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Abstract. Let F be a local field with finite residue field of characteristic p and k an algebraic

closure of the residue field. Let G be the group of F-points of a F-split connected reductive

group. In the apartment corresponding to a maximal split torus of T, we choose a hyperspecial

vertex and denote by K the corresponding maximal compact subgroup of G.

Given an irreducible smooth k-representation ρ of K, we construct an isomorphism from

the affine semigroup k-algebra k[X+
∗ (T)] of the dominant cocharacters of T onto the spherical

k-algebra H(G, ρ). In the case when the derived subgroup of G is simply connected, we prove

furthermore that our isomorphism is the inverse to the mod p Satake isomorphism constructed

by Herzig in [19].
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1. Introduction

The smooth mod p representation theory of a split p-adic reductive group G and its number

theoretic interpretation via an expected mod p version of the Langlands program is currently

only understood in the case of G = GL2(Qp) (see [4] for an overview). In the general case,

the irreducible representations of G have been classified up to the supersingular representations,

about which very little is known ([20], generalized by [1]). The main tool used in this classification

is the mod p Satake isomorphism established in [19] and comparison theorems between compact

and parabolic inductions for mod p representations.

In the classical setting, i.e for complex representations of G, the Satake transform provides a

description of the convolution algebra C[K\G/K]: it is an isomorphism

S : C[K\G/K]
'−→ (C[X∗(T)])W

where W denotes the finite Weyl group corresponding to the split torus T ([31], see also [14]) and

X∗(T) the group of cocharacters of T. This isomorphism says that the characters of C[K\G/K]

parametrize the isomorphism classes of a family of smooth irreducible representations of G called

unramified. Generically, an unramified representation is isomorphic to an irreducible principal

series representation with an Iwahori-fixed vector (in general it is the unique unramified sub-

quotient of such a principal series representation [9, 4.4]).

On the other hand, all unramified representations lie in the Bernstein block of the category of

smooth representations of G called the Iwahori block. By Bernstein, Borel [2] and Matsumoto [25],

this block is equivalent to the category of modules over the Iwahori-Hecke algebra HC(G, I) via

the functor V 7→ VI. By this equivalence, the isomorphism classes of unramified representations

are parametrized by the (W-orbits of) characters of the commutative Bernstein subalgebra of

HC(G, I) (as defined in [24, 3.5]), or equivalently, by the characters of the center Z(HC(G, I)) of

HC(G, I).

This discussion reveals a correspondence between characters of C[K\G/K] and characters of

Z(HC(G, I)), which is realized by the following statement (proved and discussed in [15, Propo-

sition 10.1] and [13, Corollary 3.1]): the Bernstein isomophism (see [23], [24])

B : (C[X∗(T)])W
'−→ Z(HC(G, I))

is compatible with S in the sense that the composition (eK?.)B is an inverse for S, where (eK?.)

is the convolution by the characteristic function of K.
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The current article provides a link between the Iwahori-Hecke algebra and the spherical Hecke

algebra with coefficients in a field k of characteristic p. In fact, more accurately, the pro-p Iwahori-

Hecke k-algebra H̃ comes naturally into play in the mod p setting. It has been studied by [36].

On the other hand, instead of focusing on the trivial representation of K, we will consider the

more general Hecke algebra H(G, ρ) of an irreducible k-representation ρ of K.

We construct in H̃ a commutative subalgebra Aρ which is isomorphic to k[X+
∗ (T)], where

X+
∗ (T) denotes the monoid of the dominant cocharacters. The notation Aρ does not appear

in the body of the article: Aρ is the image of k[X+
∗ (T)] by the modified Bernstein map B+

Fχ
described below in 1.2.1. Using a theorem by Cabanes that relates categories of k-representations

of parahoric subgroups of G and Hecke modules ([8]), we then define a natural isomorphism from

Aρ onto H(G, ρ) and therefore obtain an isomorphism k[X+
∗ (T)]

∼→ H(G, ρ). The fact that these

two algebras are isomorphic was shown by Herzig in [19]. We do not rely on that result. Instead,

we prove that, if the derived subgroup of G is simply connected, our isomorphism is an inverse

to the Satake transform of [19].

We give below, after some notations, a more detailed description of our methods and results.

1.1. Framework and notations. Let F be a nonarchimedean locally compact field with ring

of integers O, maximal ideal P and residue field Fq where q is a power of a prime number p.

We fix a uniformizer $ of O and choose the valuation valF on F normalized by valF($) = 1. Let

G := G(F) be the group of F-rational points of a connected reductive group G over F which we

assume to be F-split. We fix an algebraic closure k of Fq: it is the field of coefficients of (most

of) the representations we consider. All representations of G and its subgroups are smooth.

Let X (resp. X ext) be the semisimple (resp. extended) building of G and pr : X ext →X the

canonical projection map. We fix a maximal F-split torus T in G which is equivalent to choosing

an apartment A in X (see 2.2.1). We fix a chamber C in A as well as a hyperspecial vertex x0

of C. The stabilizer of x0 in G contains a good maximal compact subgroup K of G which in turns

contains an Iwahori subgroup I that fixes C pointwise. Let Gx0 and GC denote the Bruhat-Tits

group schemes over O whose O-valued points are K and I respectively. Their reductions over

the residue field Fq are denoted by Gx0 and GC . By [35, 3.4.2, 3.7 and 3.8], Gx0 is connected

reductive and Fq-split. Therefore we have G◦C(O) = GC(O) = I and G◦x0(O) = Gx0(O) = K.

Denote by B the Borel subgroup of Gx0 image of the natural morphism GC −→ Gx0 and by

N the unipotent radical of B and T its Levi subgroup. Set

K1 := Ker
(
Gx0(O)

proj−−−→ Gx0(Fq)
)

and Ĩ := {g ∈ K : proj(g) ∈ N(Fq)}.

Then we have a chain K1 ⊆ Ĩ ⊆ I ⊆ K of compact open subgroups in G such that

K/K1 = Gx0(Fq) ⊇ I/K1 = B(Fq) ⊇ Ĩ/K1 = N(Fq) .

The subgroup Ĩ is pro-p and is called the pro-p Iwahori subgroup. It is a maximal pro-p subgroup

in K. The quotient I/Ĩ identifies with T(Fq).
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Let X̃ := indG
Ĩ

(1) denote the compact induction of the trivial character of Ĩ (with values in

k). We see it as the space of k-valued functions with compact support in Ĩ\G, endowed with the

action of G by right translation. The Hecke k-algebra of the G-equivariant endormorphisms of

X̃ will be denoted by H̃.

Remark 1.1. Throughout the article, we will use accented letters such as X̃, H̃, H̃, W̃, X̃∗(T)

even when their non accented versions do not necessarily come into play: in doing so, we want

to emphasize the fact that we work with the pro-p Iwahori subgroup Ĩ and the attached objects.

The non accented letters are kept for the classical root data, universal representations, affine

Hecke algebra etc. attached to the chosen Iwahori subgroup I.

The algebra H̃ is relatively well understood: an integral Bernstein basis has been described

by Vignéras ([36]) who underlines the existence of a commutative subalgebra denoted by A+, (1)

in H̃ that contains the center of H̃ and such that H̃ is finitely generated over A+, (1).

Let ρ be an irreducible k-representation of K. Such an object is called a weight. It descends

to an irreducible representation of Gx0(Fq) because K1 is a pro-p group. Its compact induction

to G is denoted by indG
Kρ. The k-algebra of the G-endomorphisms of the latter is denoted by

H(G, ρ) and will be called the spherical Hecke algebra attached to ρ. It is described by Herzig in

[19] (remark that the results of [19] are equally valid when F has characteristic p). In particular,

H(G, ρ) is a commutative noetherian algebra. For example, if G = GLn (for n ≥ 1) then H(G, ρ)

is an algebra of polynomials in n variables localized at one of them (Example 1.6, loc. cit.). More

precisely, for general G, let X∗(T) denote the set of cocharacters of the split torus T and X+
∗ (T)

the monoid of the dominant ones, then there is an isomorphism

S : H(G, ρ)
'−→ k[X+

∗ (T)]

given by [19, Thm 1.2] (see our remark 2.5 for our choice of the “dominant” normalization).

1.2. Results.

1.2.1. Let ρ be a weight. We prove independently from [19] that there is an isomorphism

between k[X+
∗ (T)] and H(G, ρ) (depending on the choice of a uniformizer $ and of a set of

positive roots) by constructing a map in the opposite direction

(1.1) T : k[X+
∗ (T)]

'−→ H(G, ρ)

and proving that it is an isomorphism (Theorem 4.11).

Under the hypothesis that the derived subgroup of G is simply connected, we give in 5 an

explicit description of T and prove that it is an inverse for S which, under the same hypothesis,

is explicitly computed in [20].

Our method to construct T is based on the following result: it is well known that there is a

one-to-one correspondence between the weights and the characters of the (finite dimensional)

pro-p Iwahori-Hecke algebra H̃ of the maximal compact K ([11]). In fact, we have more than
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this: by a theorem of Cabanes ([8], recalled in 3.2), there is an equivalence of categories between

H̃-modules and a certain category (denoted here by B(x0)) of representations of K. Using this

theorem, we prove (Corollary 3.14) that passing to Ĩ-invariant vectors gives natural isomorphisms

of k-algebras

(1.2) H(G, ρ) ∼= HomH̃((indG
Kρ)Ĩ, (indG

Kρ)Ĩ) ∼= HomH̃(χ⊗H̃ H̃, χ⊗H̃ H̃)

where χ is the character of H̃ corresponding to ρ. Therefore, it remains to describe the k-algebra

HomH̃(χ⊗H̃ H̃, χ⊗H̃ H̃). The necessary tools are introduced in Section 4.

In Section 4, we consider F a standard facet, that is to say a facet of the standard chamber

C containing x0 in its closure. We attach to F a Weyl chamber C +(F ) (for example, if F = C,

it is simply the set of dominant cocharacters) as well as a k-linear “Bernstein-type” map

B+
F : k[X̃∗(T)]→ H̃

defined on the group algebra of the extended cocharacters X̃∗(T) (2.2.2 and Remark 1.1). Re-

stricted to the dominant monoid k[X̃+
∗ (T)], the map B+

F respects the product and its image is

a commutative subalgebra of H̃. For example, if F = C, then B+
C coincides on k[X̃+

∗ (T)] with

the map sending a dominant cocharacter onto the characteristic function of the corresponding

double coset modulo Ĩ, and the image of B+
C coincides with the subalgebra A+, (1) of [36].

To the character χ of H̃ we attach a standard facet Fχ as well as its restriction χ̄ to the finite

torus T(Fq) (3.4). (For example, if ρ is the Steinberg representation, then Fχ = C and χ̄ is the

trivial character.) We prove in 4.2 that the map B+
Fχ

induces an isomorphism of k-algebras

(1.3) k[X+
∗ (T)] ∼= χ̄⊗k[T0/T1] k[X̃+

∗ (T)]
'−→ HomH̃(χ⊗H̃ H̃, χ⊗H̃ H̃)

which, combined with (1.2), yields the isomorphism T.

1.3. Perspectives. We started this introduction by recalling some facts about complex rep-

resentations of G and the attached Hecke algebras. It suggested that constructing an inverse

to the mod p Satake transform by means of commutative Bernstein-type subalgebras of H̃ is

motivated by understanding families of mod p representations of G. As opposed to the complex

case however, functors of the form V 7→ VU where U is an open compact subgroup of G (for

example I or Ĩ) do not in general provide equivalences between the expected categories of rep-

resentations of G and of Hecke modules in characteristic p ([26], [30]). It is one of the obstacles

to the classification of the irreducible supercuspidal representations of G.

The notion of supersingularity for characters ofH(G, ρ) has been defined in [20], and related to

the supercuspidality for representations of G. The notion of supersingularity for H̃-modules has

been defined in [36]. The current article provides a way to unify these two notions: consequences

of our theorem and applications to the study of blocks of H̃-modules in relation with mod p

representations of G are analyzed in a separate article ([28]). We point out in particular the
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importance of the Bernstein-type maps Bσ
F defined in the current paper for the classification of

the simple supersingular H̃-modules in [28].

1.4. Acknowledgments. I thank Marc Cabanes for enlightening discussions on modular rep-

resentation theory, Guy Henniart and Florian Herzig for helpful comments on a preliminary

version, Marie-France Vignéras for her stimulating interest in this work and Michael Harris for

insightful conversations over the years. I also thank the anonymous referee for several useful

remarks.

2. Root data and associated affine Hecke rings

We first give notations and basic results about “abstract” reduced root data. In 2.2 (respec-

tively 2.3), we will describe some aspects of the construction of the reduced root data of G

(respectively, of a semi-standard Levi subgroup of G) associated to the choice of the torus T. In

both the settings of 2.2 and of 2.3, the results of 2.1 apply.

2.1. Root datum. We refer to [24, §1]. We consider an affine root datum (Φ,X∗, Φ̌,X∗) where

Φ is the set of roots and Φ̌ the set of coroots. We suppose that it is reduced. An element of the

free abelian group X∗ is called a coweight. We denote by 〈 . , .〉 the perfect pairing on X∗ × X∗

and by α↔ α̌ the correspondence between roots and coroots satisfying 〈α, α̌〉 = 2. We choose a

basis Π for Φ and denote by Φ+ (resp. Φ−) the set of roots which are positive (resp. negative)

with respect to Π. There is a partial order on Φ given by α � β if and only if β − α is a linear

combination with (integral) nonnegative cœfficients of elements in Π.

To the root α̌ corresponds the reflection sα : λ 7→ λ − 〈λ, α〉 α̌ defined on X∗. It leaves Φ̌

stable. The finite Weyl group W is the subgroup of GL(X∗) generated by the simple reflections

sα for α ∈ Π. It is a Coxeter system with generating set S = {sα, α ∈ Π}. We will denote by

(w0, λ) 7→ w0λ the natural action of W on the set of coweights. It induces a natural action of W

on the weights which stabilizes the set of roots. The set X∗ acts on itself by translations: for any

coweight λ ∈ X∗, we denote by eλ the associated translation. The (extended) Weyl group W is

the semi-direct product Wn X∗.

2.1.1. Define the set of affine roots by Φaff = Φ× Z = Φ+
aff

∐
Φ−aff where

Φ+
aff := {(α, r), α ∈ Φ, r > 0} ∪ {(α, 0), α ∈ Φ+}.

The Weyl group W acts on Φaff by weλ : (α, r) 7→ (wα, r − 〈λ, α〉) where we denote by

(w,α) 7→ wα the natural action of W on the roots. Denote by Πm the set of roots that are minimal

elements for�. Define the set of simple affine roots by Πaff := {(α, 0), α ∈ Π}∪{(α, 1), α ∈ Πm}.
Identifying α with (α, 0), we consider Π a subset of Πaff . For A ∈ Πaff , denote by sA the

following associated reflection: sA = sα if A = (α, 0) and sA = sαe
α̌ if A = (α, 1). The length on

the Coxeter system W extends to W in such a way that, the length of w ∈W is the number of



AN INVERSE SATAKE ISOMORPHISM IN CHARACTERISTIC p 7

affine roots A ∈ Φ+
aff such that w(A) ∈ Φ−aff . It satisfies the following formula, for any A ∈ Πaff

and w ∈W:

(2.1) `(wsA) =

{
`(w) + 1 if w(A) ∈ Φ+

aff ,

`(w)− 1 if w(A) ∈ Φ−aff .

The affine Weyl group is defined as the subgroup Waff := < sA, A ∈ Φaff > of W. Let

Saff := {sA : A ∈ Πaff}. The pair (Waff , Saff ) is a Coxeter system ([3, V.3.2 Thm. 1(i)]),

and the length function ` restricted to Waff coincides with the length function of this Coxeter

system. Recall ([24, 1.5]) that Waff is a normal subgroup of W: the set Ω of elements with

length zero is an abelian subgroup of W and W is the semi-direct product W = ΩnWaff . The

length ` is constant on the double cosets ΩwΩ for w ∈W. In particular Ω normalizes Saff .

We extend the Bruhat order ≤ on the Coxeter system (Waff , Saff ) to W by defining

ω1w1 ≤ ω2w2 if ω1 = ω2 and w1 ≤ w2

for w1, w2 ∈ Waff and ω1, ω2 ∈ Ω (see [15, §2.1]). We write w < w′ if w ≤ w′ and w 6= w′ for

w,w′ ∈W. Note that w ≤ w′ and `(w) = `(w′) implies w = w′.

2.1.2. Let X+
∗ denote the set of dominant coweights that is to say the subset of all λ ∈ X∗ such

that

〈λ, α〉 ≥ 0 for all α ∈ Φ+.

The set of antidominant coweights is X−∗ := −X+
∗ . The extended Weyl group W is the disjoint

union of all WeλW where λ ranges over X+
∗ (resp. X−∗ ) (see for example [22, 2.2]).

Remark 2.1. We have `(weλ) = `(w) + `(eλ) for all w ∈W and λ ∈ X+
∗ .

There is a partial order on X+
∗ given by λ � µ if and only if λ− µ is a non-negative integral

linear combination of the simple coroots.

2.1.3. Distinguished coset representatives. The following statement is [29, Proposition 4.6] (see

[27, Lemma 2.6] for ii).

Proposition 2.2. Let D be the subset of the elements d in W such that

(2.2) d−1Φ+ ⊂ Φ+
aff .

i. It is a system of representatives of the right cosets W\W. Any d ∈ D is the unique

element with minimal length in Wd and for any w ∈W, we have

(2.3) `(wd) = `(w) + `(d).

ii. An element d ∈ D can be written uniquely d = eλw with λ ∈ X+
∗ and w ∈ W. We then

have `(eλ) = `(d) + `(w−1).

iii. Let s ∈ S and d ∈ D. If `(ds) = `(d) − 1 then ds ∈ D. If `(ds) = `(d) + 1 then either

ds ∈ D, or ds ∈Wd.
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Remark 2.3. Let λ ∈ X+
∗ .

- Then eλ ∈ D and D ∩WeλW = D ∩ eλW.

- There is a unique element with maximal length in WeλW: it is wλ := w0e
λ where w0 is the

unique element with maximal length in W.

Lemma 2.4. Let λ, µ ∈ X+
∗ and d ∈ D ∩ eλW.

i. d ≤ eλ and in particular `(d) < `(eλ) if d 6= eλ.

ii. d ≤ eµ is equivalent to eλ ≤ eµ.

iii. Let w ∈WeλW. If w ≤ wµ then eλ ≤ eµ. In particular, wλ ≤ wµ is equivalent to eλ ≤ eµ.

Proof. The first assertion comes from ii. of Proposition 2.2. To prove the second assertion, write

d = eλw with w ∈ W and suppose that d ≤ eµ. If w 6= 1, then w−1
λ is not a dominant

coweight otherwise by Remark 2.1 we would have `(d) > `(eλ). Therefore, there is β ∈ Π such

that 〈w−1
λ, β〉 < 0, that is to say d(β, 0) = (wβ,−〈w−1

λ, β〉) ∈ Φ+
aff − Φ+. This implies that

`(dsβ) = `(d) + 1 by (2.1) and that dsβd
−1 6∈W so that dsβ ∈ D after Proposition 2.2 iii. Note

that applying Proposition 2.2 ii. to d and dsβ shows that `(wsβ) = `(w)−1. By Lemma [15, 4.3]

(repeatedly) we get from d ≤ eµ that dsβ ≤ eµ (we have either dsβ ≤ eµ or dsβ ≤ eµsβ. In the

latter case, dsβ ≤ eµsβ ≤ eµ if 〈µ, β〉 > 0 ; otherwise 〈µ, β〉 = 0 and eµ and s commute: we have

dsβ ≤ sβeµ which implies that either dsβ ≤ eµ or sβdsβ ≤ eµ, but dsβ ≤ sβdsβ because dsβ ∈ D,

so in any case dsβ ≤ eµ). We then complete the proof of the second assertion by induction on

`(w).

To prove the last assertion, it is enough to consider the case w = d ∈ D. We prove by induction

on `(u) for u ∈W that d ≤ ueµ implies d ≤ eµ: let s ∈ S such that `(su) = `(u)− 1; by Lemma

[15, 4.3] we have d ≤ sd ≤ sueµ or d ≤ sueµ; conclude. Therefore, d ≤ wµ implies d ≤ eµ and

by ii., eλ ≤ eµ. �

One easily deduces from the previous Lemma (see also [23, §1] for the compatibility between

the partial orderings � and ≤ on the dominant coweights) the following well known result ([17,

7.8], [22, (4.6)]). Let λ ∈ X+
∗ . We have

(2.4) {w ∈W, w≤wλ} =
∐
µ

WeµW

where µ ∈ X+
∗ ranges over the dominant coweights such that eµ ≤ eλ or equivalently µ�λ.

2.2. Root datum attached to G(F). We refer for example to [34, I.1] and [35] for the de-

scription of the root datum (Φ,X∗(T), Φ̌,X∗(T)) associated to the choice (§1.1) of a maximal

F-split torus T in G (or rather, T is the group of F-points of a maximal torus in G). This root

datum is reduced because the group G is F-split.

2.2.1. Apartment attached to a maximal split torus. The set X∗(T) (resp. X∗(T)) is the set of

algebraic characters (resp. cocharacters) of T. The cocharacters will also be called the coweights.

Let X∗(Z) and X∗(Z) denote respectively the set of algebraic characters and cocharacters of the

connected center Z of G.
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As before, we denote by 〈 . , . 〉 : X∗(T) × X∗(T) → Z the natural perfect pairing. The vector

space

R⊗Z (X∗(T)/X∗(Z))

considered as an affine space on itself identifies with an apartment A of the building X that

we will call standard. We choose the hyperspecial vertex x0 as an origin of A . Note that the

corresponding apartment in the extended building X ext as described in [35, 4.2.16] is the affine

space R ⊗Z X∗(T). Let α ∈ Φ. Since 〈 . , α〉 has value zero on X∗(Z), it extends to a function

α( . ) on A which we will sometimes still denote by 〈 . , α〉. The reflection sα associated to a root

α ∈ Φ can be seen as a reflection on the affine space A given by sα : x 7→ x−α(x)α̌. The natural

action on A of the normalizer NG(T) of T in G yields an isomorphism between NG(T)/T and

the subgroup W of the transformations of A generated by these reflections.

Together with the choice of the vertex x0, the choice of the chamber C (§1.1) of the standard

apartment implies in particular the choice of the subset Φ+ of the positive roots, that is to say

the set of all α ∈ Φ that take non negative values on C. Set Φ− := −Φ. We fix Π a basis for Φ+.

We denote by Φaff (resp. Φ+
aff , resp. Φ−aff ) the set of affine (resp. positive affine, resp. negative

affine) roots, and by Πaff the corresponding basis for Φaff as in 2.1. Denote by X+
∗ (T) (resp.

X−∗ (T)) the set of dominant (resp. antidominant) coweights. The partial ordering on X+
∗ (T)

associated to Π is denoted by �.

The extended Weyl group W is the semi-direct product of Wn X∗(T). It contains the affine

Weyl group Waff . We denote by ` the length function and by ≤ the Bruhat ordering on W.

They extend the ones on the Coxeter system (Waff , Saff ).

To an element g ∈ T corresponds a vector ν(g) ∈ R⊗Z X∗(T) defined by

(2.5) 〈ν(g), χ〉 = − valF(χ(g)) for any χ ∈ X∗(T).

The kernel of ν is the maximal compact subgroup T0 of T. The quotient of T by T0 is a free

abelian group with rank equal to dim(T), and ν induces an isomorphism T/T0 ∼= X∗(T). The

group T/T0 acts by translation on A via ν. The actions of W and T/T0 combine into an

action of the quotient of NG(T) by T0 on A as recalled in [34, page 102]. Since x0 is a special

vertex of the building, this quotient identifies with W ([35, 1.9]) and from now on we identify

W with NG(T)/T0. In particular, a simple reflection sA ∈ Saff corresponding to the affine root

A = (α, r) can be seen as the reflection at the hyperplane with equation 〈 . , α〉 + r = 0 in the

affine space A .

We denote by D the distinguished set of representatives of the cosets W\W as defined in

2.1.3.

Remark 2.5. In [19] the chosen isomorphism between T/T0 and X∗(T) is not the same as (2.5).

Here we chose to follow [35, 1.1] and [34, I.1]. The consequence is that the image in T/T0 of the

submonoid T− := {t ∈ T, valF(α(t)) ≤ 0 for all α ∈ Φ+} (cf [19, Definition 1.1]) corresponds, in

our normalization, to the submonoid X+
∗ (T) of X∗(T). It explains why the dominant coweights

appear naturally in our setting.
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2.2.2. Tame extended Weyl group. Let T1 be the pro-p Sylow subgroup of T0. We denote by W̃

the quotient of NG(T) by T1 and obtain the exact sequence

0→ T0/T1 → W̃→W→ 0.

We fix a lift w̃ ∈ W̃ of any w ∈W.

The length function ` on W pulls back to a length function ` on W̃ ([36, Prop. 1]). For

u, v ∈ W̃ we write u ≤ v if their projections ū and v̄ in W satisfy ū ≤ v̄.

For any A ⊆ W we denote by Ã its preimage in W̃. In particular, we have the set X̃∗(T):

as well as those of X∗(T), its elements will be denoted by λ or eλ. For α ∈ Φ, we inflate the

function α( . ) defined on X∗(T) to X̃∗(T). We will write 〈x, α〉 := α(x) for x ∈ X̃∗(T). We still

call dominant coweights the elements in the preimage X̃+
∗ (T) of X+

∗ (T).

2.2.3. Bruhat decomposition. We have the decomposition G = ING(T)I and two cosets In1I and

In2I are equal if and only if n1 and n2 have the same projection in W. In other words, a system

of representatives in NG(T) of the elements in W provides a system of representatives of the

double cosets of G modulo I. This follows from [35, 3.3.1]. We fix a lift ŵ ∈ NG(T) for any

w ∈ W (resp. w ∈ W̃). In 2.2.5 we will introduce specifically chosen lifts for the elements s̃,

where s ∈ Saff . By [36, Theorem 1] the group G is the disjoint union of the double cosets ĨŵĨ

for all w ∈ W̃.

Remark 2.6. For w ∈ W̃, we will sometimes write wĨw−1 instead of ŵĨŵ−1 since it does not

depend on the chosen lift.

2.2.4. Cartan decomposition. The double cosets of G modulo K are indexed by the coweights

in a chosen Weyl chamber: for λ ∈ X+
∗ (T), the element λ($) is a lift for e−λ ∈W (see Remark

2.5) and G is the disjoint union of the double cosets Kλ($)K for λ ∈ X+
∗ (T).

2.2.5. Root subgroups and Chevalley basis. For α ∈ Φ, we consider the attached unipotent sub-

group Uα of G as in ([5, 6.1]). To an affine root (α, r) ∈ Φaff corresponds a subgroup U(α,r) of

Uα ([35, 1.4]) the following properties of which we are going to use ([34, p. 103]):

- For r ≤ r′ we have U(α,r′) ⊆ U(α,r).

- For w ∈W, the group ŵU(α,r)ŵ
−1 does not depend on the lift ŵ ∈ G and is equal to Uw(α,r).

We fix an épinglage for G as in SGA3 Exp. XXIII, 1.1 (see [12]). In particular, to α ∈ Φ is

attached a central isogeny φα : SL2(F) → Gα where Gα is the subgroup of G generated by Uα
and U−α ([12, Thm 1.2.5]).

We set nsα := φα

(
0 1

−1 0

)
and, for u ∈ F∗, hα(u) := φα

(
u 0

0 u−1

)
. Then T contains hα(F∗)

for all α ∈ Φ. After embedding F∗q into F∗ by Teichmüller lifting, we consider the subgroup Tα

of T0 equal to the image of F∗q by hα. It identifies with a subgroup of T0/T1.

For α ∈ Πm, set h(α,1) := hα, T(α,1) := Tα and ns(α,1) := φα

(
0 $

−$−1 0

)
.
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For A ∈ Πaff , the element nsA ∈ NG(T) is a lift for sA ∈ Saff ([12, Proof of Proposition

1.3.2]). The normalizer NG(T) of T is generated by T and all nsα for α ∈ Φ. For all w ∈ W̃

with length `, there is ω ∈ W̃ with length zero and s1, ..., s` ∈ Saff such that the product

ns1 ...ns` ∈ NG(T) is a lift for ωw ∈ W̃.

2.3. Root datum attached to a standard facet.

2.3.1. Let F ⊆ C be a facet containing x0 in its closure. Such a facet will be called standard.

Attached to it is the subset ΠF of the roots in Π taking value zero on F , or equivalently the

subset SF of the reflections in S fixing F pointwise.

Remark 2.7. The closure F of a facet F consists exactly of the points of C that are fixed by the

reflections in SF ([3, V.3.3 Proposition 1]).

We let ΦF denote the set of roots in Φ taking value zero on F and set Φ+
F := ΦF ∩ Φ+,

Φ−F := ΦF ∩Φ−. We consider the root datum (ΦF ,X
∗(T), Φ̌F ,X∗(T)). The corresponding finite

Weyl group WF is the subgroup of W generated by all sα for α ∈ ΦF . The pair (WF , SF ) is

a Coxeter system. The restriction `|WF coincides with its length function ([3, IV.1.8 Cor. 4]).

The extended Weyl group is WF = WF nX∗(T). Its action on the affine roots ΦF,aff := ΦF ×Z
coincides with the restriction of the action of W. Denote by �

F
the partial order on X∗(T) with

respect to ΠF , by WF,aff the affine Weyl group with generating set SF,aff defined as in 2.1. It

comes with a length function denoted by `F and a Bruhat order denoted by ≤
F

, which can both

be extended to WF .

2.3.2. The restriction `|WF does not coincide with `F in general, and likewise the restriction

to WF of the Bruhat order on W does not coincide with ≤
F

. We call F -positive the elements w

in WF satisfying

w−1(Φ+ − Φ+
F ) ⊂ Φ+

aff .

For λ ∈ X∗(T), the element eλ is F -positive if 〈λ, α〉 ≥ 0 for all α ∈ Φ+ − Φ+
F . In this case,

we will say that the coweight λ itself is F -positive. We observe that if µ and ν ∈ X∗(T) are

F -positive coweights such that µ− ν is also F -positive, then we have the equality.

(2.6) `(eµ−ν) + `(eν)− `(eµ) = `F (eµ−ν) + `F (eν)− `F (eµ)

Its left hand side is indeed by definition
∑

α∈Φ+ |〈µ− ν, α〉|+ |〈ν, α〉| − |〈µ, α〉| but the contribu-

tion to this sum of the roots in Φ+ − Φ+
F is zero since µ− ν, µ and ν are F -positive.

Since the elements in WF stabilize the set Φ+ − Φ+
F , an element in WF is F -positive if and

only if it belongs to WF e
λWF for some F -positive coweight λ. The F -positive elements in WF

form a semi-group. A coweight λ is said strongly F -positive if 〈λ, α〉 > 0 for all α ∈ Φ+ − Φ+
F

and 〈λ, α〉 = 0 for all α ∈ Φ+
F . By [7, Lemma 6.14], strongly F -positive elements do exist.
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Remark 2.8. If F = x0, then Wx0 = W. If F = C then WC = X∗(T) and the C-positive elements

are the dominant coweights. A strongly C-positive element will be called strongly dominant.

Lemma 2.9. i. Let µ ∈ X∗(T) and λ ∈ X+
∗ (T) such that µ �F λ. Suppose that for all α ∈ Φ+

F

we have 〈µ, α〉 ≥ 0, then µ ∈ X+
∗ (T).

ii. Let v ∈ WF such that v ≤
F
eλ for some λ ∈ X+

∗ (T). Then v is F -positive and there is

µ ∈ X+
∗ (T) with µ �F λ such that WF vWF = WF e

µWF .

Proof. i. Let α ∈ Π\ΠF . For all β ∈ ΠF , we have 〈β̌, α〉 ≤ 0 [3, Thm1 Ch VI, n◦ 1.3] so

〈λ − µ, α〉 ≤ 0 and 〈µ, α〉 ≥ 0. For ii., note that in particular, v ≤
F
wF,λ where wF,λ denotes

the element with maximal length in WF e
λWF (see Remark 2.3). By (2.4) applied to the root

system associated to F , there is a unique µ ∈ X∗(T) with 〈µ, α〉 ≥ 0 for all α ∈ Φ+
F and µ �

F
λ

such that v ∈ WF e
µWF , and part i of this lemma implies that µ ∈ X+

∗ (T). In particular it is

F -positive and v is also F -positive.

2.3.3. The root datum (ΦF ,X
∗(T), Φ̌F ,X∗(T)) is in fact the one attached to the semi-standard

Levi subgroup MF of G corresponding to the facet F described below.

Consider the subtorus TF of T with dimension dim(T) − |ΠF | equal to the connected com-

ponent of
⋂
α∈ΠF

kerα ⊆ T and the Levi subgroup MF of G defined to be the centralizer of TF .

It is the group of F-points of a reductive connected algebraic group MF which is F-split. The

group MF is generated by T and the root subgroups Uα for α ∈ ΦF .

The subgroup (NG(T)∩MF )/T0 ofNG(T)/T0 identifies with WF in the isomorphismNG(T)/T0 '
W. It is generated by T and all nα for α ∈ ΦF . Denote by X ext

F the extended building for MF .

It shares with X ext the apartment corresponding to T but, in this apartment, the set of affine

hyperplanes coming from the root system attached to MF is a subset of those coming from the

root system attached to G. Every facet in X ext is contained in a unique facet of X ext
F [16,

§2.9]. Denote by cF the unique facet in X ext
F containing pr−1(C). By [16, Lemma 2.9.1], the

intersection I ∩MF is an Iwahori subgroup for MF : it is the pointwise fixator in MF of cF . Its

pro-p Sylow subgroup is Ĩ ∩ MF . We have a Bruhat decomposition for MF : it is the disjoint

union of the double cosets (I∩MF )ŵ(I∩MF ) where ŵ denotes the chosen lift for w ∈WF in G

(2.2.3) which in fact belongs to MF .

Denote by W̃F the quotient (NG(T)∩MF )/T1. It is generated by T0/T1 and all w̃ for w ∈WF .

We have an exact sequence

0→ T0/T1 → W̃F →WF → 0.

The Levi subgroup MF is the disjoint union of the double cosets (̃I ∩ MF )ŵ(̃I ∩ MF ) for all

w ∈ W̃F . We denote by W̃F the preimage of WF in W̃F .

�

2.4. Generic Hecke rings.
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2.4.1. For g ∈ G we denote by τ g the characteristic function of ĨgĨ. Since it only depends on

the element w ∈ W̃ such that g ∈ ĨŵĨ, we will also denote it by τw. We consider the convolution

ring H̃Z of the functions with finite support in Ĩ\G/Ĩ and values in Z with product defined by

f ? f ′ : G→ Z, g 7→
∑
u∈Ĩ\G

f(gu−1)f ′(u)

for f, f ′ ∈ H̃Z. It is a free Z-module with basis the set of all {τw}w∈W̃ satisfying the following

braid and, respectively, quadratic relations ([36, Theorem 1]):

(2.7) τww′ = τwτw′ for w,w′ ∈ W̃ satisfying `(ww′) = `(w) + `(w′).

(2.8) τ 2
nA

= νAτnA + qτ hA(−1) for A ∈ Πaff , where νA :=
∑
t∈TA

τ t.

The braid relations imply that H̃Z is generated by all τnA for A ∈ Πaff and τω for ω ∈ W̃

with length zero.

2.4.2. For any w ∈ W, define τ ∗w to be the element in H̃Z ⊗Z Z[q±1/2] equal to q`(w)τ−1
w . It

actually lies in H̃Z and the ring H̃Z is endowed with an involutive automorphism defined by ([36,

Corollary 2])

(2.9) ι : τw 7→ (−1)`(w)τ ∗w−1 .

Remark 2.10. We have ι(τnA) = −τnA + νA.

The following fundamental Lemma is proved in [36, Lemma 13] which is a adaptation to the

pro-p Hecke ring of the analogous results of [15, §5] established for the Iwahori-Hecke ring.

Lemma 2.11. For v, w ∈ W̃ we have in H̃Z ⊗Z Z[q±1/2]

q
`(vw)+`(w)−`(v)

2 τ vτ
−1
w−1 = τ vw +

∑
x

axτ x

where ax ∈ Z and x ranges over a finite set of elements in W̃ with length < `(vw). More

precisely, these elements satisfy x < vw (see 2.2.2).

2.4.3. Following [36, §1.3, page 9], we suppose in this paragraph that R is a ring containing an

inverse for (q.1R−1) and a primitive (q−1)th root of 1. We denote by R× the group of invertible

elements of R. Recall that T(Fq) identifies with T0/T1 and can therefore be seen as a subgroup

of W̃. The finite Weyl group W identifies with the Weyl group of Gx0(Fq) ([35, 3.5.1]): it acts on

T(Fq) and its R-character. Inflate this action to an action of the extended Weyl group W. Let

ξ : T(Fq)→ R× be a R-character of T(Fq). We attach to it the following idempotent element

εξ :=
1

|T(Fq)|

∑
t∈T(Fq)

ξ−1(t)τ t ∈ H̃Z ⊗Z R.
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Note that for t ∈ T(Fq), we have εξτ t = τ tεξ = ξ(t)εξ. It implies that the quadratic relations in

H̃Z ⊗Z R have the (simpler) form: let A ∈ Πaff

(2.10)
- if ξ is trivial on TA then ξ(hA(−1)) = 1 and εξτ

2
nA

= εξ((q − 1)τnA + q).

- otherwise εξτ
2
nA

= qεξξ(hA(−1)).

2.4.4. Let F be a standard facet. The definitions of the previous paragraphs apply to the

Levi subgroup MF and its root system (2.3). In particular, for w ∈ W̃F , denote by τFw the

characteristic function of (̃I∩MF )ŵ(̃I∩MF ) and by H̃Z(MF ) the Hecke ring as defined in 2.4.1.

It has Z-basis the set of all τFw for w ∈ W̃F and the braid relations are controlled by the length

function `F on W̃F . The Z-linear involution of H̃Z(MF ) as defined in 2.4.2 is denoted by ιF .

Note that when F = x0 then H̃Z(MF ) is in fact H̃Z and we do not write the F exponents.

The algebra H̃Z(MF ) does not inject in H̃Z in general. However, there is a positive subring

H̃Z(MF )+ of H̃Z(MF ) with Z-basis the set of all τFw for w ∈ W̃F that are F -positive, and an

injection

j+
F : H̃Z(MF )+ −→ H̃Z

τFw 7−→ τw

which, if R is a ring containing an inverse for q.1R, extends to a R-linear injection H̃Z(MF )⊗ZR→
H̃Z ⊗Z R denoted by jF . The proof in the case of complex Hecke algebras can be found in [7,

(6.12)]; it goes through for pro-p Iwahori-Hecke rings over Z. We point out that what we call

the positive subring of H̃Z(MF ) is called negative in [7].

3. Representations of spherical and pro-p Hecke algebras

3.1. Hecke algebras attached to parahoric subgroups of G(F).

3.1.1. Parahoric subgroups. Associated to each facet F of the (semi-simple) building is, in a

G-equivariant way, a smooth affine O-group scheme GF whose general fiber is G and such that

GF (O) is the pointwise stabilizer in G of the preimage pr−1(F ) of F in the extended building.

Its neutral component is denoted by G◦F so that the reduction G
◦
F over Fq is a connected smooth

algebraic group. The subgroup G◦F (O) of G is a parahoric subgroup. We consider

ĨF := {g ∈ G◦F (O) : (g mod $) ∈ unipotent radical of G
◦
F }.

The groups ĨF are compact open pro-p subgroups in G such that ĨC = Ĩ, Ĩx0 = K1 and

(3.1) gĨF g
−1 = ĨgF for any g ∈ G, and ĨF ′ ⊆ ĨF whenever F ′ ⊆ F .

Let F be a standard facet. Then G◦F (O) is the distinct union of the double cosets ĨŵĨ for all

w in W̃F [29, Lemma 4.9 and §4.7].

Remark 3.1. Denote by UF the subgroup of K generated by all U(α,− infF (α)) for all α ∈ Φ. Then

G◦F (O) = UFT0 ([6, 5.2.1, 5.2.4]).
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Since F is standard, the product map

(3.2)
∏
α∈Φ−

U(α,1) × T1 ×
∏
α∈Φ+

F

U(α,1) ×
∏

α∈Φ+−Φ+
F

U(α,0)
∼−→ ĨF

induces a bijection, where the products on the left hand side are ordered in some arbitrary

chosen way ([34, Proposition I.2.2]). Denote by U+
F the subgroup of ĨF generated by all U(α,0)

for α in Φ+ − Φ+
F . Then ĨF is generated by K1 and U+

F .

Let DF denote the set of elements in W such that d−1Φ+
F ⊆ Φ+

aff . In particular, Dx0 coincides

with D (defined in 2.2.1) and is contained in DF for any standard facet F .

Lemma 3.2. i. The set of all
ˆ̃
d for d ∈ DF is a system of representatives of the double

cosets G◦F (O)\G/Ĩ.
ii. For d ∈ DF , we have ĨF (dĨd−1 ∩G◦F (O)) = Ĩ.

iii. If d ∈ DF ∩WF is F -positive, then d ∈ D.

Proof. Point i is [29, Remark 4.17]. Point ii is given by [29, Proposition 4.13] and its proof. iii.

Let d ∈ DF ∩WF . Then d−1Φ+
F ⊆ Φ+

aff . Suppose furthermore that d is F -positive, then there

is an F -positive µ ∈ X∗(T) such that d ∈ eµWF and we deduce that d−1(Φ+ − Φ+
F ) ⊆ Φ+

aff

because WF stabilizes Φ+ − Φ+
F .

�

Remark 3.3. - The intersection of DF with WF is the distinguished set of representatives of

WF \WF (see 2.1.3).

- The set of all
ˆ̃
d for d ∈W∩DF is a system of representatives of the double cosets G◦F (O)\K/Ĩ.

3.1.2. Hecke algebras. The universal representation X̃ for G was defined in 1.1. Recall that it is

a left module for the pro-p Iwahori-Hecke k-algebra H̃ which is isomorphic to

H̃Z ⊗Z k

where H̃Z is the Hecke ring described in 2.4. Remark that the results of 2.4.3 apply.

For w ∈ W̃ (resp. g ∈ G) we still denote by τw (resp. τ g) its natural image in H̃. Let F

be a standard facet. Extending functions on G◦F (O) by zero to G induces a G◦F (O)-equivariant

embedding

XF := ind
G◦F (O)

Ĩ
(1) ↪→ X .

The k-algebra

H̃F := Endk[G◦F (O)](XF ) ∼= [ind
G◦F (O)

Ĩ
(1)]Ĩ .

is naturally a subalgebra of H̃ via the extension by zero embedding [ind
G◦F (O)

Ĩ
(1)]Ĩ ↪→ indG

Ĩ
(1).

Proposition 3.4. i. The finite Hecke algebra H̃F has basis the set of all τw for w ∈ W̃F .

ii. It is a Frobenius algebra over k. In particular, for any (left or right) H̃F -module m, we

have an isomorphism of vector spaces HomH̃F
(m, H̃F ) = Homk(m, k).

iii. The Hecke algebra H̃ is a free left H̃F -module with basis the set of all τ d̃, d ∈ DF .
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Proof. The first point is clear. For iii, see [29, Proposition 4.21]. Note that both i and iii are

valid for the generic Hecke algebras defined over Z. For ii. see [33, Thm 2.4] (or [10, Proposition

6.11]). Recall that H̃F being Frobenius means that it is finite dimensional over k and that it is

endowed with a k-linear form δ such that the bilinear form (a, b) 7−→ δ(ab) is nondegenerate. In

particular, there is a unique map ι : H̃F −→ H̃F satisfying δ(ι(a)b) = δ(ba) for any a, b ∈ H̃F and

one can check that ι is an automorphism of the k-algebra H̃F . For any left or right H̃F -module m

we let ι∗m, resp. ι∗m, denote m with the new H̃F -action through the automorphism ι, resp. ι−1.

Then for any left, resp. right, H̃F -module m, we see that the map f 7→ δ ◦f is an isomorphism of

right, resp. left, H̃F -modules between HomH̃F
(m, H̃F ) and Homk(ι

∗m, k) (resp. Homk(ι∗m, k)).

�

Remark 3.5. The previous definitions and results are valid when replacing G by a semi-standard

Levi subgroup. We will denote by H̃(MF ) the pro-p Iwahori-Hecke algebra of MF with coefficients

in k. It is isomorphic to H̃Z(MF )⊗Z k.

As for the finite dimensional Hecke algebras associated to parahoric subgroups of MF , we will

only consider the following situation. Let F be a standard facet and MF the associated Levi-

subgroup. By [16, Lemma 2.9.1], MF ∩K is the parahoric subgroup of MF corresponding to an

hyperspecial point xF of the building of MF . The corresponding finite Hecke algebra H̃xF (MF )

has basis the set of all τFw for w ∈ W̃F .

3.1.3. When F = x0, we write H̃ instead of H̃x0 . Consider a simple H̃-module. By [32, (2.11)]

it is one dimensional and we denote by χ : H̃ → k the corresponding character. Let χ̄ be the

character of T0/T1 ' T(Fq) given by

χ̄(t) := χ(τ t)

and εχ̄ the corresponding idempotent (§2.4.3). We have χ(εχ̄) = 1. Let Πχ̄ denote the set of

simple roots α ∈ Π such that χ̄ is trivial on Tα. For α ∈ Π, we have (by the quadratic relations

(2.10)): χ(τnα) = 0 if α ∈ Π − Πχ̄ and χ(τnα) ∈ {0,−1} otherwise. Define Πχ to be the set of

all α ∈ Πχ̄ such that χ(τnα) = 0.

A k-character χ of H̃ is parameterized by the following data:

- a k-character χ̄ of T(Fq) and the attached Πχ̄ as above.

- a subset Πχ of Πχ̄ such that for all α ∈ Π, we have χ(τnα) = −1 if and only if α ∈ Πχ̄ −Πχ.

3.1.4. Let (ρ,V) be a weight. The compact induction indG
Kρ is the space of compactly supported

functions f : G → V such that f(kg) = ρ(k)f(g) for all k ∈ K, g ∈ G and with action of G

given by (g, f) 7→ f( . g). Let H(G, ρ) denote the corresponding spherical Hecke algebra that is

to say the k-algebra of the G-endomorphisms of indG
Kρ. Choose and fix v a basis for ρĨ (it is

known that this space is one dimensional [11, Corollary 6.5], see also Theorem 3.10 below which

is drawn from [8]). Denote by 1K,v the function of indG
Kρ with support K and value v at 1. It

is Ĩ-invariant. Since (ρ,V) is irreducible, an element T of H(G, ρ) is determined by the image
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T (1K,v) of 1K,v. The restriction to (indG
Kρ)Ĩ therefore yields an injective morphism of k-algebras

(3.3) H(G, ρ) −→ HomH̃((indG
Kρ)Ĩ, (indG

Kρ)Ĩ)

In 3.3, we will prove that this is an isomorphism. We first identify the structure of the H̃-module

(indG
Kρ)Ĩ.

Lemma 3.6. We have a H̃-equivariant isomorphism given by

(3.4)
χ⊗H̃ H̃ ∼= (indG

Kρ)Ĩ

1⊗ 1 7→ 1K,v

Proof. Recall that for g ∈ G, the right action of τg on an Ĩ-invariant function f ∈ (indG
Kρ)Ĩ is

given by

f.τ g =
∑

x∈Ĩ∩g−1 Ĩg\Ĩ

(gx)−1f.

In particular, when g ∈ K, we may consider τ g as an element in H̃ and we have 1K,v.τ g = 1K,v.τg .

Therefore, the morphism of H̃-modules of the lemma is well-defined since 1K,v is an eigenvector

for the action of H̃ and the character χ.

Fact 1. For d ∈ D, the action of τ d̃ on the right on 1K,v gives the unique Ĩ-invariant element

of indG
Kρ with support in K

ˆ̃
d Ĩ and value v at

ˆ̃
d; the set of all such elements when d ranges over

D is a basis for (indG
Kρ)Ĩ.

By Proposition 3.4, a basis for χ ⊗H̃ H̃ is given by all 1 ⊗ τ d̃ for d ∈ D. Therefore the fact

ensures that the morphism of the lemma is bijective.

Now we prove the fact. The first point follows easily from the identity K1(d̃Ĩd̃−1 ∩ K) = Ĩ in

Lemma 3.2ii. Furthermore, by Lemma 3.2i, an Ĩ-invariant function f ∈ (indG
Kρ)Ĩ is determined

by its values at all
ˆ̃
d’s for d ∈ D which (using the above identity again) are d̃Ĩd̃−1 ∩K-invariant

vectors of V: these vectors are Ĩ-invariants and therefore proportional to v. It proves the second

statement of the fact.

�

Remark 3.7. Recall that an element of H(G, ρ) can be seen as a function with compact support

f : G → Endk(V) such that f(kgk′) = ρ(κ)f(g)ρ(κ′) for any g ∈ G, κ, κ′ ∈ K. To such

a function f corresponds the Hecke operator Tf ∈ H(G, ρ) that sends 1K,v on the element of

indG
Kρ defined by g 7→ f(g) . v. Reciprocally, to an element T ∈ H(G, ρ) is associated the function

fT : G → Endk(V) defined by fT (g) : w 7→ T (1K,w)[g] for any g ∈ G, where 1K,w ∈ indG
Kρ is

the unique function with support K and value w ∈ V at 1. For λ ∈ X∗(T), the function fT has

support in Kλ($)K if and only if T (1K,v) ∈ indG
Kρ has support in Kλ($)K.
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3.2. Categories of Hecke modules and of representations of parahoric subgroups. Let

F be a standard facet. We consider the abelian category of (smooth) representations of G◦F (O).

Define the functor † that associates to a smooth representation V of G◦F (O) the subrepresentation

V† generated by VĨ. Consider the following categories of representations:

a) R(F ) is the category of finite dimensional representations of G◦F (O) with trivial action

of the normal subgroup ĨF . It is equivalent to the (abelian) category of finite dimen-

sional representations of the finite reductive group G
red
F (Fq) = G◦F (O)/ĨF (see [29, Proof

of Lemma 4.9]). The irreducible representations of G◦F (O) are the simple objects in R(F ).

Note that † induces a functor † : R(F )→ R(F ). The category R(F ) is also equipped

with the endofunctor ∨ : V 7→ V∨ associating to V the contragredient representation

V∨ = Homk(V, k). Since ∨ is anti-involutive, V∨ is irreducible if and only if V is irre-

ducible.

b) R†(F ) is the full subcategory of R(F ) image of the functor †. Any irreducible represen-

tation of G◦F (O) is an object in R†(F ). By adjunction, a representation V ∈ R(F ) is an

object of R†(F ) if and only if V sits in an exact sequence in R(F ) of the form

(3.5) X̃`
F → V→ 0

for some ` ∈ N, ` ≥ 1.

c) B(F ) is the full (additive) subcategory of R†(F ) whose objects are the V ∈ R†(F ) such

that V∨ is also an object in R†(F ). Any irreducible representation of G◦F (O) is an object

in B(F ). By the following proposition, this definition coincides with [8, Definition 1].

Proposition 3.8. i. In R(F ), we have X̃F
∼= X̃∨F .

ii. A representation V ∈ R(F ) is an object of B(F ) if and only if there are `,m ≥ 1 and

f ∈ HomR(F )(X̃
m
F , X̃

`
F ) such that V = Im(f).

Proof. i. Let φ : X̃F → X̃∨F be the unique G◦F (O)-equivariant map sending the characteristic

function of Ĩ onto X̃F → k, f 7→ f(1). One easily checks that it is well-defined, injective, and

therefore surjective. ii. Let V ∈ R(F ). We deduce the claim from by i. by observing that,

V∨ ∈ R†(F ) if and only if V sits in an exact sequence in R(F ) of the form

(3.6) 0→ V→ X̃`
F

for some ` ∈ N, ` ≥ 1.

�

Remark 3.9. An irreducible representation V of G◦F (O) is an object in B(F ). The work of

Carter and Lusztig [11] describes V explicitly as the image of a G◦F (O)-equivariant morphism

X̃F → X̃F .
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Consider the category Mod(H̃F ) of finite dimensional modules over H̃F . The functor

(3.7) R†(F )→ Mod(H̃F ), V 7→ VĨ

is faithful. The following theorem is [8, Theorem 2] the proof of which relies on the fact that H̃F
is self-injective (see Proposition 3.4).

Theorem 3.10. The functor (3.7) induces an equivalence between B(F ) and Mod(H̃F ).

Remark 3.11. In particular, (3.7) is faithful and essentially surjective. It is not full in general

(see [30]).

For V in R(F ) we consider the (compactly) induced representation ind K
G◦F (O)(V).

Lemma 3.12. i. ind K
G◦F (O)(V) is a representation in R(x0).

ii. We have (ind K
G◦F (O)(V))† = ind K

G◦F (O)(V
†) in R(x0).

Proof. It is clear that both ind K
G◦F (O)(V) and ind K

G◦F (O)(V
†) are in R(x0) because K1 is normal

in K and contained in ĨF . Furthermore ind K
G◦F (O)(V

†) is an object in R†(x0): it is generated as a

representation of K by the functions with support in G◦F (O) taking value in VĨ at 1. It remains

to show that the natural injective morphism of representations of K

(3.8) ind K
G◦F (O)(V

†)→ (ind K
G◦F (O)(V))†

is surjective: by Mackey decomposition, an Ĩ-invariant function f ∈ ind K
G◦F (O)(V) is completely

determined by its values at all κ in a system of representatives of the double cosets G◦F (O)\K/Ĩ
and the value of f at κ can be any element in VG◦F (O)∩κĨκ−1

= V〈̃IF ,G
◦
F (O)∩κĨκ−1〉. Choose the

system of representatives given by Remark 3.3ii. Then by Lemma 3.2ii, the value of f at κ can

be any value in VĨ and f lies in the image of (3.8).

�

3.3. Spherical Hecke algebra attached to a weight. Let (ρ,V) be a weight and χ : H̃→ k

the corresponding character. By Cartan decomposition (2.2.4), the compact induction indG
Kρ

decomposes as a k[[K]]-module into the direct sum

indG
Kρ =

⊕
λ∈X+

∗ (T)

ind
Kλ($)K
K ρ

of the spaces of functions with support in Kλ($)K. The following proposition is proved after the

subsequent corollary which is the main result of this section: it allows us to replace the study of

the spherical algebra H(G, ρ) by the one of HomH̃(χ⊗H̃ H̃, χ⊗H̃ H̃) which is achieved in Section

4 (see Proposition 4.9).

Proposition 3.13. Let λ ∈ X∗(T).

i. The representation (ind
Kλ($)K
K ρ)† of K lies in B(x0).

ii. The space HomH̃(χ, (ind
Kλ($)K
K ρ)†) is at most one dimensional.
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Corollary 3.14. i. The map (3.3) induces an isomorphism of k-algebras

(3.9) H(G, ρ) ∼= HomH̃((indG
Kρ)Ĩ, (indG

Kρ)Ĩ) ∼= HomH̃(χ⊗H̃ H̃, χ⊗H̃ H̃).

ii. For λ ∈ X∗(T), the subspace of H(G, ρ) of the functions with support in Kλ($)K is at

most one dimensional.

Remark 3.15. It will be a corollary of the proof of Proposition 4.9 that the subspace of H(G, ρ)

of the functions with support in Kλ($)K is in fact one dimensional. This fact is proved and

used in [19] (Step 1 of proof of Theorem 1.2) but our method is independent.

Proof of the Corollary. By adjunction, we have

H(G, ρ) ∼= HomK(ρ, indG
Kρ) ∼= ⊕λ∈X+

∗ (T)HomK(ρ, ind
Kλ($)K
K ρ).

Recall that fixing an element v ∈ ρĨ yields an isomorphism of H̃-modules χ ' ρĨ, 1 7→ 1K,v. Then,

by Proposition 3.13i and Theorem 3.10 we have an isomorphism of vector spaces

H(G, ρ) ∼=⊕λ∈X+
∗ (T) HomK(ρ, (ind

Kλ($)K
K )†)

∼=⊕λ∈X+
∗ (T) HomH̃(χ, (ind

Kλ($)K
K )Ĩ) ∼= HomH̃(χ, (indG

Kρ)Ĩ).

sending f ∈ H(G, ρ) onto the element of HomH̃(χ, (indG
Kρ)Ĩ) defined by 1 7→ f(1K,v). Composing

with the isomorphism of H̃-modules χ⊗H̃ H̃ ' (indG
Kρ)Ĩ, 1⊗ h 7→ 1K,vh from Lemma 3.6, we get

an isomorphism

H(G, ρ) ∼=HomH̃(χ⊗H̃ H̃, (indG
Kρ)Ĩ) ∼= HomH̃((indG

Kρ)Ĩ, (indG
Kρ)Ĩ)

which is precisely the morphism of k-algebras (3.3). The second statement of the corollary then

comes from the second statement of the proposition using Remark 3.7.

�

Proof of Proposition 3.13. It suffices to show the proposition for λ ∈ X+
∗ (T). We first describe

the K1-invariant subspace of ind
Kλ($)K
K ρ because it contains (ind

Kλ($)K
K ρ)†. Set

Kλ := K ∩ λ($)−1Kλ($).

As a k[[K]]-module, ind
Kλ($)K
K ρ is isomorphic to the compact induction indK

Kλ
λ∗(ρ) where λ∗(ρ)

denotes the space V with the group Kλ acting through the homomorphism Kλ
λ($) . λ($)−1

−−−−−−−−−−→ K.

Since K1 is normal in K, we have the representation (λ∗(ρ))Kλ∩K1 of Kλ on the following

subspace of V:

Vλ := VK∩λ($)K1λ($)−1
= V〈K∩λ($)K1λ($)−1,K1〉.

It can be extended to a representation (πλ,Vλ) of Pλ := KλK1 that factors through Pλ/K1 '
Kλ/Kλ ∩K1.

Denote by Wλ the stabilizer of λ in W. Since λ ∈ X+
∗ (T), it is generated by the simple

reflections sα for all α ∈ Φ such that 〈λ, α〉 = 0. Denote by Fλ the associated standard facet.
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The attached subset ΦFλ of Φ consists in all the roots α such that 〈λ, α〉 = 0. The closure of Fλ
is the set of points in x ∈ C such that α(x) = 0 for all α ∈ ΦFλ .

Fact 2. The subgroup Pλ of K is the parahoric subgroup associated to Fλ.

Fact 3. As k[[K]]-modules, we have (indK
Kλ
λ∗(ρ))K1 = indK

Pλ
πλ.

Fact 4. We have a) πλ ∈ R(Fλ), b) π
†
λ is irreducible, c) HomH̃Fλ

(χ,πĨ
λ) is at most one dimen-

sional.

We deduce from Fact 3 that (ind
Kλ($)K
K ρ)† = (indK

Pλ
πλ)† so that, to prove the proposition, it

remains to check that (indK
Pλ
πλ)† is a representation in B(x0). By Fact 4 b) and Remark 3.9,

there is an injective Pλ-equivariant map π
†
λ → X̃Fλ which, by exactness of compact induction,

gives an injective K-equivariant map

(3.10) indK
Pλ
π
†
λ → indK

Pλ
X̃Fλ = X̃x0 .

Since furthermore, by Fact 4 a) and Lemma 3.12, we have (indK
Pλ
πλ)† = indK

Pλ
(π†λ), we just proved

that the K-representation (indK
Pλ
πλ)† injects in X̃x0 . By Proposition 3.8ii, the representation

(indK
Pλ
πλ)† is therefore an object in B(x0). It is the first statement of the proposition.

In passing, we deduce from (3.10) that there is a right H̃-equivariant injection

(ind
Kλ($)K
K ρ)Ĩ −→ H̃

so that HomH̃(χ, (ind
Kλ($)K
K ρ)Ĩ) injects in HomH̃(χ, H̃) which is one dimensional by Proposition

3.4ii. It gives the second statement of the proposition.

We now prove the Facts. Recall that λ($) ∈ T is a lift for e−λ ∈ W (Remark 2.5) and that

for all α ∈ Φ, we have λ($)U(α,0)λ($)−1 = Ue−λ(α,0) = U(α,〈λ,α〉).

Proof of Fact 2: From (3.2) we deduce that the subgroup U+
C of Ĩ generated by all the root

subgroups U(α,0) for α ∈ Φ+ is contained in Kλ: indeed, let α ∈ Φ+, we have 〈λ, α〉 ≥ 0 and

λ($)U(α,0)λ($)−1 = U(α,〈λ,α〉) ⊂ Ĩ, therefore U(α,0) ⊆ K ∩ λ($)−1Kλ($).

Now recall that Pλ is the subgroup of K generated by Kλ and K1. The pro-p Iwahori subgroup Ĩ

which is generated by K1 and U+
C is contained in Pλ, and so is I since T0 ⊆ Pλ We have proved

that Pλ is the parahoric subgroup corresponding to a standard facet (this statement is in fact

enough for the proof of the proposition). It remains to check that it is equal to G◦Fλ(O) which, by

Remark 3.1 is the subgroup of K generated by T0, all U(α,0) for α ∈ Φ such that 〈λ, α〉 ≥ 0 and

all U(α,1) for α ∈ Φ such that 〈λ, α〉 < 0. But λ($)U(α,0)λ($)−1 ⊂ K if and only if 〈λ, α〉 ≥ 0.

It proves the required equality.

Proof of Fact 3: Since K1 is normal in K, a K1-invariant function f in indK
Kλ
λ∗(ρ) is entirely

determined by its values at the points of a system of representatives of the cosets Kλ\K/K1 =

Pλ\K and these values can be any elements in Vλ. Therefore, the Pλ-equivariant map

πλ → (indK
Kλ
λ∗(ρ))K1
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carrying an element v ∈ Vλ to the unique K1-invariant funtion f ∈ indK
Kλ
λ∗(ρ) with value v at

1 induces the expected isomorphism of K-representations.

Proof of Fact 4: a) We want to prove that the pro-unipotent radical ĨFλ of Pλ acts trivially on

πλ. By (3.2), it is generated by K1 and the root subgroups U(α,0) for α ∈ Φ+ − Φ+
Fλ

that is to

say for α ∈ Φ+ satisfying 〈λ, α〉 > 0. Since K1 acts trivially on πλ, we only need to check that

for α ∈ Φ+ with 〈λ, α〉 > 0, the action of λ($)U(α,0)λ($)−1 on Vλ via ρ is trivial, but it is clear

because this group is contained in K1.

b) Since any nonzero k-representation of Pλ has a nonzero Ĩ-fixed vector, proving that πĨ
λ

has dimension 1 is enough to prove that π
†
λ is an irreducible representation of Pλ. We have

{0} 6= πĨ
λ = π

U+
C

λ and U+
C ⊂ Kλ (see the definition of U+

C in 3.1.1) so the space of πĨ
λ is

V〈K∩λ($)K1λ($)−1,λ($)U+
Cλ($)−1〉. Let w be the element with maximal length in Wλ. Denote by

U−C the subgroup of K generated by all the root subgroups U(α,0) for α ∈ Φ−. We claim that

(3.11) 〈K ∩ λ($)K1λ($)−1, λ($)U+
Cλ($)−1〉 ⊇ ŵU−Cŵ

−1.

Indeed, let α ∈ Φ− and recall that 〈λ, α〉 ≤ 0:

- if 〈λ, α〉 = 0 then α ∈ Φ−Fλ and wα ∈ Φ+
Fλ

so λ($)−1ŵU(α,0)ŵλ($) = U(wα,−〈λ,wα〉) = U(wα,0)

is contained in U+
C ;

- if 〈λ, α〉 < 0 then λ($)−1ŵU(α,0)ŵλ($) = U(wα,−〈λ,wα〉) = U(wα,−〈λ,α〉) is contained in K1.

We deduce from (3.11) that

V〈K∩λ($)K1λ($)−1,λ($)U+
Cλ($)−1〉 ⊆ VŵU−C ŵ

−1
= V〈ŵU−C ŵ

−1,K1〉

and the last space has dimension 1 because 〈ŵU−Cŵ
−1, K1〉 is a K-conjugate of Ĩ (it is the pro-

unipotent radical of the parahoric subgroup attached to the facet ŵŵ0C where w0 denotes the

longest element in W).

�

3.4. Parameterization of the weights. Recall that a weight is an irreducible representation

of K that is to say a simple object in R(x0). By [11, Corollary 7.5] (and also Theorem 3.10),

the weights are in one-to-one correspondence with the characters of H̃. In 3.1.3, we recalled that

a character χ : H̃ → k is parameterized by the data of a morphism χ̄ : T0/T1 → k× such that

χ̄(t) = χ(τ t) for all t ∈ T0/T1, and of the subset Πχ of Πχ̄ such that χ(τnα) = −1 if and only

if α ∈ Πχ̄ −Πχ.

To the subset Πχ is attached a standard facet Fχ (Remark 2.7).

Remark 3.16. By [11, Theorem 7.1], the stabilizer of ρĨ in K is equal to the parahoric subgroup

G◦Fχ(O) with associated finite Weyl group generated by all sα, α ∈ Πχ. We will denote the latter

by Wχ.

4. Bernstein-type map attached to a weight and Satake isomorphism

4.1. Commutative subrings attached to a standard facet. We fix for a standard facet F .
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4.1.1. Consider the subset of all λ ∈ X∗(T) such that 〈λ, α〉 ≥ 0 for all α ∈ (Φ+ − Φ+
F ) ∪ Φ−F .

If wF denotes the element with maximal length in WF , then this set is the wF -conjugate of

X+
∗ (T). Bearing in mind the conventions introduced in 2.2.2, we introduce

C +(F ) := {λ ∈ X̃∗(T) such that 〈λ, α〉 ≥ 0 for all α ∈ (Φ+ − Φ+
F ) ∪ Φ−F }

C−(F ) := {λ ∈ X̃∗(T) such that 〈λ, α〉 ≥ 0 for all α ∈ (Φ− − Φ−F ) ∪ Φ+
F }.

Remark 4.1. For all λ, λ′ ∈ C +(F ) (resp. C−(F )) we have `(eλ) + `(eλ
′
) = `(eλ+λ′).

4.1.2. Bernstein-type maps attached to a standard facet.

Proposition 4.2. i. There is a unique morphism of Z[q±1/2]-algebras

(4.1) Θ+
F : Z[q±1/2][X̃∗(T)] −→ H̃Z ⊗Z Z[q±1/2]

such that Θ+
F (λ) = q−`(e

λ)/2τ eλ if λ ∈ C +(F ).

ii. There is a unique morphism of Z[q±1/2]-algebras

(4.2) Θ−F : Z[q±1/2][X̃∗(T)] −→ H̃Z ⊗Z Z[q±1/2]

such that Θ−F (λ) = q−`(e
λ)/2τ eλ if λ ∈ C−(F ).

iii. Both Θ+
F and Θ−F are injective.

Proof of the proposition. It is the same proof as in the classical case for Iwahori-Hecke alge-

bras and the dominant Weyl chamber. Let σ be a sign. By Remark 4.1, the formula Θσ
F (λ) =

q−`(e
λ)/2τ eλ for λ ∈ C σ(F ) defines a multiplicative map Z[q±1/2][C σ(F )] −→ H̃Z⊗ZZ[q±1/2]. Let

ν ∈ C σ(F ) such that λ+ν ∈ C σ(F )(if σ = +, choose for example ν to be the wF -conjugate of a

suitable strongly dominant coweight). We set Θσ
F (λ) := q(−`(eλ+ν)+`(eν))/2τλ+ντ

−1
ν . This formula

does not depend on the choice on ν such that λ+ ν ∈ C σ(F ) as can be seen by applying again

Remark 4.1.

To check the injectivity, use for example Lemma 2.11 that states that for all λ ∈ X̃∗(T), the

element Θσ
F (λ) is equal to the sum q−`(λ)/2τ eλ and of a Z[q±1/2]-linear combination of elements

τ v ∈ H̃Z such that v ∈ W̃ and `(v) < `(eλ).

�

There is, more generally, for any w ∈W, a unique morphism of Z[q±1/2]-algebras

(4.3) Θw : Z[q±1/2][X̃∗(T)] −→ H̃Z ⊗Z Z[q±1/2]

such that Θw(λ) = q−`(e
λ)/2τ eλ if λ ∈ w(X̃+

∗ (T)). Then for any standard facet F , our maps Θ+
F

and Θ−F coincide respectively with ΘwF and ΘwFw0 where we recall that w0 denotes the longest

element in W. This remark was pointed out to me by the referee.
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4.1.3. Commutative subalgebras of H̃Z. For all λ ∈ X̃∗(T), we set

(4.4) B+
F (λ) = q`(e

λ)/2Θ+
F (λ) and B−F (λ) = q`(e

λ)/2Θ−F (λ)

and we remark in particular that by Lemma 2.11, all these elements lie in H̃Z.

Remark 4.3. i. The maps B+
F and B−F do not respect the product in general, but they are mulit-

plicative within Weyl chambers (see Remark 4.1).

ii. Consider the case F = C or F = x0. Then B+
C = B−x0 (resp. B−C = B+

x0) coincides with the

integral Bernstein map E+ (resp. E) introduced in [36].

Lemma 4.4. For λ ∈ X̃∗(T) we have ι(B+
F (λ)) = (−1)`(e

λ)B−F (λ) where ι is the involution

defined by (2.9).

Proof. Let λ ∈ X̃∗(T) and µ, ν ∈ C +(F ) such that λ = µ−ν. Then B+
F (λ) = q(`(eλ)+`(eν)−`(eµ))/2τeµτ

−1
eν

and B−F (λ) = q(`(eλ)+`(eµ)−`(eν))/2τe−ντ
−1
e−µ . Furthermore, `(eµ) − `(eν) and `(eλ) have the same

parity and τ e−ν and τ−1
e−µ commute by Remark 4.1. �

Using Lemma 2.11 we get the following:

Proposition 4.5. Let F be a standard facet. The commutative ring

A +
F := H̃Z ∩ Im(Θ+

F ), and respectively A −F := H̃Z ∩ Im(Θ−F ),

has Z-basis the set of all B+
F (λ), respectively B−F (λ), for λ ∈ X̃∗(T).

Proposition 4.6. Let λ ∈ X̃+
∗ (T).

• For any t ∈ T0/T1, the basis element τ t ∈ H̃Z and B+
F (λ) commute, as well as τ t and B−F (λ).

• Let α ∈ Π. If α ∈ ΠF , then

a)

{
B−F (λ)τ ∗nα ∈ qH̃Z if 〈λ, α〉 > 0

B−F (λ)τ ∗nα ∈ τ ∗nαH̃Z if 〈λ, α〉 = 0
and a′)

{
B+
F (λ)τnα ∈ qH̃Z if 〈λ, α〉 > 0

B+
F (λ)τnα ∈ τnαH̃Z if 〈λ, α〉 = 0

• If α ∈ Π−ΠF , then

b)

{
B−F (λ)τnα ∈ qH̃Z if 〈λ, α〉 > 0

B−F (λ)τnα ∈ τnαH̃Z if 〈λ, α〉 = 0
and b′)

{
B+
F (λ)τ ∗nα ∈ qH̃Z if 〈λ, α〉 > 0

B+
F (λ)τ ∗nα ∈ τ ∗nαH̃Z if 〈λ, α〉 = 0

Proof. Let ν ∈ X̃(T) be an element whose image in X(T) is the opposite of a strongly F -positive

element (2.3.2) and such that λ+ ν ∈ C−(F ). Remark that ν ∈ C−(F ) and eν is an element in

W̃ that commutes with all nα, α ∈ ΠF . We have

B−F (λ) = q
`(eλ)

2 Θ−F (λ+ ν)Θ−F (−ν) = q
`(eλ)+`(eν )−`(eλ+ν )

2 τ eλ+ντ
−1
eν .
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a) Let α ∈ ΠF . Recall that τ ∗nα = qτ−1
nα . Since sα and eν commute in W, we have `(sαe

ν) =

`(eν) + 1 and τnα and τ eν commute:

B−F (λ)τ ∗nα = q
2+`(eλ)+`(eν )−`(eλ+ν )

2 τ eλ+ντ
−1
nατ

−1
eν

– First suppose that 〈λ, α〉 > 0. Then `(eλsα) = `(eλ)− 1 and `(eλ+νsα) = `(eλ+ν)− 1.

Therefore, τ eλ+ν = τ eλ+νn−1
α
τnα and

B−F (λ)τ ∗nα = q
2+`(eλ)+`(eν )−`(eλ+ν )

2 τ eλ+νn−1
α
τ−1
eν = q

2+`(eλn−1
α )+`(eν )−`(eλ+νn−1

α )
2 τ eλ+νn−1

α
τ−1
eν

which is an element of qH̃Z by Lemma 2.11.

– Now suppose that 〈λ, α〉 = 0 so that eλ, eν and τnα commute. We have `(sαe
λ+ν) =

`(eλ+ν) + 1 so τ eλ+ντ
−1
nα = τ−1

nατeλ+ν

B−F (λ)τ ∗nα = q
2+`(eλ)+`(eν )−`(eλ+ν )

2 τ−1
nατ eλ+ντ

−1
eν = τ ∗nαB

−
F (λ).

b) Let α ∈ Π−ΠF . We have 〈ν, α〉 < 0 so that `(eνsα) = `(eν)+1 and τ−1
eν τnα = τnατ

−1
esαν :

B−F (λ)τnα = q
`(eλ)+`(eν )−`(eλ+ν )

2 τ eλ+ντnατ
−1
esαν .

Since 〈ν + λ, α〉 ≤ 0 we have `(eν+λsα) = `(eν+λ) + 1 and

B−F (λ)τnα = q
`(eλ)+`(eν )−`(eλ+ν )

2 τ eλ+νnατ
−1
esαν .

– First suppose that 〈λ, α〉 > 0. Then `(eλsα) = `(eλ)− 1

B−F (λ)τnα = q
2+`(eλnα)+`(esαν )−`(eλ+νnα)

2 τ eλ+νnατ
−1
esαν

which is an element of qH̃Z by Lemma 2.11.

– Now suppose that 〈λ, α〉 = 0 that it to say that eλ and sα commute. We have

τ eλ+ντnα = τnατ eλ+sαν and

B−F (λ)τnα = τnαq
`(eλ)+`(eν )−`(eλ+ν )

2 τ eλ+sαντ
−1
esαν .

which is an element of τnαH̃Z by Lemma 2.11.

Statements a’) and b’) follow applying Lemma 4.4 since ι(τnα) = −τ ∗nατ hα(−1) and τ hα(−1) is

invertible in H̃Z. �
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4.1.4. Let MF be the Levi subgroup of G corresponding to the facet F as in 2.3.3. We also

refer to the notations introduced in 2.4.4.

Lemma 4.7. For λ ∈ X̃+
∗ (T), the element (−1)`F (eλ)ιF (τF

eλ
) ∈ H̃F (MF ) is equal to the sum of

τF
eλ

and a linear combination with coefficients in Z of τFṽ for F -positive elements v ∈WF such

that v <
F
eλ. Furthermore, we have

(4.5) j+
F ((−1)`F (eλ)ιF (τFeλ))) = B+

F (λ).

In particular for F = x0,

(4.6) (−1)`(e
λ)ι(τ eλ) = B+

x0(λ).

Proof. In H̃Z(MF ) ⊗Z Z[q±1/2], we have (−1)`F (eλ)ιF (τF
eλ

) = q`F (eλ)(τF
e−λ

)−1. Lemma 2.11 for

the Hecke algebra of MF then gives the first statement. Use Lemma 2.9 for the result about

F -positivity.

By an argument similar to the one in the proof of Proposition 4.2 (in the setting of the root

system corresponding to MF ), the element

θF (λ) := q(`F (ν)−`F (µ))/2τFeµ(τFeν )−1 ∈ H̃Z(MF )⊗Z Z[q±1/2]

does not depend on the choice of λ, ν ∈ X∗(T) such that λ = µ − ν and 〈µ, α〉 ≤ 0, 〈ν, α〉 ≤ 0

for all α ∈ Φ+
F .

Choose µ, ν ∈ C +(F ) such that λ = µ−ν. Then jF (q`F (λ)/2θF (λ)) = q(`F (λ)+`F (ν)−`F (µ))/2τ eµ(τ eν )−1

because µ and ν are in particular F -positive. By (2.6), we therefore have B+
F (λ) = jF (q`F (λ)/2θF (λ)).

Now choose µ = 0 and ν = −λ. We have q`F (λ)/2θF (λ) = (−1)`F (eλ)ιF (τF
eλ

) and therefore

jF (q`F (λ)/2θF (λ)) = j+
F ((−1)`F (eλ)ιF (τF

eλ
)).

�

4.2. Satake isomorphism. Let χ be a character of H̃ with values in k and Fχ the associated

standard facet as in 3.4.

Lemma 4.8. We have a morphism of k-algebras

(4.7)
χ̄⊗k[T0/T1] k[X̃+

∗ (T)] −→ HomH̃(χ⊗H̃ H̃, χ⊗H̃ H̃)

1⊗ λ 7−→ (1⊗ 1 7→ 1⊗B+
Fχ

(λ))

Proof. We have to check that, for λ ∈ X̃+
∗ (T), the element 1⊗B+

Fχ
(λ) is an eigenvector for the

right action of H̃ and the character χ. Recall that the finite Hecke algebra H̃ is generated by all

τ t, t ∈ T0/T1 and τnα for α ∈ Π.

• First note that for t ∈ T0/T1, we have B+
F (t + λ) = τ tB

+
F (λ). Therefore τ t acts on

1⊗B+
Fχ

(λ) by multiplication by χ(τ t) and εχ̄ acts by 1.

• Let α 6∈ Πχ̄. We have χ(τnα) = 0. By the quadratic relations (2.10), we have εχ̄τ
∗
nα =

χ̄(hα(−1)) εχ̄τnα in H̃. Now, since Πχ ⊆ Πχ̄, Proposition 4.6 b’) implies that τnα acts

by 0 on 1⊗B+
Fχ

(λ).
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• Let α ∈ Πχ̄ −Πχ. We have χ(τnα) = −1 and by the quadratic relations (2.10), εχ̄τ
∗
nα =

εχ̄(τnα + 1) in H̃, which by proposition 4.6 b’), acts by 0 on 1⊗B+
Fχ

(λ).

• Let α ∈ Πχ. We have χ(τnα) = 0 and by proposition 4.6 a’), τnα acts by 0 on 1⊗B+
Fχ

(λ).

We have proved that (4.7) is a well defined map. It is a morphism of k-algebras by Remark 4.3i.

�

Proposition 4.9. The map (4.7) is an isomorphism of k-algebras.

Proof. The proof relies on the following observation: a basis for χ⊗H̃ H̃ is given by all 1⊗ τ d̃ for

d ∈ D (Proposition 3.4). Recall that D contains the set of all eµ for µ ∈ X+
∗ (T). By Lemma 2.11

(and using the braid relations (2.7) together with (2.3)), 1⊗B+
Fχ

(µ̃) is a sum of 1⊗ τ ẽµ and of

elements in ⊕d<eµk ⊗ τ d̃.

We first deduce from this the injectivity of (4.7) because a basis for χ̄ ⊗k[T0/T1] k[X̃+
∗ (T)] is

given by the set of all 1⊗ ẽµ for µ ∈ X+
∗ (T).

Now we prove the surjectivity. Denote, for µ ∈ X+
∗ (T), by H̃[µ] the subspace of the functions in

H̃ with support in KêµK. Then HomH̃(χ, χ⊗H̃ H̃) decomposes into the direct sum of all subspaces

HomH̃(χ, χ ⊗H̃ H̃[µ]) for µ ∈ X+
∗ (T) and after Corollary 3.14 and its proof, each of the spaces

HomH̃(χ, χ⊗H̃ H̃[µ]) is at most one dimensional.

Let µ ∈ X+
∗ (T). By Lemma 2.4ii and the observation at the beginning of this proof, the image

of 1⊗BFχ(µ̃) by (4.7) decomposes in the direct sum of all HomH̃(χ, χ⊗H̃ H̃[λ]) for eλ ≤ eµ and

it has a non zero component in HomH̃(χ, χ ⊗H̃ H̃[µ]). We conclude by induction on `(eµ) that

HomH̃(χ, χ⊗H̃ H̃[µ]) is contained in the image of (4.7) for all µ ∈ X+
∗ (T). �

Remark 4.10. Recall that given λ ∈ X+
∗ (T), a lift for eλ ∈W is given by λ($−1) ∈ T (see 2.2.4).

More precisely, the map λ 7→ λ($−1) mod T1 is a splitting for the exact sequence of abelian

groups

0 −→ T0/T1 −→ X̃∗(T) −→ X∗(T) −→ 0

and it respects the actions of W.

By abuse of notation, we identify below the element λ($−1) ∈ NG(T) with image in X̃+
∗ (T) ⊂

W̃.

Let (ρ,V) be the weight corresponding to the character χ of H̃. As in 3.1.4, we fix a basis v

for ρĨ. Composing (4.7) with the inverse of (3.3) gives the following.

Theorem 4.11. We have an isomorphism

(4.8) χ̄⊗k[T0/T1] k[X̃+
∗ (T)]

∼−→ H(G, ρ)

carrying, for λ ∈ X+
∗ (T), the element 1⊗ λ($−1) onto the G-equivariant map determined by

(4.9)
Tλ : indG

Kρ −→ indG
Kρ

1K,v 7−→ 1K,vBFχ(λ($−1)).
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The map λ ∈ X+
∗ (T)→ λ($−1) mod T1 yields an isomorphism

k[X+
∗ (T)] ' χ̄⊗k[T0/T1] k[X̃+

∗ (T)]

which we compose with (4.8) to obtain the isomorphism of k-algebras

(4.10)
T : k[X+

∗ (T)]
∼−→ H(G, ρ)

λ 7−→ Tλ

The next section is devoted to proving that, in the case where the derived subgroup of G is

simply connected, this map is an inverse to the Satake isomorphism constructed in [19].

5. Explicit computation of the mod p modified Bernstein maps

5.1. Support of the modified Bernstein functions.

5.1.1. Preliminary lemmas.

Lemma 5.1. Let 1 : T0/T1 → k× be the trivial character of T0/T1 and ε1 ∈ H̃ the corresponding

idempotent. For any w ∈W, we have in H̃ the following equality:

(5.1) (−1)`(w)ι(ε1τ w̃) =
∑

v∈W,v≤w
ε1τ ṽ.

Proof. We consider in this proof the field k as the residue field of an algebraic closure Qp of the

field of p-adic numbers Qp. Let Zp be the ring of integers of Qp and r : Zp → k the reduction.

The ring Zp satisfies the hypotheses of 2.4.3. In this proof we identify q with its image q.1Zp in

Zp. We work in the Hecke algebra H̃Z ⊗Z Zp in which we prove that

(5.2) (−1)`(w)ι(ε1τ w̃) ∈
∑

v∈W,v≤w
(1− q)`(w)−`(v)ε1τ ṽ + q (H̃Z ⊗Z Zp).

It is enough to consider the case w ∈ Waff and we proceed by induction on `(w). Let

w ∈Waff and s ∈ Saff such that with `(sw) = `(w) + 1. Applying [15, Lemma 4.3], we see that

the set of the v ∈W such that v ≤ sw is the disjoint union of

{v ∈W, v ≤ sv, w} and {v ∈W, sv ≤ v, w}.

Noticing that ε1ι(τ s̃) = −ε1(τ s̃ + 1− q), we have, by induction,

(−1)`(s̃w)ε1ι(τ s̃w) = (−1)`(w)ε1(τ s̃+1−q)ι(τ w̃) ∈ ε1(τ s̃+1−q)
∑

v∈W,v≤w
(1−q)`(w)−`(v)τ ṽ+q(H̃Z⊗ZZp)

and (τ s̃ + 1− q)
∑

v∈W̃,v≤w
(1− q)`(w)−`(v)ε1τ ṽ is successively equal to
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ε1(τ s̃ + 1− q)(
∑

v≤sv,w
(1− q)`(w)−`(v)τ ṽ +

∑
sv≤v≤w

(1− q)`(w)−`(v)τ ṽ)

=
∑

v≤sv,w
(1− q)`(w)−`(v)τ s̃v +

∑
v≤sv,w

(1− q)`(w)−`(v)+1τ ṽ +
∑

sv≤v≤w
q(1− q)`(w)−`(v)τ s̃v

∈
∑

sv≤v,w
(1− q)`(sw)−`(v)τ ṽ +

∑
v≤sv,w

(1− q)`(sw)−`(v)τ ṽ +
∑

sv≤v≤w
q(1− q)`(w)−`(v)τ s̃v

which proves the claim. Applying the reduction r : Zp → k, we get (5.1) in H̃.

�

Lemma 5.2. Suppose that the derived subgroup of G is simply connected.

Let ξ : T0/T1 → k× be a character that is trivial on Tα for all α ∈ Π (see definition in 2.2.5).

Then there exists a character α : G→ k× that coincides with ξ−1 on T0, such that α(µ($)) = 1

for all µ ∈ X∗(T). It satisfies the following equality in H̃, for λ ∈ X+
∗ (T):

εξB
+
x0(λ($−1)) = εξ(−1)`(e

λ)ι(τλ($−1)) =
∑

v∈W,v≤eλ
εξα(ṽ)τ ṽ.

Remark 5.3. For v ∈W with chosen lift ṽ ∈ W̃, the value of α(ˆ̃v) does not depend on the choice

of ˆ̃v lifting ṽ and we denote it by α(ṽ) above. Furthermore, εξα(ṽ)τ ṽ does not depend on the

choice of the lift ṽ.

Proof. Define a character χ : H̃ → k× by χ̄ := ξ and Πχ = Πχ̄ = Π and consider the associated

weight as in 3.4. By the proof of [20, Proposition 5.1] (see also the remark following Definition

2.4 loc.cit and Remark 3.16), this weight is a character K → k× and by [1, Corollary 3.4], it

extends uniquely to a character α of G satisfying α(µ($)) = 1 for all µ ∈ X∗(T). Note that α

coincides with χ̄−1 on T0/T1.

Fact. The k-linear map Ψ : H̃ → H̃, τ g 7→ α(g) τ g is an isomorphism of k-algebras preserving

the support of the functions. It sends ε1 onto εξ and commutes with the involution ι.

Proof of the fact. The image of τ g = 1ĨgĨ is independent of the choice of a representative in ĨgĨ.

The image of ε1 is clearly εξ. One easily checks that Ψ respects the product. Now in order to

check that Ψ commutes with the involution ι, it is enough to show that Ψ and ιΨι coincide on

elements of the form τu with u ∈ W̃ such that `(u) = 0 and u = nA for A ∈ Πaff . For the former

elements, the claim is clear since ι fixes such τu when `(u) = 0. Now let A = (α, r) ∈ Πaff . We

consider the morphism φα : SL2(F)→ Gα as in 2.2.5. Since F is infinite, the restriction of α to

the image of φα is trivial. Now by Remark 2.10, we have ιΨι(τnA) = τnA .

�

We deduce from this (and using (4.6)) that

Ψ(ε1B
+
x0(λ($−1))) = εξ(−1)`(e

λ)Ψ(ι(τλ($−1))) = εξB
+
x0(λ($−1)).
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Conclude using Lemma 5.1.

�

5.1.2. For χ : H̃ → k×, consider the associated facet Fχ as in 3.4 and Mχ the corresponding

standard Levi subgroup as in 4.1.4.

Proposition 5.4. There is a character αχ : MFχ → k× such that

a) αχ coincides with χ̄−1 on T0 and satisfies αχ(µ($)) = 1 for all µ ∈ X∗(T),

b) in χ⊗H̃ H̃ we have, for λ ∈ X+
∗ (T),

(5.3) 1⊗BFχ(λ($−1)) =
∑

d∈WFχ∩DFχ , d≤
F
eλ

αχ(d̃) ⊗ τ d̃

where d̃ denotes any lift in W̃Fχ for d ∈WFχ.

Proof. In this proof we write F instead of Fχ. Let λ ∈ X+
∗ (T). Consider the restriction to MF ∩K

of the weight ρ associated to χ and the corresponding restriction of χ to the finite Hecke algebra

H̃xF (MF ) (see Remark 3.5 for the definition of this subalgebra of H̃(MF ) attached to the compact

open subgroup MF ∩ K of MF ). It satisfies the hypotheses of Lemma 5.2, where MF plays the

role of G. Note that under our hypothesis for G, the derived subgroup of MF is equally simply

connected. Therefore, there exists a character αχ : MF → k× that coincides with χ̄−1 on T0,

such that αχ(µ($)) = 1 for all µ ∈ X∗(T) and satisfying the following equality in H̃(MF ) (see

(4.6) applied to the Levi MF )

εχ̄ (−1)`F (eλ)ιF (τFλ($−1)) =
∑

v∈WF ,v≤
F
eλ

εχ̄αχ(ṽ)τFṽ .

Now applying (4.5) to the facet F , we have in H̃,

εχ̄B
+
F (λ($−1)) =

∑
v∈WF ,v≤

F
eλ

εχ̄αχ(ṽ)τ ṽ.

Before projecting this relation into χ⊗H̃ H̃, recall that χ(τ w̃) = 0 for all w ∈WF . By definition

of DF (see also Remark 3.3), we therefore have, in χ⊗H̃ H̃,

1⊗B+
F (λ($−1)) = 1⊗ εχ̄B+

F (λ($−1)) =
∑

d∈WF∩DF , d≤
F
eλ

αχ(d̃) ⊗ τ d̃.

�

5.2. An inverse to the mod p Satake transform of [19]. Let (ρ,V) be a weight, χ : H̃→ k

the corresponding character and Fχ the facet defined as in 3.4. Consider the isomorphism

(5.4) S : H(G, ρ)
∼−→ k[X+

∗ (T)]

constructed in [19] (see Remark 2.5). For λ ∈ X+
∗ (T), denote by fλ the function in H(G, ρ) with

support in Kλ($−1)K and value at λ($−1) equal to the k-linear projection V → V defined by
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[19, (2.8)]. Note that this projection coincides with the identity on VĨ (step 3 of the proof of

Theorem 1.2 loc.cit). Any function in H(G, ρ) with support in Kλ($−1)K is a k-multiple of fλ.

The element Tfλ(1K,v) defined by g 7→ fλ(g)v (see notation in Remark 3.7) is the unique element

in (indG
Kρ)Ĩ with support in Kλ($−1)K and value v at λ($−1) which is an eigenvector for the

action of H̃ and the character χ (see Corollary 3.14 and Remark 3.15).

Recall that the isomorphism T : k[X+
∗ (T)]

∼−→ H(G, ρ) was defined in (4.10) and that both S

and T are defined with no further condition on the derived subgroup of G.

Theorem 5.5. Suppose that the derived subgroup of G is simply connected.

i. For λ ∈ X+
∗ (T) we have

(5.5) Tλ =
∑
µ�
Fχ

λ

fµ.

ii. The map T is an inverse for S.

Remark 5.6. In particular, the matrix coefficients of T in the bases {λ}λ∈X+
∗ (T) and {fλ}λ∈X+

∗ (T)

depend only on the facet Fχ, and not on χ itself.

Proof. In this proof, we write F for Fχ. For i, we have to show that Tλ has support the set of

all double cosets Kµ($−1)K for µ �
F
λ and that for v ∈ ρĨ and such a µ, the value of Tλ(1K,v)

at µ($−1) is v. By (5.3), we have

Tλ(1K,v) =
∑

d∈WF∩DF ,d≤
F
eλ

αχ(d̃)1K,vτ d̃.

By Lemma 2.9ii, this element has support in the expected set, and using furthermore Lemma

3.2iii, we see that any d ∈WF ∩DF satisfying d ≤
F
eλ lies in D. Therefore, by Fact 1, Tλ(1K,v)

has value αχ(d̃)v at
ˆ̃
d for all d ∈ WF ∩ DF , d ≤

F
eλ. Now recall that for any µ ∈ X+

∗ (T), the

element eµ is in D and therefore in WF ∩ DF (Remark 2.3), that µ($−1) is a lift in G for eµ

and that αχ(µ($−1)) = 1. It proves that Tλ(1K,v) has value v at µ($−1) for µ �
F
λ. We have

proved the formula (5.5).

Finally, let λ ∈ X+
∗ (T). Under the hypothesis that the derived subgroup of G is simply

connected,
∑

µ�
F
λ S(fµ) is equal to the element λ seen in k[X+

∗ (T)] by [20, Proposition 5.1]. It

proves ii.

�
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