)α

2min(α,β)
.

Part (e): If ℓ ∤ m, 4 · (ℓα,m) = 1 so r2 − a ≡ 4c (mod 4) ≡ 0 (mod 4). Which

is already implied by the third condition on our sum, (r2 − a, 4ℓα) = 4. So, we end
up with

λr
1(ℓ

α; c,m) =
∑

a (mod 4ℓα)∗

a≡1 (mod 4)

(r2−a,4ℓα)=4

(a
ℓ

)α
= cr1(ℓ

α) = ℓα−1 ·

 ℓ− 1−
(

r2

ℓ

)
if α is even,

−
(

r2

ℓ

)
if α is odd.

If ℓ|m, we let m = ℓβm′ where ℓ ∤ m′ and β ≥ 1. Then (ℓα,m) = ℓmin(α,β), so

λr
1(ℓ

α; c,m) =
∑

a (mod 4ℓα)∗

a≡1 (mod 4)

(r2−a,4·ℓmin(α,β))=4

r2−a≡4c (mod 4·ℓmin(α,β))

(a
ℓ

)α
. (14)

Consider the map Z/4 · ℓαZ → Z/4 · ℓmin(α,β)Z. We use this with respect to the
first condition on our sum in equation (14) to get

λr
1(ℓ

α; c,m) = ℓα−min(α,β)
∑

a (mod 4·ℓmin(α,β))∗

a≡1 (mod 4)

(r2−a,4·ℓmin(α,β))=4

r2−a≡4c (mod 4·ℓmin(α,β))

(a
ℓ

)α
. (15)

Now, the third condition in the sum above can be broken up into (r2 − a, 4) = 4
and (r2 − a, ℓ) = 1. The fourth condition in (14) then implies

r2 − a ≡ 4c (mod 4) ≡ 0 (mod 4) =⇒ (r2 − a, 4) = 4,

using the fact that (c, ℓ) = 1 since (c,m) = 1. We also get, r2−a ≡ 4c (mod ℓ) =⇒
(r2 − a, ℓ) = 1. By the definition of the Kronecker symbol, we are only concerned
with a reduced modulo ℓ. Since ℓ is odd we obtain

λr
1(ℓ

α; c,m) = ℓα−min(α,β) ·
(
r2 − 4c

ℓ

)α

.
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Part (f): Note that if (ℓα+2,m) = 1, then our expression is identical to crℓ(ℓ
α)

from David-Pappalardi and can be treated the same. Otherwise, we have

λr
ℓ(ℓ

α; c,m) =
∑

a (mod ℓα)∗

(r2−aℓ2,ℓα)=1

r2−aℓ2≡4c (mod (ℓα+2,m))

(a
ℓ

)α
. (16)

The second condition in the sum above tells us (r2 − aℓ2, ℓ) = 1. But this is always
true since aℓ2 ≡ 0 (mod ℓ) and we have ℓ ∤ r. So our third condition on the sum
in equation (16) becomes r2 − aℓ2 ≡ 4c (mod m) which implies r2 ≡ 4c (mod m).
Since (ℓα+2,m) ̸= 1, we have that ℓ and m are prime. So we have

λr
ℓ(ℓ

α; c,m) =
∑

a (mod ℓα)∗

r2≡4c (mod m)

(a
ℓ

)α
,

and the result follows.
Part (g): This follows from applying results of parts (c) and (d) and using [6].

□

2.4. Determining the constant in a special case.
We will now express our constant as a product over primes, where we recall that

m is an odd prime and c is not divisible by m. We assume that r is an odd integer.
(In Section 3, we will then focus on the case of (m, r) = 1.)

Lemma 2.3. Let

Kr(c,m) =

∞∑
f=1

(f,2r)=1

∞∑
n=1

λr
f (n; c,m)

fnϕ ([m,nf2])
, (17)

where

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod (nf2,m))

(a
n

)
. (18)

Then

Kr(c,m) =
1

ϕ(m)
g(c,m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
,

where

g(c,m) =


m2

m2−1 , if
(

r2−4c
m

)
= 0

m
m−1 , if

(
r2−4c

m

)
= +1

m
m+1 , if

(
r2−4c

m

)
= −1.

Proof. We write

Kr(c,m) =

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)=1

λr
f (n; c,m)

fnϕ ([m,nf2])
+

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)>1

λr
f (n; c,m)

fnϕ ([m,nf2])
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+

∞∑
f=1

(f,2r)=1
(f,m)>1

∞∑
n=1

λr
f (n; c,m)

fnϕ ([m,nf2])
.

Notation: We denote the first double sum as K
(1)
r , the second as K

(2)
r , and the

third as K
(3)
r . Accordingly, we consider three cases.

Case 1: Assume (m,nf2) = 1. Then ϕ([m,nf2]) = ϕ(m)ϕ(nf2). As (m,nf2) = 1,

r2 − af2

4
≡ c (mod (nf2,m)) ≡ c (mod 1).

which is already implied by (r2 − af2, 4n) = 4. So,

λr
f (n; c,m) = crf (n) :=

∑
a(4n)∗

(r2−af2,4n)=4

(a
n

)
.

So we have

K(1)
r =

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)=1

λr
f (n; c,m)

fnϕ(nf2)ϕ(m)
=

1

ϕ(m)

∞∑
f=1

(f,2r)=1
(f,m)=1

∞∑
n=1

(n,m)=1

crf (n)

fnϕ(nf2)
. (19)

Consider (nϕ(nf2))−1 from the inner sum of (19). Replacing n by ℓα for some
prime ℓ, we have

1

ℓαϕ(ℓαf2)
=

1

ℓαϕ(f2)ϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)
.

This allows us to write the inner sum in (19) as

1

fϕ(f2)

∞∑
n=1

(n,m)=1

crf (n)

nϕ(n)

ϕ((f2, n))

(f2, n)
.

Using Lemma 2.2 (b),

K(1)
r =

1

ϕ(m)

∞∑
f=1

(f,2r)=1
(f,m)=1

1

fϕ(f2)

∏
ℓ∤m

∑
α≥0

crf (ℓ
α)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)

 . (20)

For the product in the equation above, we note that

∏
ℓ∤m

∑
α≥0

crf (ℓ
α)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)

 =
∏
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤m
ℓ|f

∑α≥0

crf (ℓ
α)

ℓαϕ(ℓα)
ϕ((f2,ℓα))
(f2,ℓα)∑

α≥0
cr1(ℓ

α)
ℓαϕ(ℓα)

 .

We can then substitute this back into (20) and use multiplicativity to express the
sum using products over primes.

K(1)
r =

1

ϕ(m)

∏
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
p∤2r
p∤m

∑
β≥0

1

pβϕ(p2β)

∏
ℓ∤m
ℓ|p

∑α≥0

cr
pβ

(ℓα)

ℓαϕ(ℓα)
ϕ((p2β ,ℓα))
(p2β ,ℓα)∑

α≥0
cr1(ℓ

α)
ℓαϕ(ℓα)
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=
1

ϕ(m)

∏
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

1 +
∑
β≥1

1

ℓβϕ(ℓ2β)

∑
α≥0

crℓ (ℓ
α)

ℓαϕ(ℓα)
ϕ((ℓ2β ,ℓα))
(ℓ2β ,ℓα)∑

α≥0
cr1(ℓ

α)
ℓαϕ(ℓα)



=
1

ϕ(m)

∏
ℓ∤m
ℓ|2r

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)
+
∑
β≥1

1

ℓβ(ℓ− 1)ℓ2β−1

1 +
∑
α≥1

crℓ(ℓ
α)

ℓαϕ(ℓα)

ϕ(ℓγ)

ℓγ


where γ = min{2β, α},

=
1

ϕ(m)

∏
ℓ∤m
ℓ|2r

1 +
∑
α≥1

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

1 +
∑
α≥1

cr1(ℓ
α)

ℓαϕ(ℓα)
+

1

(ℓ− 1)

ℓ

ℓ3 − 1

1 +
∑
α≥1

crℓ(ℓ
α)

ℓ2α

 .

Applying page 180 of [6], we obtain

K(1)
r =

1

ϕ(m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
. (21)

Case 2: Assume (m, f) = 1 and (m,n) > 1. Then [m,nf2] = nf2. We consider

K(2)
r =

∞∑
f=1

(f,2r)=1
(m,f)=1

∞∑
n=1

(m,n)=m

λr
f (n; c,m)

fnϕ(nf2)
, (22)

where (since (m,nf2) = m),

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod m)

(a
n

)
=

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4

r2−af2≡4c (mod m)

(a
n

)
.

as m is odd.
Since λr

f (n; c,m) is a multiplicative function, given Lemma 2.2 (b), we can rewrite

the inner sum of (22) as products over primes.

K(2)
r =

∞∑
f=1

(f,2r)=1
(m,f)=1

1

fϕ(f2)

∏
ℓ∤m

∑
α≥0

λr
f (ℓ

α; c,m)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)

 (23)

·
∏
ℓ=m

∑
α≥1

λr
f (ℓ

α; c,m)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)


Note that if (ℓ,m) = 1, then λr

f (ℓ
α; c,m) = crf (ℓ

α). If (ℓ,m) > 1 (and so ℓ = m),

then Lemma 2.2 (c) gives that λr
f (ℓ

α; c,m) = ℓα−1
(

r2−4c
ℓ

)α
. So we get

K(2)
r =

∞∑
f=1

(f,2r)=1
(m,f)=1

1

fϕ(f2)

∏
ℓ∤m

∑
α≥0

crf (ℓ
α)

ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)
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·
∏
ℓ=m

∑
α≥1

ℓα−1
(

r2−4c
ℓ

)α
ℓαϕ(ℓα)

ϕ((f2, ℓα))

(f2, ℓα)


We simplify the final product of the expression above to get

∏
ℓ=m

 1

ℓ− 1

∑
α≥1

(
r2−4c

ℓ

)α
ℓα

 =
1

ϕ(m)

∑
α≥1

(
r2−4c

m

)α
mα

.

Following [6], we eventually get

∏
ℓ|2r
ℓ∤m

∑
α≥0

cr1(ℓ
α)

ℓαϕ(ℓα)

∏
ℓ∤2r
ℓ∤m

1 +
∑
α≥1

cr1(ℓ
α)

ℓαϕ(ℓα)
+

1

(ℓ− 1)

ℓ

ℓ3 − 1

1 +
∑
α≥1

crℓ(ℓ
α)

ℓ2α



· 1

ϕ(m)

∑
α≥1

(
r2−4c

m

)α
mα

which gives

K(2)
r =

1

ϕ(m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
· f(m), (24)

where

f(m) :=
∑
α≥1

(
r2−4c

m

)α
mα

=


0, if r2 ≡ 4c (mod m)

1
m−1 , if

(
r2−4c

m

)
= +1

−1
m+1 , if

(
r2−4c

m

)
= −1.

Case 3: Assume (m, f) > 1. Then [m,nf2] = nf2. We consider

K(3)
r =

∞∑
f=1

(f,2r)=1
(f,m)=m

∞∑
n=1

λr
f (n; c,m)

fnϕ(nf2)
, (25)

where (since (m,nf2) = m),

λr
f (n; c,m) =

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4
r2−af2

4 ≡c (mod m)

(a
n

)
=

∑
a (mod 4n)∗

a≡1 (mod 4)

(r2−af2,4n)=4

r2≡4c (mod m)

(a
n

)
.

Again following [6], this eventually leads to:

If r2 ≡ 4c (mod m),

K(3)
r =

1

ϕ(m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
· 1

m2 − 1
, (26)
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If r2 ̸≡ 4c (mod m), K
(3)
r = 0.

Summing cases: We sum the equations (21), (24), and (26), we get

Kr(c,m) = K(1)
r +K(2)

r +K(3)
r

=
1

ϕ(m)
gr(c,m)

∏
ℓ|r
ℓ∤m

(
1− ℓ−2

)−1∏
ℓ∤r
ℓ∤m

(
ℓ(ℓ2 − ℓ− 1)

(ℓ− 1)(ℓ2 − 1)

)
, (27)

where

gr(c,m) =


1 + 0 + 1

m2−1 = m2

m2−1 , if
(

r2−4c
m

)
= 0

1 + 1
m−1 + 0 = m

m−1 , if
(

r2−4c
m

)
= +1

1 + −1
m+1 + 0 = m

m+1 , if
(

r2−4c
m

)
= −1.

□

2.5. Constants in the asymptotic expressions.

In the setting of primes restricted to congruence classes, from the work of [9,11]
(where in particular we follow the expression in Proposition 5.6 of [9]), we have

Proposition 2.4. Fix odd r and positive integers c,m such that (c,m) = 1. Then
we have

1

4AB

∑
E∈S(A,B)

π(x,E, r, c,m) ∼ C(r, c,m)

√
x

log x

as x → ∞, where we express C(r, c,m) as a product over primes ℓ,

C(r, c,m) =
2

π

∏
ℓ

Λ(r, c,m, ℓ) > 0,

Λ(r, c,m, ℓ) =



2

3
vℓ(m) = 0, ℓ = 2,

ℓ2

ℓ2 − 1
vℓ(m) = 0, ℓ | r,

1− 1

(ℓ2 − 1)(ℓ− 1)
vℓ(m) = 0, ℓ ∤ 2r,

σ−1

(
ℓ⌈vℓ(m)/2⌉−1

)
ϕ(ℓvℓ(m))

+
1

ℓ3⌈vℓ(m)/2⌉−3(ℓ2 − 1)(ℓ− 1)
1 ≤ vℓ(m) ≤ vℓ(ρ0),

ℓ

ϕ(ℓvℓ(m))
(
ℓ−

(
ρ∗
ℓ

)) 0 = vℓ(ρ0) < vℓ(m),

σ−1

(
ℓvℓ(ρ0)/2−1/2

)
ϕ(ℓmax(vℓ(m)))

0 < vℓ(ρ0) < vℓ(m), 2 ∤ vℓ(ρ0),

1

ϕ(ℓvℓ(m))

(
σ−1

(
ℓvℓ(ρ0)/2

)
+

1

ℓvℓ(ρ0)/2
((

ρ∗
ℓ

)
p− 1

)) 0 < vℓ(ρ0) < vℓ(m), 2 | vℓ(ρ0).
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where ρ0 = r2 − 4c, ρ∗ = ρ∗(ℓ) = ℓ−vℓ(r
2−4c)(r2 − 4c), σα(n) =

∑
d|n d

α, and
( ·
·
)

denotes the Kronecker symbol.

3. Congruence class bias on average

In [19], we observed that, given some positive integerm, the distribution of super-
singular primes on average was not evenly distributed over the invertible congruence
classes modulo m. For example, on average there are twice as many supersingular
primes congruent to 2 (mod 3) as there are congruent to 1 (mod 3). More gen-
erally, we observed that if m is an odd prime, the ratio of supersingular primes
congruent to a quadratic residue of m to those that are congruent to a quadratic
non-residue of m, is

m+ 1

m− 1
, when m ≡ 1 (mod 4) and

m− 1

m+ 1
, when m ≡ 3 (mod 4).

For an individual non-CM elliptic curve E, we recall that for sufficiently large
primes p we have E(Q)tors ↪→ E(Fp). For example, if 5 divides the order of E(Q)tors,
then for a sufficiently large p, ap(E) ≡ p + 1− |E(Fp)| ≡ p + 1 (mod 5), and so if
p is supersingular for E, then we must have p ≡ 4 (mod 5).

The same phenomenon could occur for certain elliptic curves with trivial rational
torsion. An example kindly provided by the anonymous referee is that of the elliptic
curve E : y2 + xy+ y = x3 − x+148. Its ℓ-adic Galois representation has maximal
image at all primes ℓ ̸= 5, and one can find that

Gal(Q(E[5])/Q) ≃
{(

a2 ∗
a

)
: a ∈ (Z/5Z)×

}
.

An element of the right-hand side with trace 0 (mod 5) must have determinant 4
(mod 5). So if p is supersingular for E, then p ≡ 4 (mod 5).

Using a similar approach to that of N. Jones (see Theorem 10 in [12]), as well as
related work in [5], one might expect for an individual elliptic curve that is a Serre
curve of large height (which can be thought of as a ‘typical’ elliptic curve) the bias
might be similar to that observed on average. We also point out that other work
has studied congruence class biases in a different but related context [1].

In this section, we take the opportunity to extend the discussion in the first para-
graph of this section to non-supersingular cases, using equation (27) from Section
2. We use the notation from Section 2.2 (see equations (3) and (4)), and in this
section we refer to the bias as an ‘average bias’ to make it clear that it is being
observed for a family of elliptic curves. We first observe that, for any odd r ̸= 3,
we have

Kr(1, 3)/Kr(2, 3) = 3/2.

This lies in contrast to the supersingular case, where K0(1, 3)/K0(2, 3) = 1/2. Note
in particular that the direction of the average bias has changed and that its strength
has decreased.

In the case of m = 5 with odd r ̸= 5, there are two possibilities:

Kr(1, 5)/Kr(2, 5) =

{
1 for r ≡ 1 or 4 mod 5,

5/6 for r ≡ 2 or 3 mod 5.
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We again contrast this with the supersingular case, where K0(1, 5)/K0(2, 5) = 3/2,
and note that the strength of the average bias has decreased.

We lastly discuss the case of m = 7 with odd r ̸= 7. There are three possibilities:

Kr(1, 7)/Kr(2, 7) =


8/7, for r ≡ 1 or 6 mod 7

7/6, for r ≡ 2 or 5 mod 7

3/4, for r ≡ 3 or 4 mod 7.

This has a stronger average bias compared to the supersingular case, which simply
has K0(1, 7)/K0(2, 7) = 1 (the difference in outcome compared to the m = 3 and
5 cases is due to both 1 and 2 being quadratic residues mod 7). Even if we instead
consider the ratio K0(1, 7)/K0(3, 7) = 4/3, we note that the average bias is no
stronger than in the odd r ≡ 3, 4 (mod 7) case above.

In general, given equation (27), we observe that the possible average biases for
odd prime m with coprime odd r are of the form

1,
m+ 1

m
,

m

m− 1
,
m+ 1

m− 1
,

or their inverses.

4. Computations

The biases demonstrated in Section 3 are on average over a family of infinite size.
In this section we consider individual elliptic curves and examine the distribution
of their supersingular primes in different congruence classes.

We selected six elliptic curves, all without Complex Multiplication, and chosen to
have varied ranks and torsion subgroups, from the LMFDB [14]. A table of these
is presented below, using the LMFDB label of the curve. The torsion subgroup
column refers to the isomorphism class of E(Q)tors.

Elliptic curve Conductor Rank Torsion subgroup
21.a1 21 0 Z/2Z
38.b2 38 0 Z/5Z
53.a1 53 1 trivial
55.a1 55 0 Z/4Z
65.a2 65 1 Z/2Z
83.a1 83 1 trivial

For each elliptic curve we used SAGE [16] to obtain a list of all supersingular
primes less than 4×108. We then used Python [15] to partition these lists according
to certain congruence classes. The overall run time on a standard laptop was 4 hours
or more for each curve.

The first graph below finds, for each elliptic curve, the ratio of the number of
supersingular primes less than x that are 2 mod 3 to those that are 1 mod 3. One
can compare this to the result on average [19] which gives a ratio of 2.

Note that for all three graphs, the x-axes are labelled in increments of 108 and
that the graphs have points plotted every 0.25 × 108 units, which are connected
with straight lines.
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Figure 1: Ratio of supersingular primes that are 2 mod 3 to those that are 1 mod 3

The next graph finds, for five of the six elliptic curves, the ratio of the number of
supersingular primes less than x that are 1 mod 5 to those that are 2 mod 5. The
ratio from the averaging result was 3/2.

Note that the curve 38.b2 was excluded from the graph below because it has 5-
torsion. Recall that for sufficiently large p, we have E(Q)tors ↪→ E(Fp). So for curve
38.b2 we have 5 | #E(Fp) and therefore ap(E) = p+ 1−#E(Fp) ≡ p+ 1 (mod 5).
So if p is supersingular, then p ≡ 4 (mod 5).
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Figure 2: Ratio of supersingular primes that are 1 mod 5 to those that are 2 mod 5

This final graph plots the ratio of the number of supersingular primes less than
x that are 3 mod 7 to those that are 1 mod 7. (We did not consider the case of
the ratio of the number of supersingular primes less than x that are 1 mod 7 to
those that are 2 mod 7, since no bias is expected for that case.) The ratio from the
averaging result was 4/3.
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Figure 3: Ratio of supersingular primes that are 3 mod 7 to those that are 1 mod 7
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