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Abstract. Let F be a nonarchimedean locally compact field with residue characteristic p

and G(F) the group of F-rational points of a connected reductive group. In [12], Schneider

and Stuhler realize, in a functorial way, any smooth complex finitely generated representation

of G(F) as the 0-homology of a certain coefficient system on the semi-simple building of G.

It is known that this method does not apply in general for smooth mod p representations

of G(F), even when G = GL2. However, we prove that a principal series representation of

GLn(F) over a field with arbitrary characteristic can be realized as the 0-homology of the

corresponding coefficient system as defined in [12].
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1. Introduction

Let F be a nonarchimedean locally compact field with residue characteristic p and G(F)

the group of F-rational points of a connected reductive group G. By a result of Bernstein,

the blocks of the category of smooth complex representations of G(F) have finite global

dimension. The G(F)-equivariant coefficient systems on the semisimple building X of G

introduced in [12] allow Schneider and Stuhler to construct explicit projective resolutions for

finitely generated representations in this category. One of the key ingredients for their result
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is the following fact, which is valid over an arbitrary field k: consider the (level 0) universal

representation X = k[I\G(F)] where I is a fixed pro-p Iwahori subgroup of G(F), then the

attached coefficient system X on X gives the following exact augmented chain complex

(1.1) 0 −→ Corc (X(d),X)
∂−→ . . .

∂−→ Corc (X(0),X)
ε−→ X −→ 0

of G(F)-representations and of left H := k[I\G(F)/I]-modules (see §3 below for the notation).

If k has characteristic p, it is no longer true that the category of smooth representations of

G(F) generated by their pro-p Iwahori fixed vectors has finite global dimension: in the case

of PGL2(Qp), this category is equivalent to the category of modules over H ([5]) and it is

proved in [7] that the latter has infinite global dimension.

Still if k has characteristic p, it is also no longer true that any G(F)-representation V

generated by its I-invariant subspace can be realized as the 0-homology of the coefficient

system V defined as in [12]: it is true for the universal representation X as noted above, but

[7, Remark 3.2] points out a counter-example when V is a supercuspidal representation of

GL2(Qp). However, realizing any smooth irreducible k-representation of GL2(Qp) as the 0-

homology of some finite dimensional coefficient system is important in Colmez’s construction

of a functor yielding the p-adic local Langlands correspondence ([2]). As explained in [8], the

resolutions in [2] can be retrieved in the following way: let V be a smooth representation

of GL2(Qp) with a central character and generated by its I-invariant subspace VI, then

by the equivalence of categories of [5], tensoring (1.1) by the H-module VI gives an exact

resolution of V ' VI ⊗H X. But the equivalence of categories does not hold in general. For

arbitrary F, Hu attaches to any irreducible representation of GL2(F) with central character

a coefficient system on the tree whose 0-homology is isomorphic to V ([4]). This coefficient

system, although not finite dimensional in general, turns out to be finite dimensional when

F = Qp and one retrieves, once again, the resolutions of [2]. But if F has positive characteristic

(respectively if F/Qp is a quadratic unramified extension), then for V supercuspidal, there is

no finite dimensional coefficient system whose 0-homology is isomorphic to V as proved in

[4] (respectively in [14]).

Most of the surprising phenomena occurring in the smooth mod p representation theory of

G(F) are related to the properties of the supercuspidal representations, whereas the behavior

of the principal series representations is easier to analyze and is somewhat similar to what is

observed in the setting of complex representations. To formalize this remark, Peter Schneider

asked me the following question: the Hecke algebra H contains a copy Aanti of the k-algebra

of the semigroup of all (extended) antidominant cocharacters of a split torus of G; is H free

as a Aanti-module when localized at a regular character of Aanti? (see §2.3 and §4 for the

definitions and Propositions 4.3 and 4.4 for the link between regular characters of Aanti and
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principal series representations). The answer is yes and the present note is largely inspired

by this question. We prove the following theorem, where n is an integer ≥ 1.

Theorem 1.1. Let k be an arbitrary field and V a smooth principal series representation of

GLn(F) over k. Let V be the coefficient system associated to V as in [12]. Then the following

augmented chain complex

(1.2) 0 −→ Corc (X(n−1),V)
∂−→ . . .

∂−→ Corc (X(0),V)
ε−→ V −→ 0

yields an exact resolution of V as a representation of GLn(F).

This theorem is proved in Section 5. In the previous sections, the arguments are written in

the setting of a general split group. However, in Section 5, we need an extra geometric condi-

tion on the facets of the standard apartment to be able to fully use Iwasawa decomposition.

Therefore, we restrict ourselves to the case of GLn. We suspect that Theorem 1.1 is true in

general.

A generalization of Colmez’ functor to reductive groups over Qp is proposed by Schneider

and Vignéras in [13]. The first fundamental construction is the one of a universal δ-functor

V 7→ Di(V ) for i ≥ 0, from the categoryMo−tor(B) to the categoryMet(Λ(B+)). The ring o

is the ring of integers of a fixed finite extension of Qp andMo−tor(B) is the abelian category

of smooth representations of B in o-torsion modules, where B is a fixed Borel subgroup in

G(Qp). We do not describe the categoryMet(Λ(B+)) explicitly here. The restriction V to B

of a principal series representation of G(Qp) over a field with characteristic p is an example

of an object in Mo−tor(B) for a suitable ring o. Using Theorem 1.1, we prove the following

result (§6):

Proposition 1.2. Suppose that k is a field with characteristic p. Let V be the restriction to

B of a principal series representation of GLn(Qp) over k. Then Di(V ) = 0 for i ≥ n− 1.

2. Notations and preliminaries

2.1. From now on we suppose that G is F-split and we denote G(F) by G. We fix a uni-

formizer $ for F and choose the valuation valF on F normalized by valF($) = 1. The ring of

integers of F is denoted by O and its residue field with cardinality q = pf by Fq.
In the semisimple building X of G, we choose the chamber C corresponding to the Iwahori

subgroup I′ that contains the pro-p subgroup I. This choice is unique up to conjugacy by an

element of G. Since G is split, C has at least one hyperspecial vertex x0 and we denote by K

the associated maximal compact subgroup of G. We fix a maximal F-split torus T in G such

that the corresponding apartment A in X contains C.
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Let Gx0 and GC denote the Bruhat-Tits group schemes over O whose O-valued points

are K and I′ respectively. Their reductions over the residue field Fq are denoted by Gx0 and

GC . Note that G = Gx0(F) = GC(F). By [16, 3.4.2, 3.7 and 3.8], Gx0 is connected reductive

and Fq-split. Therefore we have G◦C(O) = GC(O) = I′ and G◦x0(O) = Gx0(O) = K. Denote

by K1 the pro-unipotent radical of K. More generally we consider the fundamental system of

open normal subgroups

Km := ker (Gx0(O)
pr−−→ Gx0(O/$mO)) for m ≥ 1

of K. The quotient K/K1 is isomorphic to Gx0(Fq). The Iwahori subgroup I′ is the preimage

in K of the Fq-rational points of a Borel subgroup B with Levi decomposition B = TN. The

pro-p Iwahori subgroup I is the preimage in I′ of N(Fq). The preimage of T(Fq) is the the

maximal compact subgroup T0 of T. Note that T0/T1 = I′/I = T(Fq) where T1 := T0 ∩ I.

To the choice of T is attached the root datum (Φ,X∗(T), Φ̌,X∗(T)). This root system is

reduced because the group G is F-split. We denote by W the finite Weyl group NG(T)/T,

quotient by T of the normalizer of T. Let 〈 . , . 〉 denote the perfect pairing X∗(T)×X∗(T)→ Z.

The elements in X∗(T) are the cocharacters of T and we will call them the coweights. We

identify the set X∗(T) with the subgroup T/T0 of the extended Weyl group W = NG(T)/T0

as in [16, I.1] and [12, I.1]: to an element g ∈ T corresponds a vector ν(g) ∈ R ⊗Z X∗(T)

defined by

(2.1) 〈ν(g), χ〉 = − valF(χ(g)) for any χ ∈ X∗(T).

and ν induces the required isomorphism T/T0 ∼= X∗(T). Recall that A denotes the apart-

ment of the semisimple building attached to T ([16] and [12, I.1]). The group T/T0 acts by

translation on A via ν. The actions of W and T/T0 combine into an action of W on A as

recalled in [12, page 102]. Since x0 is a special vertex of the building, W is isomorphic to

the semidirect product X∗(T) oW where we see W as the fixator in W of any point in the

extended apartment lifting x0 ([16, 1.9]). A coweight λ will sometimes be denoted by eλ to

underline that we see it as an element in W, meaning as a translation on the semisimple

apartment A .

We see the roots Φ as the set of affine roots taking value zero at x0. Then Φ+ is the set

of roots in Φ taking non negative values on C. The set of dominant coweights X+
∗ (T) is the

set of all λ ∈ X∗(T) such that 〈λ, α〉 ≥ 0 for all α ∈ Φ+. A coweight is called antidominant if

its opposite is dominant. A coweight λ such that 〈λ, α〉 < 0 for all α ∈ Φ+ is called strongly

antidominant.
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2.2. We fix a lift ŵ ∈ NG(T) for any w ∈ W. By Bruhat decomposition, G is the disjoint

union of all I′ŵI′ for w ∈ W. Recall that T1 is the pro-p Sylow subgroup of T0. We denote

by W̃ the quotient of NG(T) by T1 and obtain the exact sequence

0→ T0/T1 → W̃→W→ 0.

The group W̃ parametrizes the double cosets of G modulo I. We fix a lift ŵ ∈ NG(T) for any

w ∈ W̃. For Y a subset of W, we denote by Ỹ its preimage in W̃. In particular, we have the

preimage X̃∗(T) of X∗(T). As well as those of X∗(T), its elements will be denoted by λ or eλ

and called coweights. Note that a system of representatives of T/T1 is given by the set of all

êλ for λ ∈ X̃∗(T). In fact, we recall that the map

(2.2) λ ∈ X∗(T)→ [λ($−1) mod T1] ∈ X̃∗(T)

is a W-equivariant splitting for the exact sequence of abelian groups

(2.3) 0 −→ T0/T1 −→ X̃∗(T) −→ X∗(T) −→ 0.

We will identify X∗(T) with its image in X̃∗(T) via (2.2).

For α ∈ Φ, we inflate the function 〈 . , α〉 defined on X∗(T) to X̃∗(T). We still call dominant

coweights (resp. antidominant coweights) the elements in the preimage X̃+
∗ (T) (resp. X̃−∗ (T))

of X+
∗ (T) (resp. X−∗ (T)).

The group W̃ is equipped with a length function ` : W̃ → N that inflates the length

function on W ([18, Proposition 1]).

2.3. Let k be an arbitrary field. We consider the pro-p Iwahori-Hecke algebra

H = k[I\G/I]

of k-valued functions with compact support in I\G/I under convolution. For w ∈ W̃, denote

by τw the characteristic function of the double coset IŵI. The set of all (τw)w∈W̃ is a k-basis

for H. For g ∈ G, we will also use the notation τg for the characteristic function of the double

coset IgI. In H we have the following relation, for w, w′ in W̃ ([18, Theorem 50]):

(2.4) τwτw′ = τww′ if `(w) + `(w′) = `(ww′).

It implies in particular that in H we have, for λ and λ′ in X̃∗(T):

(2.5) τeλτeλ′ = τeλ+λ′ if λ and λ′ are both antidominant.

We denote by Aanti the commutative sub-k-algebra of H with k-basis the set of all {τeλ , λ ∈
X̃−∗ (T)}.
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2.4. Let U be the unipotent subgroup of G generated by all the root subgroups Uα for

α ∈ Φ+ and B the Borel subgroup with Levi decomposition B = TU. Recall that we have

G = BK since x0 is a special vertex. Furthermore, B ∩K = I′ ∩ B.

Let U− denote the opposite unipotent subgroup of G generated by all the root subgroups

Uα for −α ∈ Φ+. The pro-p Iwahori subgroup I has the following decomposition:

I = I+ I0 I− where I+ := I ∩U, I0 := I ∩ T = T1, I− := I ∩U−.

An element t ∈ T contracts I+ and dilates I− if it satisfies the conditions (see [1, (6.5)]):

(2.6) t I+t−1 ⊆ I+, t−1I−t ⊆ I−.

Denote by T++ the semigroup of such t ∈ T.

Lemma 2.1. We have T++ =
∐
λ∈X̃−∗ (T) T1êλ.

Proof. Let λ ∈ X̃∗(T). It is proved in [9, Lemma 5.20] that the element êλ satisfies (2.6) if

and only if λ is antidominant.

�

2.5. We consider the k-basis (E(w))w∈W̃ for H as introduced in [18]. Recall that E(eλ) = τeλ

for all λ ∈ X̃−∗ (T). For w ∈ W̃, there is λ0 ∈ X̃∗(T) and w0 ∈ W̃ such that w = eλ0w0. Let

λ ∈ X̃−∗ (T) such that λ+ λ0 ∈ X̃−∗ (T). We claim that

(2.7) τeλ E(w) = q(`(w)+`(eλ)−`(eλw))/2E(eλ0+λ)τw0 ∈ Aanti τw0 .

The proof of this equality given in the case of GLn in [6, Proposition 4.8] works in the general

case with no modification.

2.6. Let t ∈ T such that the double class I t I corresponds to a strongly antidominant element

in X−∗ (T). The following lemma proved in [11, Proposition 8, p.78] is valid in the case of a

general split reductive group.

Lemma 2.2. An open compact subset of B\G decomposes into a finite disjoint union of

subsets of the form BItnk = BI−tnk for n large enough, where k ranges over a finite subset

of K.

Lemma 2.3. A system of neighborhoods of the identity in U− is given by the set of all

t−mI−tm for m ∈ N.

Proof. A system of neighborhoods of the identity in U− is given by the set of all Km ∩ U−

and one checks that t−mI−tm ⊆ Km+1 ∩U− for all m ∈ N.

�
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3. Resolution of the level 0 universal representation of G(F)

We gather here results from [12] and use the notations of [7]. We recall (cf. [12] I.1-2 for

a brief overview) that the semi-simple building X is (the topological realization of) a G-

equivariant polysimplicial complex of dimension equal to the semisimple rank d of G. The

(open) polysimplices are called facets and the d-dimensional, resp. zero dimensional, facets

chambers, resp. vertices. For i ∈ {0, ..., d}, we denote by X(i) the set of oriented facets of

dimension i. Associated with each facet F is, in a G-equivariant way, a smooth affine O-group

scheme GF whose general fiber is G and such that GF (O) is the pointwise stabilizer in G of

the preimage of F in the extended building of G. Its neutral component is denoted by G◦F so

that the reduction G
◦
F over Fq is a connected smooth algebraic group. The subgroup G◦F (O)

of G is compact open. Let

IF := {g ∈ G◦F (O) : (g mod $) ∈ unipotent radical of G
◦
F }.

The IF are compact open pro-p subgroups in G which satisfy IC = I, Ix0 = K1,

(3.1) gIF g
−1 = IgF for any g ∈ G,

and

(3.2) IF ′ ⊆ IF whenever F ′ ⊆ F .

For any smooth k-representation V of G, the family {VIF }F of subspaces of IF -fixed vectors

in V forms a G-equivariant coefficient system on X which we will denote by V ([12] II.2).

Let X be the space k[I\G] of k-valued functions with finite support in I\G. It is a natural left

H-module. Let X be the associated coefficient system. The corresponding augmented oriented

chain complex

(3.3) 0 −→ Corc (X(d),X)
∂−→ . . .

∂−→ Corc (X(0),X)
ε−→ X −→ 0

is a complex of G-representations and of left H-modules.

As noticed in [7, Remark 3.2], the following result is contained in the proof of [12, Theorem

II.3.1]:

Theorem 3.1 ([12] Thm. II.3.1). The complex (3.3) is exact.

Let F be a facet in C. Extending functions on G◦F (O) by zero to G induces a G◦F (O)-

equivariant embedding

XF := k[I\G◦F (O)] ↪→ X

and we consider the subalgebra

HF := k[I\G◦F (O)/I]
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of the functions in H with support in G◦F (O).

Lemma 3.2. The natural maps of respectively (G◦F (O),Hoppx0 )-bimodules and (G◦F (O),Hopp)-

bimodules

(3.4) Hx0 ⊗HF XF → XIF
x0

(3.5) H⊗HF XF → XIF

are bijective.

Proof. The isomorphism (3.5) is proved in [7, Proposition 4.25]. The proof of the bijectivity

of (3.4), is obtained similarly as follows. Let Φ+
F denote the set of positive roots that take

value zero on F and DF the subset of all elements d in W such that dΦ+
F ⊆ Φ+. Choose a

lift d̃ ∈ W̃ for each such d. Then it is classical to establish that Hx0 is a free right HF -module

with basis {τd̃}d∈DF . Since HF is Frobenius ([10, Thm. 2.4] and [15, Prop 3.7]), it is self-

injective: this implies that the HF -module Hx0 is a direct summand of H and the composition

Hx0 ⊗HF XF → H⊗HF XF is an injective map inducing the natural injection

Hx0 ⊗HF XF → XIF
x0 .

To prove that it is surjective, we argue (again as in [7, Proposition 4.25]) using the fact that

the set of all d̃ for d ∈ DF yields a system of representatives for the double cosets I\K/G◦F (O)

and that Id̃IF = Id̃I.

�

We define P
†
F to be the stabilizer of F in G. For g ∈ P

†
F , set εF (g) = +1, respectively −1,

if g preserves, respectively reverses, a given orientation of F . For any representation V of P†F ,

we denote by V⊗ εF the space V endowed with the structure of a representation of P†F where

the action of P†F is twisted by the character εF .

For i ∈ {0, ..., d}, we fix a (finite) set of representatives Fi for the G-orbits in Xi such that

every member in Fi is contained in C. As explained in [7, 3.3.2]:

Proposition 3.3. Let i ∈ {0, ..., d}.
i. The (G,Hopp)-bimodule Corc (X(i),X) is isomorphic to the direct sum⊕

F∈Fi

indG
P
†
F

(XIF ⊗ εF ).

ii. In particular, as a left Aanti-module, it is isomorphic to a direct sum of modules of

the form XIF for F ∈ Fi.
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4. Principal series representations over a ring

Let R be a commutative k-algebra. Given a topological groupH, we consider R-representations

of H that is to say R-modules endowed with a R-linear action of H. If the stabilizers of the

points are open in H, then such a representation is called smooth. Let R× be the group of

invertible elements in R. A morphism of k-algebras Aanti → R is called a character. If the

image of every element τeλ , λ ∈ X̃−∗ (T) lies in R×, then the character is called regular.

Lemma 4.1. There is a bijection φ 7→ φ from the set of morphisms T/T1 7→ R× into the set

of regular characters Aanti → R such that

φ(τeλ) := φ(ê−λ) for all λ ∈ X̃−∗ (T).

We denote the inverse map by ψ 7→ ψ.

Proof. We use (2.5) repeatedly to justify the following arguments. The formula given for φ

defines a regular character Aanti → R. Now consider ψ : Aanti → R a regular character. Let

t ∈ T and denote by λ the element in X̃∗(T) such that ItI = IêλI. There are λ1, λ2 ∈ X̃−∗ (T)

such that λ = λ1 − λ2 and we set

ψ(t) := ψ(τeλ1 )ψ(τeλ2 )−1

which is well defined because ψ is regular. Furthermore, one checks that it defines a morphism

T→ R× which is trivial on T1.

�

Consider a regular R-character ξ : Aanti → R and the corresponding morphism ξ which we

see as a map T→ R× trivial on T1. Inflating ξ to a character of the Borel B, we consider the

R-module of the functions f : G → R satisfying f(bg) = ξ(b)f(g) for all g ∈ G, b ∈ B. It is

endowed with a R-linear action of G by right translations namely (g, f) 7→ f( . g). We denote

by

IndG
B(ξ)

its smooth part and obtain a smooth R-representation of G.

Lemma 4.2. Let Ω be a pro-p subgroup of K. The space of Ω-invariant functions

(IndG
B(ξ))Ω

is a free R-module of finite rank equal to |B\G/Ω|.
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Proof. The morphism ξ can be seen as a k-representation of T over the k-vector space R and

therefore, by the classical theory of k-representations of G, if Ω is a compact open subgroup

of G, we have a k-linear isomorphism

(IndG
B(ξ))Ω ∼=

∏
k∈B\G/Ω

RB∩kΩk−1

given by the evaluation of f ∈ (IndG
B(ξ))Ω at all k in a chosen system of representatives of

B\G/Ω. If Ω is a pro-p subgroup of K then, by Cartan decomposition, one can choose k ∈ K

and then B ∩ kΩk−1 ⊆ B ∩K = B ∩ I′. But B ∩ kΩk−1 is a pro-p group so it is contained in

B ∩ I on which ξ is trivial. We therefore have a k-linear isomorphism

(IndG
B(ξ))Ω ∼=

∏
k∈B\G/Ω

R

given by the evaluation of f ∈ (IndG
B(ξ))Ω at all k in a chosen system of representatives of

B\G/Ω. This map being obviously R-equivariant, we have proved that (IndG
B(ξ))Ω is a free

R-module of rank |B\G/Ω|.
�

Proposition 4.3. We have an isomorphism of R-representations of G

ξ ⊗Aanti X ∼= IndG
B(ξ).

Proof. The proof follows closely the strategy of [11, Prop 11, p.80] which considers the case

of the principal series representation induced by the trivial character with values in Z in the

case of G = GLn. In the case of unramified principal series representations of GLn over a ring,

and respectively, for more general comparison between compact and parabolic induction over

an algebraically closed field with characteristic p, [17, 4.5] and [3, Theorem 3.1, Corollary 3.6]

use similar techniques inspired by [11].

Denote by f1 the I-invariant function in IndG
B(ξ) with support BI and value 1R at 1G. Since

ξ is trivial on B ∩ I, it is well defined by the formula f1(bu) = ξ(b) for all b ∈ B and u ∈ I.

1/ We consider the morphism of k-representations of G

Φ : X −→ IndG
B(ξ)

sending the characteristic function charI of I onto f1. Let λ ∈ X̃−∗ (T). We compute f1τeλ .

Decompose IêλI into simple right cosets mod I. By Lemma 2.1, one can find such a decom-

position IêλI =
∐
k Iêλk with k ranging over some finite subset of I−. Now f1τeλ is I-invariant
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with support in BI−êλI− = BI. To compute its value at 1, one checks that for k ∈ I−, we

have 1 ∈ BI−êλk if and only if Iêλk = Iêλ and therefore

f1τeλ(1) = [êλ
−1
.f1](1) = ξ(ê−λ) = ξ(τeλ).

We have proved that Φ(τeλ) = ξ(τeλ)Φ(charI). It proves that Φ induces a morphism of R-

representations of G

Φ′ : ξ ⊗Aanti X −→ IndG
B(ξ).

2/ We show that f1 generates IndG
B(ξ) as a R-representation of G. Let f ∈ IndG

B(ξ). Its

support is open and compact in B\G and by Lemma 2.2, we can suppose (after restricting

and translating) that f has support in BU−. The restriction f |U− is locally constant and we

can suppose (after restricting the support more) that f |U− is constant on some compact open

subset C. By Lemma 2.3, this set C is the finite union of subsets of the form t−nI−tnu for n

large enough and u ∈ U−, where t is defined in §2.6. Restricting again (and translating), one

can suppose that f |U− has support t−nI−tn and is constant with value r ∈ R on this subset.

Now for all (b, u) ∈ B× I, write u = u+u0u
− ∈ I+I0I− and recall that ξ(u+u0) = 1. We have

(tnf)(bu) = f(bu+u0t
nt−nu−tn) = ξ(bu+u0t

n)r = ξ(b)ξ(tn)r. Therefore, f = ξ(tn)r (t−n.f1)

lies in the sub-R-representation generated by f1. This proves that Φ′ is surjective.

3/ To prove that Φ′ is injective we follow the strategy of [11, pp.80 & 81]. For n ∈ N,

denote by Yn the subspace of X of the functions with support in ItnK.

Fact i. Consider an element in ξ ⊗Aanti X. There is n ∈ N such that it can be written as a

sum of elements of the form r ⊗ f where r ∈ R and f ∈ Yn.

Fact ii. For k ∈ K and n ∈ N, we have BItnk ∩ BItn 6= ∅ if and only if Itnk = Itn.

The facts together prove the injectivity of Φ′.

Proof of the facts. The proof of Fact ii in the case of G = GLn given in [11, p. 81] and [11,

Proposition 7, p.77] is the same in the general case of a split group. For Fact i, we first notice

that the statement of [11, Lemma 12, p.80] holds in the case of a general split group since

(G, I′, NG(T)) is a generalized Tits system. Therefore, for any g ∈ G, there is y ∈ T++ such

that IyIg ⊆ IT++K. The element 1⊗ charIg can be written ξ(τy)
−1 ⊗ charIyIg. Therefore, an

element in ξ⊗AantiX can be written as a sum of elements of the form r′⊗f ′ where r′ ∈ R and

f ′ has support in IT++K. Now let y′ ∈ T++ and k ∈ K. One can find n ∈ N large enough such

that tny′−1 = y′′ ∈ T++. Hence the element r⊗charIy′k can be written rξ(τy′′)
−1⊗charIy′′Iy′k

and by (2.5) we have Iy′′Iy′k ⊆ Iy′′Iy′Ik = ItnIk ⊆ ItnK.

�

�
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Proposition 4.4. As a right R⊗k H-module, (IndG
B(ξ))I is isomorphic to ξ ⊗Aanti H.

Proof. By Lemma 4.2, the R-module (IndG
B(ξ))I is free of rank |B\G/I| = |W|. More precisely,

for any w ∈ W, fix lifts w̃ ∈ W̃ and ˆ̃w ∈ NG(T) for w, and denote by fw the function in

(IndG
B(ξ))I with support B ˆ̃wI and value 1R at ˆ̃w. The family (fw)w∈W is a basis for the free

R-module (IndG
B(ξ))I (see for example [9, 5.5.1] for more detail). By [9, Proposition 5.16], the

composition

(4.1) ξ ⊗Aanti H −→ (ξ ⊗Aanti X)I Φ′−→ (IndG
B(ξ))I

is a surjective morphism of R ⊗k H-modules since the image of 1R ⊗ τw̃ is equal to fw for

all w ∈ W. From (2.7) and since ξ is regular, we deduce that ξ ⊗Aanti H is generated as an

R-module by the set of all 1R⊗ τw̃ for w ∈W. This is enough to prove that (4.1) is injective.

�

By Propositions 4.3 and 4.4, there are natural isomorphisms of R-representations of G

(4.2) ξ ⊗Aanti X ∼= (IndG
B(ξ))I ⊗H X ∼= IndG

B(ξ).

For any facet F of C containing x0 in its closure, they induce morphisms of R-representations

of P†F :

(4.3) ξ ⊗Aanti XIF ∼= (IndG
B(ξ))I ⊗H XIF −→ (IndG

B(ξ))IF .

We identify k[T0/T1] with its image in Aanti via t 7→ τt−1 . The Aanti-module R therefore

inherits a structure of k[T0/T1]-module and this structure is given by the restriction of ξ

to T0/T1. Below, we also consider ξ (or rather its restriction to T0/T1) as a character of I′

trivial on I.

Lemma 4.5. Let F be a facet of C containing the hyperspecial vertex x0 in its closure. There

is a natural isomorphism of R[[K]]-modules

R⊗k[T0/T1] Xx0
∼= IndK

I′ (ξ).

It induces an isomorphism of R[[G◦F (O)]]-modules

R⊗k[T0/T1] X
IF
x0
∼= (IndK

I′ (ξ))
IF .

Proof. The first abstract isomorphism is clear because, as representations of K, we have

Xx0
∼= IndK

I′k[T0/T1] and the tensor product commutes with compact induction. We describe

this isomorphism explicitly in order to deduce the second one. Denote by ϕ the function in

IndK
I′ (ξ) with support I′ and value 1R at 1K. It is I-invariant.
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The following well defined map realizes the first isomorphism of R[[K]]-modules:

R⊗k[T0/T1] Xx0 −→ IndK
I′ (ξ).

r ⊗ charI 7−→ rϕ.

Consider the k[T0/T1]-module XIF
x0 . It is free with basis the set of all charIxIF for x ranging

over a system of representatives of I′\K/IF . This can be seen by noticing that I′xIF is the

disjoint union of all ItxIF for t ∈ T0/T1. In particular, XIF
x0 is projective and therefore injective

over the Frobenius algebra k[T0/T1]: it is a direct summand of Xx0 and we have an injective

morphism of R[[G◦F (O)]]-modules

(4.4) R⊗k[T0/T1] X
IF
x0 ↪→ (R⊗k[T0/T1] Xx0)IF ∼= (IndK

I′ (ξ))
IF .

For x ∈ K, the IF -invariant function in (IndK
I′ (ξ))

IF with support I′xIF and value r ∈ R at x

is the image by (4.4) of r ⊗ charIxIF . Therefore (4.4) is surjective.

�

Proposition 4.6. If F is a facet of C containing x0 in its closure, then (4.3) is a chain of

isomorphisms

(4.5) ξ ⊗Aanti XIF ∼= (IndG
B(ξ))I ⊗H XIF ∼= (IndG

B(ξ))IF .

of R-representations of P†F . In particular, the R-module ξ ⊗Aanti XIF is free.

Proof. There is a well defined morphism of R-representations of K

(4.6) IndK
I′ (ξ) −→ (IndG

B(ξ))K1

defined by sending the function ϕ onto the function f1 ∈ (IndG
B(ξ))I (notations of the proof

of Lemma 4.5 and Proposition 4.3). It is injective since for k ∈ K, the equality BIk ∩ BI 6= ∅
implies k ∈ I′. By Iwasawa decomposition and since K1 is normal in K, the R[[K]]-module

(IndG
B(ξ))K1 is generated by the K1-invariant function with support in BK1 = BI and value

1R at 1G. This function is in fact equal to f1 because ξ is trivial on I+. Therefore (4.6) is an

isomorphism.

We want to show that the natural morphism of R-representations of P†F

(4.7) (IndG
B(ξ))I ⊗H XIF −→ (IndG

B(ξ))IF

is bijective. By (3.5), it is enough to show that the natural morphism of R[[G◦F (O)]]-modules

(4.8) (IndG
B(ξ))I ⊗HF XF −→ (IndG

B(ξ))IF

is bijective. Since x0 is in the closure of F , passing to I-invariant vectors in (4.6) yields an

isomorphism of right R ⊗k Hx0-modules and therefore of right R ⊗k HF -modules. Likewise,
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passing to IF -invariant vectors yields an isomophism of R[[G◦F (O)]]-modules. Therefore we

want to show that the natural morphism of R[[G◦F (O)]]-modules

(4.9) (IndK
I′ (ξ))

I ⊗HF XF −→ (IndK
I′ (ξ))

IF

is bijective. Now by Lemma 4.5 and using (3.4), we check that (4.9) can be decomposed into

the following chain of isomorphisms

(IndK
I′ (ξ))

I ⊗HF XF ' R⊗k[T0/T1] Hx0 ⊗HF XF
∼= R⊗k[T0/T1] X

IF
x0
∼= (IndK

I′ (ξ))
IF .

�

Proposition 4.7. The R-module IndG
B(ξ) ' ξ ⊗Aanti X is free.

Proof. As an R-module, IndG
B(ξ) is the inductive limit of the family ((IndG

B(ξ))Km)m≥0 where

we set K0 = I. We prove the proposition by first invoking Lemma 4.2 which ensures that

IndG
B(ξ)K0 is a free (finitely generated) R-module, and then by proving that for all m ≥ 0,

the quotient (IndG
B(ξ))Km+1/(IndG

B(ξ))Km is a free (finitely generated) R-module. For this, let

m ≥ 0. For g ∈ G, denote by IndBgKm
B (ξ) the subspace of the functions in IndG

B(ξ) with support

in BgKm and decompose the latter into a finite disjoint union BgKm =
∐s
i=1 BgkiKm+1. By

Lemma 4.2, the map

(IndBgKm
B (ξ))Km+1 −→ Rs

f 7−→ (f(gki))1≤i≤s(4.10)

is a R-linear isomorphism. A function f ∈ (IndBgKm
B (ξ))Km+1 is Km-invariant if and only

if its image by (4.10) lies in the submodule D of Rs generated by (1)1≤i≤s. Since Rs/D

is a free R-module and (IndG
B(ξ))Km+1/(IndG

B(ξ))Km is isomorphic to the direct sum of all

(IndBgKm
B (ξ))Km+1/(IndBgKm

B (ξ))Km for g in the (finite) set B\G/Km, we obtain the expected

result.

�

5. Resolutions for principal series representations of GLn(F) in arbitrary

characteristic

Let χ : T → k× a morphism of groups which we suppose to be trivial on T1. We are

interested in the principal series k-representation of G

V = IndG
B(χ).

and the associated coefficient system V defined in Section 3. As in Section 4, we consider

the sub-k-algebra Aanti of H and we attach to χ the regular k-character χ : Aanti → k as in

Lemma 4.1. Define R to be the localization of Aanti at the kernel of χ and ξ : Aanti → R to be

the natural morphism of localization. It is a regular character of Aanti. There is a k-character
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χ : R→ k satisfying χ ◦ ξ = χ. Since R is a flat Aanti-module, tensoring the complex of left

Aanti-modules (3.3) by R yields an exact sequence of R-representations of G:

(5.1) 0 −→ ξ ⊗Aanti Corc (X(d),X) −→ . . . −→ ξ ⊗Aanti Corc (X(0),X) −→ ξ ⊗Aanti X −→ 0

Suppose that G = GLn for n ≥ 1. Then for any i ∈ {0, . . . , d}, we can choose the facets in

Fi to contain x0 in their closure. Therefore, by Propositions 3.3, 4.6 and 4.7, all the terms of

the exact complex (5.1) are free R-modules. The complex splits as a complex of R-modules

and it remains exact after tensoring by the k-character χ of R. But χ⊗Rξ is isomorphic to the

space k endowed with the structure of Aanti-module given by χ : Aanti → k. By Proposition

4.3, this gives a G-equivariant resolution of IndG
B(χ):

(5.2) 0 −→ χ⊗Aanti Corc (X(d),X) −→ . . . −→ χ⊗Aanti Corc (X(0),X) −→ IndG
B(χ) −→ 0

This complex is isomorphic to the augmented complex associated to the coefficient system

on X denoted by χ ⊗Aanti X and defined by F 7−→ χ ⊗Aanti XIF for any facet in X . By

Proposition 4.6, χ⊗Aanti X is isomorphic to V. Therefore, the exact complex (5.2) is isomor-

phic to the complex (1.2) and we have proved Theorem 1.1. Note that by Proposition 3.3,

the exact resolution (1.2) is of the form:

(5.3)

0 −→
⊕
F∈Fd

indG
P
†
F

((IndG
Bχ)IF ⊗ εF ) −→ . . . −→

⊕
F∈F0

indG
P
†
F

((IndG
B(χ))IF ⊗ εF ) −→ IndG

B(χ) −→ 0.

Here since G = GLn, the semisimple rank is d = n− 1.

6. A remark about the Schneider-Vignéras functor

Assume that G = GLn(Qp) with n ≥ 2, and denote by Z its center. We set B0 := B ∩ K.

It is a subgroup of I′.

Lemma 6.1. Let F be a facet of the standard apartment A containing x0 in its closure. We

have P
†
F ∩ B ⊂ B0Z.

Proof. Any vertex in the closure of F is of the form êλx0 for some λ ∈ X∗(T) and this vertex

coincides with x0 if and only if êλ is in the center Z that is to say if λ ∈ X∗(Z). Let b ∈ P
†
F ∩B.

There is λ1 ∈ X∗(T) such that êλ1x0 ∈ F and bx0 = êλ1x0. Therefore b ∈ êλ1KZ∩B = êλ1B0Z.

Write b = êλ1uz with u ∈ B0 and z ∈ Z. Inductively, we construct a sequence (λm)m≥1 in

X∗(T) such that êλmx0 ∈ F and bêλmx0 = êλm+1x0. It implies ̂eλ1−λm+1uêλm ∈ KZ. Looking

at the diagonal of this element, we find λm+1 = λ1 +λm mod X∗(Z) and therefore λm = mλ1
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mod X∗(Z) for any m ≥ 1. If λ1 6∈ X∗(Z), then the family of all êλmx0 is infinite: we obtain

a contradiction. Therefore b ∈ B0Z.

�

We can identify W with a subgroup of G and W yields a system of representatives of the

double cosets I\G/B. For any i ∈ {0, ..., n− 1}, choose the facets in Fi to contain x0 in their

closure. For F ∈ Fi, we choose a system of representatives of P†F \G/B in W. For w ∈W, we

can apply Lemma 6.1. to the facet w−1F of A .

Let χ : T→ k× a morphism of groups which is trivial of T1. Restricting (5.3) to a complex

of k-representations of B, we obtain an exact complex:

0→
⊕

F∈Fn−1,

w∈P†
F
\G/B

indB
w−1P

†
Fw∩B

(w ? ((IndG
B(χ))IF ⊗ εF )) −→ . . .

. . . −→
⊕
F∈F0,

w∈P†
F
\G/B

indB
w−1P

†
Fw∩B

(w ? ((IndG
B(χ))IF ⊗ εF )) −→ IndG

B(χ)|B → 0

where w? ((IndG
B(χ))IF ⊗ εF ) denotes the space (IndG

B(χ))IF ⊗ εF with the group w−1P
†
Fw∩B

acting through the homomorphism w−1P
†
Fw ∩ B

w .w−1

−−−−→ P
†
F . Therefore, applying Lemma

6.1, there exist smooth k-representations V0, ..., Vn−1 of B0Z and an exact resolution of the

restriction to B of IndG
B(χ) of the form:

(6.1) I• : 0 −→ indB
B0Z(Vn−1)

∂n−1−−−−→ . . . −−→ indB
B0Z(V0)

∂0−−→ IndG
B(χ)|B −→ 0

From now on, k has characteristic p. As noted by Zàbràdi in [19, §4], the argument of [13,

Lemma 11.8] generalizes to the case of GLn(Qp). Therefore, we can compute the image of

IndG
B(χ)|B by the universal δ-functor V 7→ Di(V ), i ≥ 0, defined in [13] using the cohomology

of the complex D(I•): for i ≥ 0

Di(IndG
B(χ)|B) = hi(D(indB

B0Z(V0))
D(∂0)−−−−→ D(indB

B0Z(V1))→ ...
D(∂n−1)−−−−−−→ D(indB

B0Z(Vn−1))→ 0→ 0...)

By [13, Remark 2.4, i], the map D(∂n−1) is surjective. Therefore, we have proved that

Di(IndG
B(χ)|B) = 0 for all i ≥ n− 1.
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[8] Ollivier, R. ; Sécherre, V. – Modules universels de GL3 sur un corps p-adique en caractéristique p.
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